Homework 1, Math 509 Fall 2018

Eric A. Carlen¹ Rutgers University

February 1, 2018

1: Let \mathscr{A} be a Banach Algebra. As usual, define $A \in \mathscr{A}$ to be quasi regular in case there exists $B \in \mathscr{A}$ such that A + B + AB = A + B + BA = 0, and in this case, let A' denote the quasi inverse B, which is unique. Show that for all quasi regular $X, Y \in \mathscr{A}$ such that (-X'Y') is quasi regular, $X \circ (-X'Y') \circ Y = X + Y$.

2: Let \mathscr{A} be a C^* -Algebra, and let $-\lambda^{-1} = x + iy$ with $y \neq 0$. Show that for all self adjoint A that the quasi inverse of $-\lambda^{-1}A$, $(\lambda^{-1}A)'$, satisfies $\|((x + iy)A)'\| \leq (|y| + |x|)/|y|$, (Use the spectral calculus and fact that the quasi inverse A' = f(A) where f(t) - t/(1+t)). Use this to show that if B is self adjoint and $\|B - A\|$ is sufficiently small, $\lambda 1 - B$ is invertible, and then give another proof of the fact that $\mathscr{A}_{s.a.}$ is closed.

3: Let \mathscr{A} be a C^* -Algebra. Let $A \in \mathscr{A}$ satisfy $||A|| \leq 1$. For $\alpha \in (0, 1/2)$, and for $n \in \mathbb{N}$, define $U_n := A(1/n + (A^*A))^{-1/2}(A^*A)^{\alpha}$. Show that $U := \lim_{n \to \infty} U_n$ exists, with convergence in norm, and that $||U|| \leq 1$. Show that this gives us a decomposition $A = U|A|^{1-2\alpha}$ for $\alpha \in (0, 1/2)$, with ||U|| < 1. This "pseudo polar decomposition" will be useful in studying extreme points of the unit ball in \mathscr{A} .

Hint: Define $V_{m,n} = (1/n + (A^*A))^{-1/2} - (1/m + (A^*A))^{-1/2}$, and note that

$$U_n - U_m = AV_{m,n}(A^*A)^{\alpha}$$
.

At this point we know that the involution is continuous, so we know that there is some constant c such that $||U_n - U_m||^2 \leq c ||(U_n - U_m)^*(U_n - U_m)||$. Use this to bound $||U_n - U_m||^2$ by $||V_{m,n}(A^*A)^{\gamma}||^2$ for some positive γ , and now use spectral theory – everything is expressed in terms of the positive self adjoint operator A^*A . (Dini's Theorem may be useful for the uniform convergence you will need.)

 $^{^{1}}$ © 2018 by the author.