
Course description for Math 509,
Positive Maps on Operator Algebras and Quantum Markov Semigroups

Lectures by Eric Carlen

This course will provide an introduction to the theory of operator algebras, with
a focus on topics concerning positive and completely positive maps and semigroups of
completely positive maps. Such semigroups are known as quantum Markov semigroups,
and they are the subject of a very active field of current research, with many new question
arising in quantum information theory and quantum statistical mechanics.

Part One

The first part of the course will consist of a thorough introduction to the fundamentals
of C∗ algebra theory, which provides an abstract setting in which operator algebras can be
investigated. A Banach algebra A is a Banach space equipped with a multiplication such
that for all A,B in A, ‖AB‖ ≤ ‖A‖‖B‖. A Banach ∗-algebra is Banach algebra equipped
with a conjugate-linear involution ∗ : A → A, ∗ : A 7→ A∗, such that (AB)∗ = B∗A∗.
An example is the algebra of bounded linear transformations on a Hilbert space, equipped
with the operator norm, and where ∗ is the Hermitian adjoint. A C∗ A algebra is a Banach
∗-algebra in which the norm, the product and the involution are related by the C∗ algebra
identity:

‖A∗A‖ = ‖A∗‖‖A‖ . (1)

The algebra is unital if it has a multiplicative identity. It is easy to verify that this is
satisfied in the example of bounded operators on a Hilbert space. Therefore, any self-
adjoint and norm closed subalgebra of the algebra of bounded operators on a Hilbert
space is a C∗ algebra.

The converse is also true: In a ground-breaking paper in 1943, Gelfand and Neu-
mark proved that every “abstract” C∗ algebra could be isometrically and ∗-isomorphically
embedded in the algebra of bounded operators on some Hilbert space provided some ad-
ditional assumptions held: (i) the algebra is unital (ii) The involution is an isometry;
i.e.,‖A∗‖ = ‖A‖ for all A and (iii) for all A, 1 + A∗A is invertible. They conjectured,
at least in the unital case, which is all that they discussed, that the hypotheses (ii) and
(iii) were redundant. That is, they conjectured that (ii) and (iii) were true in any unital
Banach ∗-algebra in which the C∗ algebra identitiy is valid. It took 10 years for (iii) to be
shown to be redundant in the unital case, 17 years for (ii) to be shown to be redundant in
the unital case, and 24 years for it to be shown that existence of a multiplicative identity
was not needed for any of this. The amazing and really beautiful part of the story is that
the insights that made this achievement possible are very simple, clean and clear.

In the meantime, many people took the stronger hypothesis that

‖A∗A‖ = ‖A‖2 , (2)

discussed also by Gelfand and Neumark, as their starting point. This easily yields the
isometry property ‖A∗‖ = ‖A‖. Then, by way of the isometry property, (2) implies (1).
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And now that it is known that (1) implies the isometry property, it is known that (1)
implies (2). Thus, (1) and (2) are equivalent, and there is no loss of generality in defining
a C∗-algebra to be a Banach ∗-algebra in which (2) is true for all A in the algebra. If one
does so, one can beat a slightly shorter path from the initial definition to the Theorem of
Gelfand and Neumark that provides an isometric ∗-isomorphism of any C∗ algebra into the
algebra of bounded operators on a Hilbert space than one can if one starts from (1). Here we
start from (1), and this will prove useful later on, since the simple clean and clear insights
that 24 years later finally provided the proof of the Gelfand and Neumark conjecture in
full generality, are, as often happens with simple, incisive ideas, useful elsewhere.

In the first four chapters of the notes, we present the fundamentals of the theory of
C∗ algebras, including the equivalence of (1) and (2), In the third chapter, we turn to
operator algebras per se, introducing three important non-norm topologies on the space
of bounded linear transformations on a Hilbert space, the weakest of which is the weak
operator topology. A von Neumann algebra is a C∗ subalgebra of the bounded operators
on a Hilbert space that is closed not only in the norm topology, but also the weak operator
topology. This gives von Neumann algebras a particularly rich structure. In the fourth
chapter, we turn to representations of C∗ algebras and give the proof of the Gelfand-
Neumark Theorem. We then go on to prove Sherman’s Theorem, which which uses the
Gelfand-Neumark Theorem to embed any C∗ algebra into its enveloping von Neumann
algebra. This provides a powerful technique for studying maps between C∗ algebras, and
we close the fourth Chapter with a proof of Tomiyama’s Theorem which says that any
norm one projection of a unital C∗ algebra A onto a unital C∗ subalgebra B behaves like
a “conditional expectation”’ in classical probability theory, and in particular, preserves
positivity. This sets the stage for Part Two.

Part Two

Let A be a self-adjoint element in a unital C∗ algebra. Then A is positive (A ≥ 0) in
case t1 + A is invertible for all t > 0. It is true, but not obvious, that A is positive if and
only if A = B∗B for some B in the algebra. A linear transformation (map) Φ from one
C∗ algebra A to another B is positive in case Φ(A) ≥ 0 whenever A ≥ 0.

In 1955, Stinespring introduced the class of completely positive maps, which has turned
out to be fundamentally important in both mathematics and physics. The definition is as
follows. Let Mn denote the C∗ algebra of n × n complex matrices. (This is a C∗ algebra
with the usual operator norm.) Let Ei,j be the n× n matrix with 1 in the i, j place, and
0 everywhere else. Then {Ei,j}1≤i,j≤n is a basis for Mn regarded as a vector space, and
for any C∗ algebra A, we can form the tensor product A⊗Mn, first as a tensor product
of vector spaces. The general element of A⊗Mn can be written as

n∑
i,j=1

Ai,j ⊗ Ei,j .

Then giving A⊗Mn the obvious multiplication and involution, there is one natural norm on
it making it a C∗ algebra. A map Φ : A → B is completely positive in case

∑n
i,j=1 Φ(Ai,j)⊗

Ei,j ≥ 0 in A ⊗Mn whenever
∑n

i,j=1 Ai,j ⊗ Ei,j ≥ 0 in A ⊗Mn. Stinespring’s Theorem
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give a necessary and sufficient condition for Φ to be completely positive, and the nature
of this condition explains its physical significance in quantum mechanics.

We prove Stinespring’s Theorem, and then turn to a number of other results on both
positive and completely positive maps the build on it. A number of these provide in-
equalities, such as the Operator Jensen Inequality, that are useful in quantum mechanics
and elsewhere. We shall be especially interested in completely positive maps on unital C∗

algebras A that preserve the identity. The are the non-commutative analogs of Markov
operators from classical probability theory. In this context we discuss conditional expec-
tations in operator algebras, a topic that has been developed as pure mathematics, but
which also has applications in quantum mechanics. Already in this part of the course, the
lectures will present some open problems, some of which surely have simple solutions.

Part Three

In the third part of the course, we turn to quantum Markov semigroups, which are
semigroups {Φt}t≥0 of completely positive maps that also preserve the identitiy. A fun-
damental result for this part of the course comes from a 1975 paper of Lindblad who gave
necessary and sufficient conditions on an operator L on certain types of C∗ algebras (in-
cluding the case of all bounded operators on a Hilbert space) for L to be the generator of a
semigroup {Φt}t≥0 such that t 7→ Φt is continuous in operator norm (for operators on the
algebra). One would like to have such a result in greater generality; Lindblad remarks on
this in his paper, and many examples arising naturally in physics lie outside the scope of
his theorem. There is much more remains to be done here, despite the many more recent
accomplisments.

This is an active field of current research, with fresh questions coming from quantum
information theory. I will present some results from my work with Jan Maas and also by
other people currently working in the field. A number of open research problems will be
pointed out. Exactly what get covered in this part of the course will depend in part of the
particular interests of the students, but in any event, students who follow the course will
come away with solid grounding in methods and problems of an actively developing field
of research.
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