Homework 3, Math 509 Spring 2018

Eric A. Carlen ${ }^{1}$
Rutgers University

March 28, 2018

1: Let $M_{n}(\mathbb{C})$ be the C^{*} algebra of $n \times n$ matrices with the usual involution $*$ and the usual norm. A density matrix is a positive semi-definite matrix ρ such that $\operatorname{Tr}[\rho]=1$. Show that $S\left(M_{n}(\mathbb{C})\right)$ consists of the $n \times n$ density matrices ρ, identifying ρ with the linear functional $A \mapsto \operatorname{Tr}[r h o A]$. Show that the set of extreme points of $S\left(M_{n}(\mathbb{C})\right)$ is the set of rank-one density matrices. .

4: Let \mathscr{H}_{n} be the direct sum of n copies of \mathbb{C}^{n}. That is, a vector $\eta \in \mathscr{H}_{n}$ is an n-tuple ($\eta_{!}, \ldots, \eta_{n}$) of vectors in \mathbb{C}^{n}, and we define

$$
\left\langle\left(\eta_{!}, \ldots, \eta_{n}\right),\left(\zeta_{!}, \ldots, \zeta_{n}\right)\right\rangle=\sum_{j=1}^{n}\left\langle\eta_{j}, \zeta_{j}\right\rangle .
$$

where the inner product on the right is the usual one in \mathbb{C}^{n}. Define a representation π of $M_{n}(\mathbb{C})$ on \mathscr{H}_{n} by

$$
\pi(A)\left(\eta_{!}, \ldots, \eta_{n}\right)=\left(A \eta_{!}, \ldots, A \eta_{n}\right)
$$

Show that $\left(A \eta_{!}, \ldots, A \eta_{n}\right)$ is separating for this representation if and only if $\left\{\eta_{1}, \ldots, \eta_{n}\right\}$ is linearly independent in \mathbb{C}^{n}. Show that $\left(A \eta_{!}, \ldots, A \eta_{n}\right)$ is cyclic for this representation if and only if $\left\{\eta_{1}, \ldots, \eta_{n}\right\}$ is linearly independent in \mathbb{C}^{n}.
3: We can identify $\mathscr{B}\left(\mathscr{H}_{n}\right)$ as the set of $n \times n$ matrices with entries in $M_{n}(\mathbb{C})$, as in the proof of the von Neumann Double Commutant Theorem: Given $T \in \mathscr{B}\left(\mathscr{H}_{n}\right)$ and $\xi \in \mathbb{C}^{n}$, for each $1 \leq i, j \leq n$, define $(\xi)_{j}$ to be the element of \mathscr{H}_{n} whose j th entry is ξ, and all other entries are zero, and then define $T_{i, j} \xi$ to be the i th entry of $T(\xi)_{j}$. Then $T_{i, j}$ is the i, j th entry in the block-matrix representation of T.

Let $E_{i, j}$ denote the $n \times n$ matrix that has 1 in the i, j entry, and has 0 in all other entries. Then $\left\{E_{i, j}\right\}_{1 \leq i, j \leq n}$ is called the matrix unit basis of $M_{n}(\mathbb{C})$. Let

$$
S=\sum_{i, j=1}^{n} S_{i, j} \otimes E_{i, j}
$$

denote the block matrix whose i, j entry is $S_{i, j} \in M_{n}(\mathbb{C})$. What are $(\pi(A))^{\prime}$ and $(\pi(A))^{\prime \prime}$?
Show that for every state φ on $M_{n}(\mathbb{C})$, there is a unit vector in $\xi_{\varphi} \in \mathscr{H}_{n}$ such that for all $A \in M_{n}(\mathbb{C})$,

$$
\varphi(A)=\left\langle\xi_{\varphi}, \pi(A) \xi_{\varphi}\right\rangle
$$

[^0]That is, in this representation, every state is induced by a (non-unique) pure state on $\mathscr{B}\left(\mathscr{H}_{n}\right)$. Show also that if ρ is the density matrix for φ, we also have that for all $A \in M_{n}(\mathbb{C})$,

$$
\varphi(A)=\operatorname{Tr}\left[\pi(S A)\left(\rho \otimes E_{1,1}\right]\right.
$$

where the traces is taken on \mathscr{H}_{n}, and that that state $T \mapsto \operatorname{Tr}\left[T\left(\rho \otimes E_{1,1}\right]\right.$ on $\mathscr{B}\left(\mathscr{H}_{n}\right)$ is not pure if ρ is not pure. If φ is not pure, a vector state on $\mathscr{H}_{n} \varphi(A)=\left\langle\xi_{\varphi}, \pi(A) \xi_{\varphi}\right\rangle$ is called a purification of φ. Purifications are not unique, but the following is significant: Let ρ be a density matrix on \mathbb{C}^{n}, and let $|\xi\rangle\langle\xi|$ be a purification of it on \mathscr{H}_{n}. Define a state on $\left(\pi\left(M_{n}(\mathbb{C})\right)^{\prime}\right.$ by $T \mapsto\langle\xi, T \xi\rangle$ and show (using your identification of $\left(\pi\left(M_{n}(\mathbb{C})\right)^{\prime}\right)$ that this is a state on $M_{n}(\mathbb{C})$ with a density matrix σ, and that ρ and σ have the same eigenvalues with the same multiplicities. (Hint: we can identify a vector $\xi \in \mathscr{H}_{n}$ with an operator on \mathbb{C}_{n}. How are the density matrices ρ and σ related to this operator?)

4: Let ρ be the density matrix of a faithful state on $M_{n}(\mathbb{C})$. Show that the GNS representation of $M_{n}(\mathbb{C})$ induced by φ is unitarily equivalent to the representation introduced above, and thus that all of the GNS representation induced by faithful state are unitarily equivalent. At the opposite extreme, show that if φ is a pure state on $M_{n}(\mathbb{C})$, then the representation produced by the GNS construction is unitarily equivalent to the identity representation.

[^0]: ${ }^{1}$ © 2018 by the author.

