Homework 3, Math 509 Spring 2018

Eric A. Carlen¹ Rutgers University

March 28, 2018

1: Let $M_n(\mathbb{C})$ be the C^* algebra of $n \times n$ matrices with the usual involution * and the usual norm. A *density matrix* is a positive semi-definite matrix ρ such that $\operatorname{Tr}[\rho] = 1$. Show that $S(M_n(\mathbb{C}))$ consists of the $n \times n$ density matrices ρ , identifying ρ with the linear functional $A \mapsto \operatorname{Tr}[rhoA]$. Show that the set of extreme points of $S(M_n(\mathbb{C}))$ is the set of rank-one density matrices.

4: Let \mathscr{H}_n be the direct sum of *n* copies of \mathbb{C}^n . That is, a vector $\eta \in \mathscr{H}_n$ is an *n*-tuple (η_1, \ldots, η_n) of vectors in \mathbb{C}^n , and we define

$$\langle (\eta_1, \ldots, \eta_n), (\zeta_1, \ldots, \zeta_n) \rangle = \sum_{j=1}^n \langle \eta_j, \zeta_j \rangle.$$

where the inner product on the right is the usual one in \mathbb{C}^n . Define a representation π of $M_n(\mathbb{C})$ on \mathscr{H}_n by

$$\pi(A)(\eta_1,\ldots,\eta_n)=(A\eta_1,\ldots,A\eta_n)$$
.

Show that $(A\eta_1, \ldots, A\eta_n)$ is separating for this representation if and only if $\{\eta_1, \ldots, \eta_n\}$ is linearly independent in \mathbb{C}^n . Show that $(A\eta_1, \ldots, A\eta_n)$ is cyclic for this representation if and only if $\{\eta_1, \ldots, \eta_n\}$ is linearly independent in \mathbb{C}^n .

3: We can identify $\mathscr{B}(\mathscr{H}_n)$ as the set of $n \times n$ matrices with entries in $M_n(\mathbb{C})$, as in the proof of the von Neumann Double Commutant Theorem: Given $T \in \mathscr{B}(\mathscr{H}_n)$ and $\xi \in \mathbb{C}^n$, for each $1 \leq i, j \leq n$, define $(\xi)_j$ to be the element of \mathscr{H}_n whose *j*th entry is ξ , and all other entries are zero, and then define $T_{i,j}\xi$ to be the *i*th entry of $T(\xi)_j$. Then $T_{i,j}$ is the *i*, *j*th entry in the block-matrix representation of T.

Let $E_{i,j}$ denote the $n \times n$ matrix that has 1 in the i, j entry, and has 0 in all other entries. Then $\{E_{i,j}\}_{1 \leq i,j \leq n}$ is called the *matrix unit* basis of $M_n(\mathbb{C})$. Let

$$S = \sum_{i,j=1}^{n} S_{i,j} \otimes E_{i,j}$$

denote the block matrix whose i, j entry is $S_{i,j} \in M_n(\mathbb{C})$. What are $(\pi(A))'$ and $(\pi(A))''$?

Show that for every state φ on $M_n(\mathbb{C})$, there is a unit vector in $\xi_{\varphi} \in \mathscr{H}_n$ such that for all $A \in M_n(\mathbb{C})$,

$$\varphi(A) = \langle \xi_{\varphi}, \pi(A) \xi_{\varphi} \rangle$$
.

 $^{^{1}}$ © 2018 by the author.

$$\varphi(A) = \operatorname{Tr}[\pi(SA)(\rho \otimes E_{1,1}]]$$

where the traces is taken on \mathscr{H}_n , and that that state $T \mapsto \operatorname{Tr}[T(\rho \otimes E_{1,1}] \text{ on } \mathscr{B}(\mathscr{H}_n)$ is not pure if ρ is not pure. If φ is not pure, a vector state on $\mathscr{H}_n \varphi(A) = \langle \xi_{\varphi}, \pi(A)\xi_{\varphi} \rangle$ is called a *purification* of φ . Purifications are not unique, but the following is significant: Let ρ be a density matrix on \mathbb{C}^n , and let $|\xi\rangle\langle\xi|$ be a purification of it on \mathscr{H}_n . Define a state on $(\pi(M_n(\mathbb{C}))')$ by $T \mapsto \langle\xi, T\xi\rangle$ and show (using your identification of $(\pi(M_n(\mathbb{C}))')$ that this is a state on $M_n(\mathbb{C})$ with a density matrix σ , and that ρ and σ have the same eigenvalues with the same multiplicities. (Hint: we can identify a vector $\xi \in \mathscr{H}_n$ with an operator on \mathbb{C}_n . How are the density matrices ρ and σ related to this operator?)

4: Let ρ be the density matrix of a faithful state on $M_n(\mathbb{C})$. Show that the GNS representation of $M_n(\mathbb{C})$ induced by φ is unitarily equivalent to the representation introduced above, and thus that all of the GNS representation induced by faithful state are unitarily equivalent. At the opposite extreme, show that if φ is a pure state on $M_n(\mathbb{C})$, then the representation produced by the GNS construction is unitarily equivalent to the identity representation.