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0.1 Locally compact Hausdorff spaces

0.1 DEFINITION. A topological space (X,U) is locally compact in case every point of X has a

neighborhood with compact closure.

When (X,U) is locally compact, every neighborhood U of x contain another neighborhood of

x that has compact closure: Let V be any neighborhood of x that has compact closure, and then

V ∩ U ⊂ U and V ∩ U ⊂ V which is compact.

For example, Rn is compact since for each x, B1(x) is compact. Also, it is evident that any

compact space is locally compact. However, an infinite dimensional Hilbert space with its norm

topology is not locally compact: As we have seen, the closed unit ball – and thus any closed ball –

in such a space fails to be compact, and every closed neighborhood must contain a closed ball.

In a locally compact Hausdorff space, one can separate compact sets K and points y ∈ Kc as

follows: For each x ∈ K, let Vx be a neighborhood of x with compact closure, and let Ux be a

neighborhood of y such that Vx∩Ux = ∅, which is possible since X is Hausdorff. Then {Vx : x ∈ K}
is an open cover of K so that there exist {x1, . . . , xn} ⊂ K such that K ⊂ ∪nj=1Vxj =: V . let

U = ∪nj=1Uxj . Since V ⊂ ∪nj=1Vxj which is compact, V has compact closure, and since y /∈ Vxj for

any j, y /∈ V . In summary:

0.2 LEMMA. Let (X,U) be a locally compact Hausdorff space. Suppose K ⊂ X is compact and

y /∈ K. Then there exists disjoint open sets V and U such that K ⊂ V , y ∈ U , and V is compact.

The slightly more elaborate result in the next lemma is fundamental.

0.3 LEMMA. Let (X,U) be a locally compact Hausdorff space. Suppose K ⊂ U ⊂ X with K

compact and U open. Then there exists an open set V with compact closure such that

K ⊂ V ⊂ V ⊂ U . (0.1)

Proof of Lemma 0.3. If y ∈ U c, then y ∈ Kc, and using Lemma 0.2 we may choose for each y ∈ U c

disjoint open sets Vy and Wy such that K ⊂ Vy, y ∈Wy and Vy is compact. Since y /∈ Vy,⋂
y∈Uc

U c ∩ Vy = ∅ .
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and each set in the intersection is compact. Therefore there exist {y1, . . . , yn} ⊂ U c such that⋂
j=1,...,n

U c ∩ Vvj = ∅ .

Define V = ∩nj=1Vyj which is open and contains K. Since V ⊂ ∩nj=1Vyj , which is compact and

disjoint from U c, V is compact and V ∩ U c = ∅, which is the same as V ⊂ U .

The main feature of locally compact Hausdorff spaces that makes it possible to develop a rich

theory linking topology and integration for them is that locally compact Hausdorff spaces are rich

in continuous functions in the sense that we now explain. We shall write

K ≺ f

to mean that K is a compact subset of X, and that f is a continuous and compactly supported

function on X with values in [0, 1] and with f(x) = 1 for all x ∈ K.

We shall write

f ≺ U

to mean that U is a compact subset of X, and that f is a continuous and compactly supported

function on X with values in [0, 1] and that the support of f is contained in U .

0.4 THEOREM (Urysohn’s Lemma). Let (X,U) be a locally compact Hausdorff space. Suppose

K ⊂ U ⊂ X with K compact and U open. Then there exists a continuous function f such that

K ≺ f ≺ U . (0.2)

Proof. First, pick an open G with compact closure such that K ⊂ G ⊂ G ⊂ U , which we may do

by Lemma 0.3. In the next step we construct a sequence of open sets {Vs} indexed by the dyadic

rational numbers s in (0, 1) such that for each t > s,

K ⊂ Vt ⊂ Vt ⊂ Vs ⊂ G .

We proceed inductively. By what we have shown in the first step, there exists an open set V1/2

such that

K ⊂ V1/2 ⊂ V1/2 ⊂ G .

For the same reason, there exist open sets V1/4 and V3/4 such that

K ⊂ V3/4 ⊂ V3/4 ⊂ V1/2 and V1/2 ⊂ V1/4 ⊂ V1/4 ⊂ G .

Now an obvious induction argument provides the construction.

Having constructed our sequence {Vs}, s ranging over the dyadic rationals in (0, 1), we are

ready to define f : First, set V0 := X. Next, for x ∈ X, define

f(x) = sup{s : x ∈ Vs} .

If x ∈ K, then x ∈ Vs for all s, and hence f(x) = 1, and if x ∈ Gc, then f(x) = 0. Hence the

support of f is contained in G, which is compact. Finally, we claim that f is continuous. It suffices

to show that for all λ, f−1((λ,∞)) is open and that and f−1([λ,∞)) is closed.
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First, we claim that

f−1((λ,∞)) =
⋃
s>λ

Vs ,

which is open. To see this, note that if f(x) > λ then for some s > λ, x ∈ Vs, and so x belongs to

the union on the right. On the other hand, if x belongs to the union on the right, then x ∈ Vs for

some s > λ, and then f(x) > λ

Second, we claim that

f−1([λ,∞)) =
⋂
s<λ

Vs ,

To see this, note that if f(x) ≥ λ, then for all s < λ, x ∈ Vs, and hence x ∈ Vs, and so x belongs to

the intersection on the right. On the other hand, if x belongs to the intersection on the right, then

for all r < λ, there is an s > r so that x ∈ Vs. Since Vs ⊂ Vr, x ∈ Vr and f(x) ≥ r. Since r < λ is

arbitrary, f(x) ≥ λ.

0.5 THEOREM (Continuous partitions of unity). Let (X,U) be a locally compact Hausdorff space.

Let K be a compact subset of X, and let {U1, . . . , Un} be a finite open cover of K. Then there exist

functions gj, j = 1, . . . , n such that gj ≺ Uj for each j and such that K ≺
∑n

j=1 gj.

Proof. Each x ∈ K belongs to some Uj , and applying Lemma 0.3 to {x} ⊂ Uj , we can choose an

open set Wx with compact closure such that x ∈ Wx ⊂ Wx ⊂ Uj . Since K is compact, we may

cover K by finitely many such sets {Wx1 , . . . ,Wxm}. Let C` be the union of those Wxk that were

constructed choosing Wx ⊂ U`. Then C` is compact, and C` ⊂ U`, and K ⊂ ∪n`=1C`.

By Urysohn’s Lemma, there exists f` such that C` ≺ f` ≺ U`. How consider the function

h := 1−
n∏
j=1

(1− fj) .

Clearly, h is continuous and 0 ≤ h ≤ 1. If x ∈ K, x ∈ Cj for some j, and then fj(x) = 1 so that

h(x) = 1.

We next claim that

h = f1 +
n−1∑
j=1

fj

j−1∏
k=1

(1− fk) .

To see this note that

1−
n∏
j=1

(1− fj) = f1 + (1− f1)−
n∏
j=1

(1− fj) = f1 + (1− f1)

1−
n∏
j=2

(1− fj)

 ,

and then apply the obvious induction argument.

Finally, we define

g1 = f1 and gj = fj

j−1∏
k=1

(1− fk) for j = 1, . . . , n− 1 .

Thus, h =
∑n

j=1 gj and gj ≺ Uj for each j.
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0.2 Some spaces of continuous functions

Given a topological space (X,U), there are three natural normed vector spaces of continuous func-

tions:

0.6 DEFINITION (Spaces of continuous functions). Let (X,U) be a topological space. We define:

(i) Cc(X) is the normed vector space of continuous, compactly supported functions f on X with

values in C on which the norm, ‖ · ‖∞, is given by ‖f‖∞ = sup{ |f(x)| : x ∈ X }.
(ii) C0(X) is the normed vector space of continuous functions f on X with values in C such that

for each ε > 0, there exists a compact set Kε,f such that |f(x)| < ε for all x outside of Kε,f . The

norm is once again ‖ · ‖∞, given by ‖f‖∞ = sup{ |f(x)| : x ∈ X }.
(iii) Cb(X) is the normed vector space of continuous functions f on X with values in C such that

‖f‖∞ = sup{ |f(x)| : x ∈ X } <∞. The norm is once again ‖ · ‖∞.

When X is not compact, Cc(X) is not complete, but if (X,U) is a locally compact Hausdorff

space, then it is dense in C0(X) , and both C0(X) and Cb(X) are Banach spaces.

0.7 THEOREM. C0(X) equipped with the sup norm is a Banach space. If X is a locally compact

Hausdorff space, then the subspace Cc(X) is dense.

Proof. If {fn} is a Cauchy sequence in C0(X), then {fn(x)} is a Cauchy sequence in C. Hence the

limit limn→∞ fn(x) exists for each x, and we define a function f by

f(x) = lim
n→∞

fn(x) .

Given the uniform convergence, it is easy to check, using an ε/3 argument, that f ∈ C0(X) so that

C0(X) is complete.

To see that Cc(X) is dense, pick f ∈ C0(X) and ε > 0. Let Kε be a compact set such that

|f(x)| ≤ ε for all x /∈ Kε. BecauseX is locally compact, it is possible to find an open set U containing

Kε such that U has compact closure. Then by Urysohn’s Lemma, there exists a continuous function

g with K ≺ g ≺ U . Then fg = f on K and and |fg − f | = |f ||g − 1| ≤ |f | everywhere, so that

|fg − f | ≤ ε on Kc
ε . In particular, ‖fg − f‖∞ ≤ ε, and fg ∈ Cc(X).

0.3 Radon measures

Radon measures, are, roughly speaking, the class of Borel measures on a locally compact Hausdorff

space for which the measure theory and the topology are “nicely compatible”.

0.8 DEFINITION (Inner and outer regularity). Let (X,U) be a topological space. A Borel

measure µ on X is outer regular in case for each Borel set E

µ(E) = inf{ µ(U) : E ⊂ U , U open } . (0.3)

A Borel measure µ is inner regular in case for each Borel set E

µ(E) = sup{ µ(K) : K ⊂ E , K compact } . (0.4)

A Borel measure µ is inner regular for open sets in case (0.4) holds for all open E. A Borel measure

is regular if it is both inner and outer regular.
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0.9 DEFINITION (Radon measure). A Radon measure on a topological space (X,U) is a positive

Borel measure µ on X such that µ(K) <∞ for all compact sets K ⊂ X that is outer regular and

inner regular for open sets.

The next results demonstrate the compatibility of the topology and the measure theory for

Radon measures.

0.10 THEOREM. Let (X,U) be a locally compact Hausdorff space, and let µ be a Radon measure

on X. Then Cc(X) is dense in Lp(X,B, µ) for all p ∈ [1,∞).

Proof. Since L1 ∩L∞ is dense in Lp for all p ∈ [1,∞), it suffices to deal with p = 1. We know that

integrable simple functions are dense in L1(µ). Therefore, it suffices to show that whenever E is a

Borel set with µ(E) <∞, for all ε > 0, there exists f ∈ Cc(X) such that∫
X
|f − 1E |dµ ≤ ε .

Since µ is outer regular, there exists U open with E ⊂ U such that µ(U) ≤ µ(E) + ε. Since µ is

inner regular for open sets, there is a compact set K ⊂ U such that µ(K) ≥ µ(U)− ε/.
By Urysohn’s Lemma, there exists f ∈ Cc(X) such that K ≺ f ≺ U . But then |f−1U | ≤ 1U∩Kc ,

and so

‖f − 1E‖1 ≤ ‖f − 1U‖1 + ‖1U − 1E‖1 ≤ µ(U\E) + µ(U ∩Kc) ≤ 2ε .

0.11 THEOREM. Let (X,U) be a locally compact Hausdorff space. Let µ and ν be a Radon

measures on X such that ∫
X
fdµ =

∫
X
fdν

for all f ∈ Cc(X). Then µ = ν.

Proof. Let U be open, and let f ≺ U . For all compact K ⊂ U , Urysohn’s lemma provides g with

K ≺ g ≺ U , and hence

µ(K) ≤
∫
X
gdµ =

∫
X
gdν = ν(U) .

By the inner regularity of µ on open sets, µ(U) = sup{µ(K) : K ⊂ U,K compact}. Hence

µ(U) ≤ ν(U) By symmetry, ν(U) ≤ µ(U) so that µ(U) = ν(U) for all open U , and then by the

outer regularity of µ and ν, µ(E) = ν(E) for all Borel sets E.

0.12 THEOREM. Let (X,U) be a locally compact Hausdorff space. Every σ-finite Radon measure

µ on X is regular.

Proof. Let E be a Borel set with µ(E) <∞. Pick ε > 0. By the outer regularity of µ, there is an

open set U such that E ⊂ U and µ(U) ≤ µ(E) + ε. For the same reason, there is an open set V

such that U\E ⊂ V and µ(V ) ≤ µ(U\E) + ε ≤ 2ε.

By the inner regularity of µ for open sets, there is a compact set C ⊂ U such that µ(U) ≤
µ(C) + ε.
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Define K := C ∩ V c which is compact. By construction, every point x ∈ U that is not in E lies

in V , so that C ∩ V c ⊂ E. Therefore,

µ(K) ≥ µ(C)− µ(V ) ≥ µ(U)− 2ε .

Hence µ(K) ≤ µ(E)−2ε, and since ε > 0 is arbitrary, µ(E) = sup{ µ(K) : K ⊂ E , K compact }.
Finally, if µ(E) = ∞, there is an increasing sequence of sets En with µ(En) < ∞ whose union

is E and such that limn→∞ µ(En) =∞. By what was proved above, within each En there exists a

compact Kn with µ(Kn) ≥ µ(En)− 1. Each Kn is contained in E and limn→∞ µ(Kn) =∞

0.4 The Riesz-Markov Theorem for locally compact Hausdorff spaces

Throughout this section, let (X,U) be a locally compact Hausdorff space. The spaces Cc(X), C0(X)

and Cb(X) are more than topological spaces: They contain a distinguished cone of non-negative

elements: We say that a function f on X is non-negative in case for each x, f(x) ∈ R, and f(x) ≥ 0.

In this case we write f ≥ 0.

Let L be a linear functional on Cc(X). We say that L is a positive linear functional on Cc(X)

in case

f ≥ 0 ⇒ L(f) ≥ 0 .

Evidently. if f is real, L(f) is real, and |L(f)| ≤ L(|f |). If f = g + ih where g and h are real,

|L(f)| = |L(g) + iL(h)| ≤ L(|f |).
There is a close connection between the topology on Cc(X) and the partial order structure on

Cc(X) induced by its cone of positive elements.

0.13 THEOREM. Let L be a positive linear functional on Cc(X). Then for each compact K ⊂ X,

there exists a finite constant CK such that

|f | ≺ K ⇒ |L(f)| ≤ CK‖f‖∞ .

Proof. The uniqueness is immediate from Theorem 0.11, and we turn to existence. By Lemma 0.3,

there exists an open set U with compact closure U such that K ⊂ U ⊂ U , and then by Urysohn’s

Lemma, there exists a continuous function ϕ on X such that K ≺ ϕ ≺ U .

Then evidently ‖f‖∞ϕ− |f | ≥ 0, and hence L(‖f‖∞ϕ− |f |) ≥ 0. Thus,

|L(f)| ≤ L(|f |) ≤ L(‖f‖∞ϕ) = L(ϕ)‖f‖∞ .

Thus,

sup{|L(f)| : |f | ≺ K , ‖f‖∞ ≤ 1 } ≤ L(ϕ)‖f‖∞ .

We may take CK = L(f), or, better yet, CK = inf{L(f) : K ≺ f }.

To construct an example of a positive linear functional on Cc(X), let µ be a Borel measure on

X that is finite on every compact set K ⊂ X. If f ∈ Cc(X), let K denote the compact support of

f . Then 0 ≤ |f | ≤ ‖f‖∞1K , and since µ(K) <∞, f is integrable. Thus, we may define

Lµ(f) =

∫
X
fdµ ,
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which is therefore a linear functional on Cc(X), and evidently it is positive.

The Reisz-Markov Theorem asserts that every example is of this type. Moreover, we shall show

that one consequence of the Reisz-Markov Theorem is that every Borel measure on X such that

µ(K) <∞ for all compact K automatically has certain regularity properties:

0.14 THEOREM (Riesz-Markov Theorem). Let L be any positive linear functional on Cc(X).

Then there exists a unique Radon measure µ such that

L(f) =

∫
X
fdµ for all f ∈ Cc(X) . (0.5)

Moreover,

µ(U) = sup{ L(f) : f ≺ U , f ∈ Cc(X) } (0.6)

for all open sets U , and

µ(K) = inf{ L(f) : K ≺ f , f ∈ Cc(X) } (0.7)

for all compact sets K.

Proof. Step 1: Use L to construct an outer measure µ∗. We define a set function µ∗ on open subsets

of X by

µ∗(U) = sup{ L(f) : f ≺ U , f ∈ Cc(X) }

for open sets U , and then on arbitrary subsets E of X by

µ∗(E) = inf{ µ∗(U) : E ⊂ U , U open } .

It is clear that µ∗(∅) = 0, and that if A ⊂ B, then µ∗(A) ≤ µ∗(B). Therefore, to show that µ∗

is an outer measure, we must show that for any sequence {En}n∈N of subsets of X,

µ∗

( ∞⋃
n=1

En

)
≤
∞∑
n=1

µ∗(En) .

Let E denote ∪∞n=1En. It suffices to consider the case in which µ∗(En) <∞ for all n.

Pick any ε > 0. Then by construction, there exists an open set Un with En ⊂ Un, and

µ∗(Un) ≤ µ∗(En) + 2−nε. But then

E ⊂ U :=

∞⋃
n=1

Un and

∞∑
n=1

µ∗(Un) ≤
∞∑
n=1

µ∗(En) + ε .

It therefore suffices to prove that

µ∗ (U) ≤
∞∑
n=1

µ∗(Un) . (0.8)

To do this, consider any f ∈ Cc such that f ≺ U . Let K denote the support of f . Then {Un}n∈N
is an open cover of K, and so there exists a finite sub cover, which we may take to be {U1, . . . , UN}.
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Let {h1, . . . , hN} be a partition of unity on K, subordinate to the open cover {U1, . . . , UN}.

Then f =
N∑
n=1

fhn and fhn ≺ Un n = 1, . . . , N . It follows that

L(f) =
N∑
n=1

L(fhn) ≤
N∑
n=1

µ∗(Un) ≤
∞∑
n=1

µ∗(Un) .

Since, f ∈ Cc such that f ≺ U is arbitrary, we obtain (0.8).

Step 2: Caratheodory σ-algebra contains all open sets, and hence all Borel sets.

Let U be open, and let E ⊂ X be arbitrary. We must show that

µ∗(E) ≥ µ∗(E ∩ U) + µ∗(E ∩ U c) . (0.9)

Since µ∗(E) is the infimum of µ∗(V ), V open with E ⊂ V , it suffices to prove (0.9) when E = V ,

where V is open. We may also suppose that µ∗(V ) < ∞. Note that U ∩ V is open. Hence for

any ε > 0, there is an f ≺ V ∩ U so that L(f) ≥ µ∗(V ∩ U) − ε. Let K denote the support of f .

Since K ⊂ U , U c ⊂ Kc, and so V ∩ U c ⊂ V ∩ Kc, which is open. Choose g ≺ V ∩ Kc so that

L(g) ≥ µ∗(V ∩Kc)− ε. Then f + g has compact support contained in V and since the supports of

f and g are disjoint, f + g ≺ V . Therefore,

µ∗(V ) ≥ L(f + g) = L(f) + L(g) ≥ µ∗(V ∩ U) + µ∗(V ∩ U c)− 2ε .

At this point, we know that the Caratheodory σ-algebra contains the Borel σ-algebra B(X),

and that the restriction of µ∗ to B(X) is countably additive. We define µ to be this restriction.

Step 3: Compact sets have finite measure

Let U be any open set containing K such that U has compact closure. Such sets exist by

Lemma 0.3. By Urysohn’s Lemma, there exists an f ∈ Cc(X) such that U ≺ f . Thus, if g ≺ U ,

g ≤ f , and so L(g) ≤ L(f), and hence µ(U) ≤ L(f) since g ≺ U is arbitrary. Therefore, µ(K) ≤
µ(U) <∞.

Step 4: µ is inner regular for open sets

Let K be compact. We claim that for K compact,

µ(K) = inf{L(f) : K ≺ f } (0.10)

Fix ε > 0. Then there exists an open set U so that K ⊂ U and µ(K) ≥ µ(U) − ε. By Urysohn’s

Lemma, there exists a function f with K ≺ f ≺ U . Then L(f) ≤ µ(U) ≤ µ(K) + ε. Since ε > 0 is

arbitrary,

µ(K) ≥ inf{L(f) : K ≺ f } .

Next, suppose that K ≺ f . Then for any 0 < ε < 1, Let Uε = {x : f(x) > 1 = ε}. Then Uε is

open and has compact support, and K ⊂ Uε.
There exists a function g such that g ≺ Uε and L(g) ≥ µ(Uε)− ε. Note that f ≥ fg ≥ (1− ε)g.

Therefore

L(f) ≥ (1− ε)L(g) ≥ (1− ε)[µ(Uε)− ε] ≥ (1− ε)[µ(K)− ε] .
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Since 0 < ε < 1 is arbitrary, µ(K) ≤ L(f) whenever K ≺ f . This completes the proof of (0.10).

Now let V be open. Suppose µ(V ) < ∞. Then for every ε > 0, there exists a function f ≺ V

such that µ(V )− ε ≤ L(f). Let K be the support of f . By (0.10), there is a function g with K ≺ g
such that L(g) ≤ µ(K) + ε. But since f ≤ 1K ≤ g,

µ(V )− ε ≤ L(f) ≤ L(g) ≤ µ(K) + ε .

The same sort of reasoning shows that if µ(V ) is infinite, we can find compact sets in V of arbitrarily

large measure.

Step 5: For f ∈ Cc(X),
∫
X fdµ = L(F ).

It suffices to treat the case in which f takes values in [0, 1]. For each t ∈ (0, 1], define Kt =

{x : f(x) ≥ t}. Since f ∈ Cc(X), each Kt is compact Let K0 denote the support of f .

For any 0 ≤ a < b ≤ 1, define f[a,b] = (f − a)+ ∧ b. Then for all 0 < t < a,

Kb ≺
1

b− a
f[a,b] ≤ 1Ka .

Therefore, for all open U with Ka ⊂ U , µ(Kb) ≤
1

b− a
L(f[a,b])µ(U). By outer regularity,

µ(Kb) ≤
1

b− a
L(f[a,b]) ≤ µ(Ka) .

Then for any n ∈ N, f =

n∑
j=1

f[(j−1)/n,j/n], and so L(f) =

n∑
j=1

L
(
f[(j−1)/n,j/n]

)
. Therefore,

n∑
j=1

1

n
µ(Kj/n) ≤ L(f) ≤

n∑
j=1

1

n
µ(K(j−1)/n) .

Since limn→∞

(∑n
j=1

1
nµ(Kj/n)

)
= limn→∞

(∑n
j=1

1
nµ(Kj/n)

)
=
∫
X fdµ, the proof is complete.

0.15 DEFINITION (Radon space). A topological space (X,U) is a Radon space in case every

Borel measure on X that is finite on all compact sets is regular, and hence a Radon measure.

0.16 DEFINITION (Polish space). A topological space (X,U) is a Polish space in case it is

separable and homeomorphic to a metric space.

The term “Polish space” recognizes the work of a group of Polish mathematicians including

Kuratowski, Sierpinski and Tarski, who proved a number results pertaining to the concept. Note

that a Polish space is necessarily Hausdorff. Therefore, a locally compact Polish space is, in

particular, a locally compact Hausdorff space. For example, Rn is a locally compact Polish space,

as is any Riemannain manifold.

0.17 LEMMA. Let (X,U) be a locally compact Polish space. Then every open set U in X is the

countable union of compact sets in X. In particular, X is the countable union of compact sets.
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Proof. Let ρ be a metric that induces the topology on (X,U), and let B(r, x) denote the open ball

of radius r > 0 about x ∈ X. Since (X,U) is locally compact, for each x ∈ X, there exists some

r > 0 B(r, x) is compact . (It is not excluded that B(r, x) is compact for all r > 0; this is the case

in Rn, for example.) Define rx = sup{r > 0 : B(r, x) is compact}. If 0 < δ < rx and ρ(y, x) < δ,

then for all r with δ < r < rx, B(r − δ, y) ⊂ B(r, x) and B(r, x) is compact. Hence ry ≥ rx − δ.
Likewise, given the open set U and x ∈ U define dx = sup{s > 0 : B(s, x) ⊂ U}. That is, dx

is the distance from x to U c. Just as above, one shows that if ρ(y, x) < δ < dx, then dy ≥ dx − δ.
Let {xn}n∈N be a dense sequence in the open set U . For n ∈ N, define

Kn := B(min{dxn + rxn}/2, xn) .

Then Kn is compact and contained in U . For any x ∈ U , there is some n such that ρ(xn, x) <
1
4 min{dx, rx}. Then rxn ≥ 3

4rx and dxn ≥ 3
4dx, so that min{dxn + rxn}/2 > ρ(xn, x). It follows

that x ∈ Kn, Since x ∈ U is arbitrary, U = ∪∞n=1Kn.

0.18 THEOREM. Let (X,U) be a locally compact Polish space. Then (X,U) is a Radon space.

Proof. Let µ be any Borel measure on X that is finite on every compact set. Then each f ∈ Cc(X)

is integrable with respect to µ, and hence f 7→
∫
X fdµ =: L(f) is a well-defined positive linear

functional on Cc(X). By the Riesz-Markov Theorem, there exists a Radon measure ν such that for

all f ∈ Cc(X), ∫
X
fdµ =

∫
X
fdν . (0.11)

Since by Lemma 0.17, (X,B, ν) is σ-finite, Theorem 0.12 then says that ν is regular. We next show

that µ and ν agree on all open sets U .

Let U be open and write U = ∪∞n=1Kn where Kn is compact, which is possible by Lemma 0.17.

By Uryson’s lemma, for each n ∈ N there exists fn ∈ Cc(X) such that ∪nj=1Kn ≺ fn ≺ U , Then

define gn := max{f1, . . . , fn}. Then gn ↑ 1U .

We have seen that there is a monotone increasing sequence {gn}n∈N with gn ↑ 1U . By the

Lebesgue Monotone Convergence Theorem and (0.11),

µ(U) = lim
n→∞

∫
X
gndµ = lim

n→∞

∫
X
gndν = ν(U) .

Hence µ and ν agree on all open sets.

Now let K be compact. By Lemma 0.3, there is an open set V such that K ⊂ V and V is

compact. It follows that ν(V ) = µ(V ) <∞. Then since K = V \(V \K), and since V and V \K are

both open

µ(K) = µ(V )− µ(V \K) = ν(V )− ν(V \K) = ν(K) .

Hence µ and ν agree on all compact sets. Let E be any Borel set. Since ν is regular,

ν(E) = sup{ν(K) : K ⊂ E ,K compact } = sup{µ(K) : K ⊂ E ,K compact } ≤ µ(E) .

Hence if ν(E) is infinite, so is µ(E). Suppose that ν(E) <∞, and pick ε > 0. By the regularity of

ν, there exist K compact and U open such that K ⊂ E ⊂ U and ν(U)− ν(K) < ε. Then because

µ(K) = ν(K) and µ(U) = ν(U), both µ(E) and ν(E) lie in the interval [ν(K), ν(K)+ ε], and hence

|µ(E)− ν(E)| ≤ ε. Since ε > 0, µ(E) = ν(E). Hence µ and ν agree on all Borel sets.
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0.5 The Hahn-Saks Theorem

Throughout this section, (X,U) is a locally compact Hausdorff space, Cc(X) denotes the real normed

space of continuous compactly supported real valued functions on X, and C0(X) denotes the real

Banach space consisting of all uniform limits of functions in Cc(X).

The real vector spaces Cc(X) and C0(X) are ordered vector spaces: We say f ≥ g in case

f(x) − g(x) ≥ 0 for all x. Let C+
c (X) and C+

0 (X) denote the sets of point-wise non-negative

functions in Cc(X) and C0(X) respectively. Then f ≥ g in Cc(X) if and only if f − g ∈ C+
c (X), and

likewise for the order in C0(X).

Our goal is to concretely identify the elements of the dual space (C0(X))∗ in terms of measures

on X. An element of (C0(X))∗ is positive in case L(f) ≥ 0 wherever f is a non-negative function

in C0(X). Restricting such a functional L to Cc(X), yields a positive linear functional on Cc(X),

and then by the Riesz-Markoff Theorem, there is a Radon measure µL on X and such that

L(f) =

∫
X
fdµL (0.12)

for all f ∈ Cc(X).

0.19 LEMMA. Let L be a positive linear functional on C0(X), and let µL be the Radon measure

on X such that (0.12) is valid for all f ∈ Cc(X). Then µL(X) ≤ ‖L‖, and hence (0.12) extends by

continuity to all of C0(X).

Proof. Since µL is inner regular on open sets, there exists an increasing sequence {Kn}n∈N such

that µL(Kn) ↑ µL(X). By Urysohn’s Lemma, for each n there exists fn ∈ Vc(X) such that Kn ≺ fn.

Then µL(Kn) ≤
∫
X
fndµL = L(fn) ≤ ‖L‖.

Suppose that L ∈ (C0(X))∗ can be written as the difference of two positive linear functionals,

L = L1 − L2 . (0.13)

Then by Lemma 0.19, there are finite Radon measures µ1 and µ2 such that for all f ∈ C0(X),

L(f) =

∫
X
fdµ1 −

∫
X
fdµ2 . (0.14)

Define ν = µ1 + µ2, which is also a finite Radon measure. Evidently µ1 and µ2 are absolutely

continuous with respect to ν, and hence there exist non-negative functions h1, h2 ∈ L1(X,B, ν)

such that dµ1 = h1dν and dµ2 = h2dν. Define h̃1 := h1 − h1 ∧ h2 and h̃2 := h2 − h1 ∧ h2. Let

A = {x : h1 ∧ h2(x) = h1(x)} and observe that h̃1(x) = 0 for all x ∈ A, while h̃2(x) = 0 for all

x ∈ Ac. Then since h1 − h2 = h̃1 − h̃2, (0.14) becomes

L(f) =

∫
X
fh1dν −

∫
X
fh2dν =

∫
X
f(h̃1 − h̃2)dν . (0.15)

Define measures dµ̃1 := h̃1dν and µ̃2 := h̃2dν. Then µ̃1(A) = 0 and µ̃2(Ac) = 0 so that µ̃1 and

µ̃2 are mutually singular. Since any Borel measure that is absolutely continuous with respect to a

Radon measure is itself as Radon measure, µ̃1 and µ̃2 are also Radon measures.
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In summary, if there exists a decomposition of L ∈ (C0(X))∗ as the difference of two positive

elements of (C0(X))∗, then there exists a pair of mutually singular finite Radon measures µ+ and

µ− such that for all f ∈ C0(X),

L(f) =

∫
X
fdµ+ −

∫
X
fdµ− . (0.16)

Such a decomposition is necessarily unique: Let A be a Borel set such that µ+(A) = 0 and

µ−(Ac) = 0. Pick ε > 0, and then h ∈ Cc(X) such that such that ‖h − 1A‖L1(X,B,µ++µ−) < ε.

Without loss of generality, we may assume that 0 ≤ h ≤ 1. Then for any 0 ≤ g ≤ f in C0(X), by

the choice of h,

L(g) = L((1− h)g) + L(hg)

=

∫
X

(1− h)gdµ+ −
∫
X

(1− h)gdµ− +

∫
X
hgdµ+ −

∫
X
hgdµ−

≤
∫
X

(1− h)gdµ+ + ‖f‖∞ε

≤
∫
X

(1− h)fdµ+ + ‖f‖∞ε ≤
∫
X
fdµ+ + 2‖f‖∞ε

This shows that

sup{ L(g) : 0 ≤ g ≤ f } ≤
∫
X
fdµ+ . (0.17)

On the other hand,

L((1− h)f) =

∫
X

(1− h)fdµ+ −
∫
X

(1− h)fdµ− ≥
∫
X
fdµ+ − 2‖f‖∞ε .

Since 0 ≤ (1− h)f ≤ f , equality holds in (0.17) and therefore, the linear functional f 7→
∫
X
fdµ+

is uniquely determined by L under the assumption that (0.16) with µ+ and µ− mutually singular.

Then by Theorem 0.11, µ+ is then uniquely determined by L. We have proved:

0.20 LEMMA. Let L ∈ (C0(X))∗ have a decomposition as the difference of two positive linear

functionals as in (0.14). Then there is a unique pair of mutually singular Radon measures µ+, µ−
such that (0.16) is valid for all f ∈ C0(X), and moreover, µ+ is determined through L by (0.17).

It is now a simple matter to show that, in fact, every L ∈ (C0(X))∗ can be written as the

difference of two positive linear functionals as in (0.14). The identity (0.17) gives us a candidate

for the components of the decomposition:

0.21 LEMMA. Let L ∈ (C0(X))∗. For f ∈ C+
0 (X), define

L+(f) = sup{ L(g) : 0 ≤ g ≤ f } . (0.18)

For general f ∈ C0(X), define

L+(f) = L+(f+)− L+(f−) . (0.19)

where f+ and f− are, respectively, the positive and negative parts of f . Then L+(f) ∈ (C0(X))∗,

and both L+ and L− := L−L+ are positive, so that L = L+−L− is a decomposition of L into the

difference between two positive linear functionals.



EAC May 1, 2017 13

Proof. We first show that for f1, f2 ∈ C+
0 (X), L+(f1 +f2) = L+(f1)+L+(f2). First, let 0 ≤ g1 ≤ f1

and 0 ≤ g2 ≤ f2. Then 0 ≤ g1 + g2 ≤ f1 + f2 so that L+(f1 + f2) ≥ L(g1 + g2) = L(g1) + L(g2)

Taking the supremum over g1 ≤ f1 and g2 ≤ f2 yields L+(f1 + f2) ≥ L+(f1) + L+(f2).

Fix ε > 0, and choose g ∈ C+
0 (X) with 0 ≤ g ≤ f1 + f2 so that L+(f1 + f2) ≤ L(g) + ε. Define

g1 = f1 ∧ g and g2 = g − g1. Then 0 ≤ g1 ≤ f1, 0 ≤ g2 ≤ f2 and g1 + g2 = g. Therefore

L+(f1 + f2) ≤ L(g) + ε ≤ L(g1) + L(g2) + ε ≤ L+(f1) + L+(f2) + ε .

Since ε > 0 is arbitrary, L+(f1 +f2) ≤ L+(f1) +L+(f2). Together with what we proved above, this

shows L+(f1 + f2) = L+(f1) + L+(f2).

To see that L+ as extended to all of C0(X) by (0.19), is additive, we observe that if f = g1− g2

and f = h1−h2 are two ways of writing f ∈ C0(X) as a difference of two elements in C+
0 (X), then

g1 + h2 = h1 + g2. By what was proved above,

L+(g1) + L+(h2) = L+(g1 + h2) = L+(h1 + g2) = L+(h1) + L+(g2) ,

and hence

L+(g1)− L+(g2) = L+(h1)− L+(h2) . (0.20)

Therefore, one can replace the specific decomposition f = f+ − f− in (0.19) by any other decom-

position of f into the difference between elements of C+
0 (X), and the result is the same. Then for

f, g ∈ C0(X), f + g = (f+ + g+) − (f− + g−) is one way of f + g as the difference of elements of

C+
0 (X),

L+(f+g) = L+(f++g+)−L+(f−+g−) = (L+(f+)−L+(f−))−(L+(g+)−L+(g−)) = L+(f)+L+(g) .

This together with the evident fact that L+(αf) = αL+(f) for all α ∈ R and f ∈ C0(X) shows that

L+ is a linear functional.

By (0.19) and then (0.18) that

‖L+‖ = sup{L+(f) : 0 ≤ f ≤ 1} ≤ sup{L(g) : 0 ≤ g ≤ 1} ≤ ‖L‖ .

Thus, L+ is a bounded linear functional and It is evident from (0.18) that L+(f) ≥ 0 for all

f ∈ C0(X), so that it is also positive.

Finally, defining L− = L+ − L, we have that for all f ∈ C+
0 (X), L−(f) = L+(f) − L(f) ≥ 0

since L+(f) ≥ L(f). Hence L− is a positive linear functional. Since L = L+ −L−, this shows that

every element L of (C0(X))∗ can be written as the difference of two positive linear functionals on

C0(X).

0.22 LEMMA. Let L ∈ (C0(X))∗, and let µ+, µ− be the unique pair of mutually singular Radon

measures on X such that (0.16) is valid for all f ∈ C0(X). Then

‖L‖ := µ+(X) + µ−(X) . (0.21)

Proof. For all f ∈ C0(X) with ‖f‖∞ ≤ 1, |L(f)| ≤
∫
X
|f |dµ+ +

∫
X
|f |dµ− ≤ µ+(X) + µ−(X). On

the other hand, let A be a Borel set such that µ+(A) = 0 and µ−(Ac) = 0. Pick ε > 0, and then
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h ∈ Cc(X) such that such that ‖h − (1Ac − 1A)‖L1(X,B,µ++µ−) < ε. Without loss of generality, we

may assume that −1 ≤ h ≤ 1. Then

‖L‖ ≥ L(h) =

∫
X
hdµ+ −

∫
X
hdµ−

≥
∫
X

(1Ac − 1A)dµ+ −
∫
X

(1Ac − 1A)dµ− − 2ε = µ+(X) + µ−(X)− 2ε .

Collecting results from the lemmas, we have proved:

0.23 THEOREM (Riesz Representation Theorem for ((C0(X))∗). Let (X,U) be a locally compact

Hausdorff space. Then for each L ∈ ((C0(X))∗ there exists a unique pair of mutually singular finite

Radon measures µ+ and µ− such that (0.16) is valid for all f ∈ C0(X) and such that the norm

‖L‖ of L is given by (0.21).

A number of consequences of this theorem deserve further discussion. We begin with a definition:

0.24 DEFINITION. A signed measure on X is a real valued function µ on the Borel σ–algebra

of X such that there exist two positive finite Borel measures µ1 and µ2 such that for all Borel sets

E, µ(E) = µ1(E)− µ2(E).

The set of signed measures is evidently a real vector space. (Complex measures are defined in

the analogous way, and would constitute a complex measure space.) We denote the real vector

space of signed measures on X by M(X).

For a bounded Borel function f , define the integral
∫
X fdµ by

∫
X
fdµ =

∫
X
fdµ1 −

∫
X
fdµ2.

This gives us a continuous linear functional L on C0(X) where L(f) =

∫
X
fdµ. Theorem 0.23 then

gives us the existence of uniquely determined positive Borel measures µ+ and µ− that are mutually

singular – i.e., supported on disjoint sets – and such that

µ(E) = µ+(E)− µ−(E)

for all Borel sets E in X.

0.25 DEFINITION. For any signed measure µ, the positive measure |µ| given by

|µ| = µ+ + µ−

is called the total variation measure of µ, and and the function µ 7→ ‖µ‖TV where

‖µ‖TV = µ+(X) + µ−(X)

is called the total variation norm of µ.

It is easy to see from our analysis above that

‖µ‖TV = sup

{∫
X
fdµ

∣∣∣∣ f ∈ Cc(X) , −1 ≤ f ≤ 1

}
,
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and from this the Minkowski inequality is easily seen to hold, so that ‖ · ‖TV is actually a norm, as

the name indicates.

We know that the dual of a Banach space is complete in the dual norm, and so M(X) is

complete in the total variation norm. Moreover, the map L 7→ µ+ − µ− where µ+ and µ− are

related to L as in Theorem 0.23 is evidently an isometric isomorphism of (C0(X))∗ onto M(X).

The Banach space C0(X) is not reflexive expect when X is very simple. As long as there exists

a single Borel set E that is not both open and closed, we may define a linear functional on M by

Λ(µ) = µ(E) =

∫
X

1Edµ .

Clearly Λ is linear and

|Λ(E)| ≤ |µ|(E) ≤ |µ|(X) = ‖µ‖TV ,

so Λ is indeed bounded, and so is an element of (M(X))∗. But if there were a function g ∈ C0(X)

for which Λ(µ) =
∫
X gdµ for all µ ∈M, we would have g(x) = 1E(x) for all x since the point mass

δx that concentrates unit mass at x belongs to M for each x ∈ X. But since E is not both open

and closed, 1E is not continuous.

0.6 Wiener measure

In this section, Ω denotes the set of continuous functions ω : [0,∞) → R such that ω(0) = 0. We

equip Ω with the topology of uniform convergence on compact subsets of [0,∞). This makes it a

Frechét space, and in particular, a Hausdorff space. However, Ω is not locally compact. For each

t ∈ [0,∞), let Xt denote the evaluation functional Xt(ω) = ω(t). Let F be the σ-algebra on Ω

generated by the Xt, t ≥ 0. Wiener measure is a probability measure νW on (Ω,F) such that if

E1, . . . , En are Borel sets in R, and 0 ≤ t1 < · · · < tn, a particle performing “Browninan motion”

starting from x at time t = 0 is in Ej at time tj for each j = 1, . . . , n with probability

νW ({ω ∈ Ω : ω(tj) ∈ Ej , j = 1, . . . , n }) =∫
E1×·×En

n∏
j=1

γtj−tj−1(xj−1 − xj)dx1 · · · dxn (0.22)

where γt(x) is the Gaussian probability density used to define the heat semigroup, t0 := 0 and

x0 := 0. (We restrict ourselves to one dimension only to keep the notation simple. Everything we

say in this section about “Brownian motion” in R extends readily to Brownian motion in Rn for

any n ∈ N.)

The formula on the right side of (0.22) for the probabilities of such events follows from Einstein’s

work on Browninan motion in 1905, in which he related Brownian motion to diffusion and the heat

equation. Einstein’s precise explanation for Brownian motion in terms of molecular collisions – at a

time when the very existence of atoms and molecules was still a matter of dispute – made it possible

to determine Avogadro’s number, the number of atoms of hydrogen in one gram of hydrogen, by

making observations through a microscope of pollen-sized particles undergoing Brownian motion.

This was actually done in 1908 by Jean Baptiste Perrin, and he was awarded the Nobel prize

in 1926 for his experimental work. Einstein received the prize in 1921 for his theoretical work.

A simplified version of Einstein’s formulae, leaving out the constants that make it possible to
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determine Avogadro’s number by looking though a microscope, says that the probability that a

Brownian particle starting at 0 at time t = 0 is in Ej at time tj is given in terms of the heat kernel

γt(x− y) by ∫
E1×·×En

n∏
j=1

γtj−tj−1(xj−1 − xj)dx1 · · · dxn (0.23)

where t0 := 0 and x0 := 0, which is the formula on the right side of (0.22). For example if n = 2,

this reduces to, using the Fubini-Tonelli Theorem,∫
E1

γt1(x)

(∫
E2

γt2−t1(x− y)dy

)
dx .

The inner integral gives the probability of the Brownian particle making a transition from x to E2

in time t2 − t1, and γt1(x) is the probability density for the Brownian particle making a transition

from 0 to x in time t1. The composite formula is justified on account of the increments of the

motion being “statistically independent”.

We shall not go further into the physical origins of the formula on the right side of (0.22), but

turn to the mathematical question of whether or not there exists a probability measure νW on Ω,

the infinite dimensional “path space” for the Brownian particle, such that (0.22) is valid.

The sets of the form {ω ∈ Ω : ω(tj) ∈ Ej , j = 1, . . . , n } are very special in F , and the

existence of a countably additive probability measure (Ω,F) that assigns the specified probabilities

to these sets is far from trivial. It is therefore somewhat amazing that Norbert Wiener constructed

the measure νW on (Ω,F) in 1923, well before Kolmogorov had even given his measure-theoretic

formulation of probability theory.

In this section we give a proof of Wiener’s Theorem due to Edward Nelson that makes use of

the Riesz-Markov Theorem, and the regularity of the measures that it provides. There are two

main parts to the proof: In the first part, we embed Ω into a compact Hausdorff space, and use

the formula on the right hand side of (0.22) to define a positive linear functional on C(X) = Cc(X).

The Riesz-Markoff Theorem then provides a regular Borel probability measure µX on X. In the

second second part, we show that Ω is a Borel set, and that µW (Ω) = 1. We then obtain νW by

restricting µW to Ω. It is in the course of the proof that µW (Ω) = 1 that we make essential use of

the inner regularity of µW to deal with the fact that continuity of a function ω from [0,∞) into R
depends on the behavior of ω at uncountably many points.

This is not the only way to construct Wiener measure, and indeed Wiener’s paper predates the

work of Markoff on which this approach depends. However, it is flexible and powerful, and can be

used to construct many other measures on “path spaces”. It will be clear that very little specific

information about the heat kernel is used in the proof.

Our first task, which is essentially notational, is to recast the formula (0.23) in terms of a

probability measure on Rn. Let S be an arbitrary finite subset of distinct elements tj of (0,∞)

arrange in increasing order: S = {t1, . . . , tn} with tj ≤ tj+1 for j = 1, . . . , n− 1.

Given such a set S, define a measure µx,S on Rn by

dµx,S =
n∏
j=1

γtj−tj−1(xj−1 − xj)dx1 · · · dxn . (0.24)
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where t0 := 0 and x0 := x. (We need the more general formula in which x0 is arbitrary and not set

equal to 0 for reasons that are explained below.) For example, if S = {t1, t2}, then

dµx,{t1,t2} = γt1(x− x1))γ(x1 − x2)dx1dx2 . (0.25)

Integrating first in x2, and then in x1 and using the fact that
∫
R γt(x)dx = 1 for all t, one readily

sees that µx,{t1,t2} is a probability measure. The same reasoning shows that for all S, µx,S is

a probability measure. For Borel set E1 and E2, µx,{t1,t2}(E1 × E2) is the probability that the

particle, initially at x, is in E1 at time t1, and then in E2 at time t2. Likewise,

µx,{t1,...,tn}(E1 × · · · × En)

is to be thought of as the probability the particle, initially at x, is in Ej at time tj for j = 1, . . . , n.

Notice that if some Ej = R, the condition that the particle is in Ej is vacuous given that the

particle must be somewhere in R. This corresponds to an important consistence condition of the

family of measures {µx,S} indexed by the finite ordered sets S Let S = {t1, . . . , tn} and for some

j = 1, . . . , n, let S′ := S\{tj} ordered as above.

Let E1, . . . , En be n Borel sets in R. Let E = E1 × · ×En and let E′ be the Cartesian product

of {E1, . . . , En}\{Ej} taken in the order induced by the subscripts. Then since∫
R
γs−tj−1(xj−1 − y)γtj−s(y − xj)dy = γtj−tj−1(xj−1 − xj) ,

doing the integration over the xj first on the left we find that in case Ej = R,

µx,S (E) = µx,S′
(
E′
)
. (0.26)

There is another important relation satisfied by these measures, this times with x and S both being

variable. Let S = {t1, . . . , tn} be given, n ≥ 2. Let 1 ≤ k ≤ n− 1 be given and let f be a bounded

Borel function on Rk and let g be a bounded Borel function on Rn−k. Let S′ = {t1, . . . , tk} and let

S′′ := {tk+1, . . . , tn}. Then doing the integral over xk+1, . . . , xn first, we find that∫
Rn
f(x1, . . . , xk)g(xk+1, . . . , xn)dµx,S =

∫
Rk
f(x1, . . . , xk)

(∫
Rn−k

g(xk+1, . . . , xn)dµxk,S′′

)
dµx,S′ .

(0.27)

In probabilistic terms, one may regard the functions Xj : (x1, . . . , xn) 7→ xj , j = 1, . . . , n as

“random variables” on the probability space (Rn,B, µx,S). The product structure in (0.27) can

then be interpreted as saying that “given Xk, the future variables Xk+1, . . . , Xn are statistically

independent of the past variables’X1, . . . , Xk−1.” This is the Markov property. In what follows

we do not need to know precisely what “given Xk” means; it involves the notion of conditional

probability. We shall only make direct analytic use of the factorization identity (0.27). However, it

would be a grave injustice not to at least mention mention in passing the Markov property at this

point. For our purposes, the Markov property of the measure µx,S is precisely the factorization

formula (0.27) relating it to the measures µx,S′ and µxk,S′′ .

0.26 THEOREM. There exists a unique probability measure νW on (Ω,F) such that if ϕ is any

function on Rn and S = {t1, . . . , tn}, 0 < t0 < · · · < tn, then∫
Ω
ϕ(ω(t1), . . . , ω(tn))dνW (ω) =

∫
Rn
ϕ(x1, . . . , xn)dµ0,{t1,...,tn} .



EAC May 1, 2017 18

Proof of Theorem 0.26. Let Ṙ denote the one-point compactification of R, and let X denote the

Cartesian product (Ṙ)[0,∞) with the product topology. Then by Tychonov’s Theorem, X is a

compact Hausdorff space. The general element ω of X is an arbitrary function from [0,∞) into Ṙ.

Let A denote the set of all functions f on X of the form

f(ω) = φ(ω(t1), . . . , ω(tn)) (0.28)

for some n ∈ N, some S = {t1, . . . , tn}, and some bounded continuous function ϕ : Rn → R. Then

A is an algebra consisting of continuous functions on X which contains the constant function 1 and

separates points. By the Stone Wierstrass Theorem, it is dense in C(X).

We now define a linear functional L on A by

L(f) :=

∫ n

R
φ(x1, . . . , xn)dµ0,{t1,...,tn} (0.29)

where f and φ are related by (0.28). Any given function in A has many different representations of

the form (0.28) since one can always enlarge the set {t1, . . . , tn} but then have φ depends trivially

on the inserted coordinates. Because of the consistency relation (0.26), the right hand side of

(0.29) is independent of the choice of the representative. Hence f 7→ L(f) is a well-defined linear

functional on A, and evidently when f ∈ A is given by (0.28), f(ω) ≥ 0 for all ω if and only

if ϕ(x1, . . . , xn) ≥ 0 for all x1, . . . , xn. Therefore, since each µx,S is a probability measure, L is

positive on A, and for all f ∈ A, |L(f)| ≤ ‖f‖∞. Thus L has a unique extension by continuity from

the dense sub algebra A to all of C(X), and evidently this extension, still denotes by L, is positive

with ‖L‖ = 1.

We may now invoke the Riesz-Markov Theorem to assert the existence of a unique regular Borel

measure µW on X such that L(f) =

∫
X
f(ω)dµW (ω) for all f ∈ C(X).

The proof will be completed by showing that Ω is a Borel set in X, and that µW (Ω) = 1.

Whether ω ∈ X is continuous or not depends on the behavior of ω at uncountably many values

of t. The fact that µW is regular, specifically inner regular, will be crucial for estimating the

probabilities of sets depending on the behavior of ω at all of the uncountably many points in an

interval [a, b] in terms of sets depending on the behavior of ω at only finitely many points in [a, b].

For ε, δ > 0, define

ρ(ε, δ) := sup
0<t<δ

∫
|x|>ε

γt(y)dy =

∫
|x|>ε

γδ(y)dy (0.30)

It is easy to see that as δ ↓ 0, ρ(ε, δ) = o(δ). In fact, ρ(ε, δ) = o(δn) for any n ∈ N, and even that is

not all. However, all we shall use is that ρ(ε, δ) = o(δ). The rest of the proof is broken into several

steps.

Step 1. Let ε, δ > 0. Let 0 < t1 < · · · < tn with tn − t1 < δ. Define

A = {ω : |ω(t1)− ω(tj)| > ε for some j = 2, . . . , n }

We show in this step that µW (A) ≤ 2ρ(ε, δ/2), independent of n. This is based on the Markov

property. Define

B := {ω : |ω(t1)− ω(tn)| > ε/2}
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and then for j = 2, . . . n, define

Cj := {ω : |ω(t1)− ω(tj)| > ε and |ω(t1)− ω(ti)| ≤ ε for i ≤ j − 1}

and

Dj := {ω : |ω(tj)− ω(tn)| > ε/2} .

Note that if ω ∈ A, there is some least value of j such that |ω(t1) − ω(tj)| > ε, and then, if

ω /∈ B, j ≤ n− 1, and |ω(tj)− ω(tn)| > ε/2. That is,

A = B

n−1⋃
j=2

(Cj ∩Dj) .

Note that 1Cj can be written in the form 1Cj (ω) = ϕ(ω(t1), . . . ω(tj−1)) where ϕ is the characteristic

function of an open set on Rj−1, and that 1Cj can be written in the form 1Cj (ω) = ψ(ω(tj), ω(tn))

where ϕ is the characteristic function of an open set on R2. Then by the Markov property (0.27)

and the definition of µW ,

µW (Cj ∩Dj) =

∫
Rj−1

ϕ(x1, · · · , xj−1)

(∫
R2

ψ(xj , xn)dµxj ,{tn−tj}

)
dµ0,{t1,...,tj} (0.31)

Since ∫
R2

ψ(xj , xn)dµxj ,{tn−tj} =

∫
|x|>ε/2

γtn−tj (x)dx ≤ ρ(ε/2, δ) ,

(0.31) yields µW (Cj ∩ Dj) ≤ ρ(ε/2, δ)µW (Cj). Then since the sets Cj are mutually disjoint,

µW (∪nj=2Cj) ≤ 1. Thus, µW (A) ≤ µW (B) + ρ(ε/2, δ) ≤ 2ρ(ε/2, δ).

Step 2. Fix ε, δ > 0. Fix a < b ∈ [0,∞) with b− a < δ. Define the set

E(a, b, ε) := {ω : |ω(s)− ω(t)| ≥ 2ε for some s, t ∈ [a, b] } .

In this step we show that µW (E(a, b, ε)) ≤ 2ρ(ε/2, δ).

To do this, let S be a finite subset of [a, b], and define

E(a, b, ε, S) := {ω : |ω(s)− ω(t)| ≥ 2ε for some s, t ∈ S } .

Note that each E(a, b, ε, S) is open, and E(a, b, ε) is the union of all of the E(a, b, ε, S) as S

ranges over all finite subsets S of [a, b]. Since µW is regular, for all η > 0, there is a compact

set K ⊂ E(a, b, ε) such that µW (K) ≥⊂ E(a, b, ε) − η. Since the sets of the form E(a, b, ε, S),

S ⊂ [a, b] finite, are an open cover of K, there exists a finite sub-cover. But any finite union of

sets of the form E(a, b, ε, S) is again of this form. Hence there exists a finite Sη ⊂ [a, b] such that

µW (E(a, b, ε, Sη) ≥ µW (E(a, b, ε). It follows that

µW (E(a, b, ε) = sup{µW (E(a, b, ε, S) : S ⊂ [a, b] finite } . (0.32)

Now for any finite set S = {t1, . . . , tn} if for some 1 ≤ i < j ≤ n, |ω(ti) − ω(tj)| > 2ε, then

either |ω(t1) − ω(ti)| > ε or |ω(t1) − ω(tj)| > ε. Hence the bound proved in Step 1 implies that

µW (E(a, b, ε, S) ≤ 2ρ(ε/2, δ).
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Step 3. Fix ε, δ > 0 with 1/δ ∈ N. Let k ∈ N. Define

F (k, ε, δ) := {ω : |ω(t)− ω(s)| > 4ε for some t, s ∈ [0, k] } .

In this step we show that µW (F (k, ε, δ)) ≤ 2kρ(ε/2δ)/δ.

To do this, write [0, k] as the union of k/δ subintervals of the form [(j− 1)δ, jδ], j = 1, . . . , k/δ.

If ω ∈ F (k, ε, δ), |ω(t)− ω(s)| > 4ε for some s, t in the same or adjacent intervals. But that means

that |ω(u) − ω(v)| > 2ε for some u, v belonging to one of these intervals. Thus, ω belongs to

E((j − 1)δ, jδ, ε), as defined in Step 2, for some j = 1, . . . , k/δ. This proves the desired bound.

Step 4. We complete the proof. A function ω : [0,∞]→ Ṙ is continuous with ω(0) ∈ R if and only

if its restriction to each [0, k], k ∈ N is uniformly continuous, meaning that for for all ε > 0, there

is a δ > 0 so that |ω(s)−ω(t)| < 4ε whenever |s− t| ≤ δ. That is, ω is continuous if and only if for

each k ∈ N, ω belongs to ⋂
ε>0

⋃
δ>0

F c(k, ε, δ) ,

and F (k, ε, δ) is defined as in the previous step. Moreover, we can restrict ε and δ to be the

reciprocals on positive integers so that the intersection and union are countable. Since each F (k, ε, δ)

is open, in X,

Ω =
⋂
k∈N

⋂
ε>0

⋃
δ>0

F c(k, ε, δ) ,

is a Borel set. It follows that Ωc is a countable union of sets of the form
⋂
δ>0

F (k, ε, δ) and

µW

(⋂
δ>0

F (k, ε, δ)

)
= lim

δ↓0
µW (F (k, ε, δ)) = 0

by the estimate of Step 3 since ρ(ε, δ) = o(δ). Thus Ω is a Borel subset of X, and µW (Ω) = 1. We

define νW to be the restriction of µW to Ω.

0.7 Functions of Bounded Variation

The class of functions of bounded variation on an interval I ⊂ R was introduced by Camile Jordan

in 1881 in an investigation of the point-wise convergence of Fourier Series. The notion turns out

to be quite useful in many contexts, and we shall give a modern development of the theory that

readily admits generalization to functions on open sets in Rn, which is crucial for many modern

applications. However, first we recall the classical definition:

0.27 DEFINITION (Bounded variation). Let I be an interval in R. Let PI denote the set of all

ordered sets {x0, x1, . . . , xn} ⊂ I, n ∈ N, with xj−1 < xj for all j = 1, . . . , n. For any real valued

function h defined on I, define

TV (h; I) = sup


n∑
j=1

|h(xj)− h(xj−1)| : {x0, x1, . . . , xn} ∈ PI

 . (0.33)

A function h : I → R is of bounded variation on I in case TV (h; I) <∞.
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0.28 EXAMPLE. Let h be continuously differentiable and such that the derivative h′ is integrable

on an interval (a, b). Then for any {x0, x1, . . . , xn} ∈ P(a,b),

n∑
j=1

|h(xj)− h(xj−1)| =
n∑
j=1

∣∣∣∣∣
∫ xj

xj−1

h′(y)dy

∣∣∣∣∣ ≤
∫ b

a
|h′(x)|dx ,

and hence TV (h; (a, b)) ≤
∫ b
a |h

′(x)|dx. In fact, it is not hard to show that actually equality holds

in this inequality.

However, functions of bounded variation need not be continuous. Consider for example the

function f on R defined by

h(x) =

{
0 x < 0

1 x ≥ 0 .

Evidently TV (h,R) = 1. More generally, any monotone non-decreasing function has bounded

variation on any interval on which it is bounded.

We shall soon we that every bounded variation function on any interval [a, b] is the difference of

two monotone non-decreasing functions; this is the Jordan decomposition. The Jordan decomposi-

tion is closely related to the Hahn-Saks decomposition of a signed Borel measure into its positive

and negative parts. This means that any function of bounded variation is measurable, and in

fact, has left and right limits (which need not be equal) at every point. In particular, functions of

bounded variation are measurable. In the modern development presented here, we shall deduce the

Jordan Decomposition from the Hahn-Saks decomposition, but we need to know from the outset

that functions of bounded variation are at least measurable, which we show after proving a simple

lemma that will be useful again.

0.29 LEMMA. Let ε > 0. Let h be a real valued function defined on the interval [c, d] such that

TV (h, [c, d]) < ε. Let h̃ be the linear interpolation of h between c and d, That is, for any λ ∈ [0, 1]

define xλ = (1−λ)c+λd, and h̃(xλ) = (1−λ)h(c)+λh(d). Then |h̃(x)−h(x)| < ε for all x ∈ [c, d].

Proof. By hypothesis, for any x ∈ (c, d) |h(x) − h(c)| + |h(x) − h(d)| ≤ TV (h, [c, d]) < ε. By the

convexity of t 7→ |t|,

|h(xλ)− (1− λ)h(c)− λh(d)| ≤ (1− λ)|h(xλ)− h(c)|+ λ|h(xλ)− h(d)| ≤ ε .

Then next simple observation to make is that if b < c < d, TV (h; [b, d]) = TV (h; [b, c]) +

TV (h; [c, d]). This may be iterated in the obvious way.

0.30 LEMMA. Let m denote Lebesgue measure on R. Let h be a real valued function defined on

the interval [c, d] such that TV (h, [c, d]) < ∞. For each ε > 0 there is a piecewise linear function

hε and a Borel set E ⊂ [c, d] with m(E) < ε such that for all x ∈ [c, d]∩Ec, |h(x)− hε(x)| < ε and

|h(x)− hε(x)| ≤ TV (h, [c, d]) for all x ∈ [a, d]. Moreover, TV (hε, [c, d]) ≤ TV (h, [c, d])

Proof. Choose k ∈ N such that 1
kTV (h; [c, d]) < ε. Then choose n so large that k(d − c)/n < ε.

Divide [c, d] into n closed intervals {Ij : j = 1, . . . , n} of equal length, with consecutive intervals
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overlapping at endpoints only. Since
n∑
j=1

TV (h; Ij) = TV (h; [c, d]), TV (h; Ij) ≥ 1
kTV (h; Ij) for

at most k values of j. Let E be the union of any such intervals, and then by the choice of n,

m(E) < ε. On each Ij not included in E, h is uniformly within ε of its linear interpolation between

the endpoints {x0, . . . , xn} of the intervals of Ij according to Lemma 0.29. Thus if we define hε be

the linear interpolation of h at the endpoints of the intervals Ij , j = 1, . . . , n, |h(x)− hε(x)| < ε for

x /∈ E. Finally, it is clear that since hε is linear between xj−1 and xj for each j = 1, . . . , n,

TV (hε) =
n∑
j=1

|h(xj − h(xj−1)| ≤ TV (h, [c, d]) .

0.31 Remark. Given any real valued function h on [c, d] such that TV (h, [c, d]) <∞ Lemma 0.30

provides a sequence of continuous functions converging to h in measure on [c, d], and hence h is

measurable on [c, d].

In what follows, (a, b) denotes any open interval in R. In particular, it is not excluded that either

a = −∞, b = ∞, or both. Let C1
c ((a, b)) denote the set of continuously differentiable real-valued

functions with compact support in (a, b). Then C1
c ((a, b)) is dense in Cc((a, b)). This is easily shown

by convolving f ∈ Cc((a, b)) by a smooth probability density supported in some sufficiently small

interval [−δ, δ]. In fact, the same argument shows that C∞c ((a, b)), the set of infinitely differentiable

real-valued functions with compact support in (a, b), is dense in Cc((a, b)). For f ∈ C1
c ((a, b)), let

f ′ denote the derivative of f . Throughout the rest of this section, B denotes the Borel σ-algebra of

(a, b), and m denote Lebesgue measure on (a, b), though we shall often write integrals with respect

to Lebesgue measure using dx in place of dm.

Now let h be a real-valued function on (a, b) with TV (h; (a, b)) <∞. In particular, h is uniformly

bounded on (a, b), and so if both a and b are finite, h is integrable with respect to Lebesgue measure

m since it is also measurable by the remark following Lemma 0.30. If either a = −∞ or b =∞ this

need not be the case, and then we further suppose that h is integrable. The next lemma leads to

the modern characterization of functions of bounded variation.

0.32 LEMMA. Let h be an integrable real-valued function on (a, b) with TV (h; (a, b)) < ∞. Let

µ denote the finite Borel measure on (a, b) that is absolutely continuous with respect to Lebesgue

measure on (a, b) with Radon-Nikodym derivative h. That is, dµ = hdx. Define L ∈ (C0((a, b)))∗

by

L(f) =

∫ b

a
fdµ . (0.34)

Then for all f ∈ C1
c ((a, b)),

|L(f ′)| ≤ TV (h; [a, b])‖f‖∞ . (0.35)

Proof. Let f ∈ C1
c ((a, b)), and let [c, d] contain the support of f . Let ε > 0. By Lemma 0.30, there

exists a piecewise linear function hε on [c, d] such that |hε(x)−h(x)| ≤ TV (h, [c, d]) for all x ∈ [c, d]

and such that |hε(x)− h(x)| ≤ ε outside a set E with m(E) < ε. Therefore,

L(f ′) =

∫ b

a
f ′(x)hε(x)dx+

∫ b

a
f ′(x)(h− hε((x)dx ,
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and hence∣∣∣∣L(f ′)−
∫ b

a
f ′(x)hε(x)dx

∣∣∣∣ ≤ ∫ d

c
|f ′(x)||h− hε((x)|dx

≤ ‖f ′‖∞
∫

[c,d]\E
|h− hε((x)|dx+ ‖f ′‖∞

∫
E
|h− hε((x)|dx

≤ ε‖f ′‖∞(d− c+ TV (h, [c, d])) .

Then if {x0, . . . , xn} denotes set in P[c,d] such that hε is the linear interpolation of h through

{x0, . . . , xn}, integration by parts yields∣∣∣∣∫ b

a
f ′(x)hε(x)dx

∣∣∣∣ =

∣∣∣∣∣∣
n∑
j=1

h(xj)− h(xj−1)

xj − xj−1

∫ xj

xj−1

f(y)dy

∣∣∣∣∣∣ ≤ ‖f‖∞
n∑
j=1

|h(xj)− h(xj−1)| .

Combining the last two estimates, |L(f ′)| ≤ TV (h; [a, b])‖f‖∞(1+ε(d−c)+TV (h, [c, d])). Since

ε > 0 is arbitrary, (0.35) is proved.

The construction in the previous lemma show how integrable functions of bounded variation

give rise to a special class of linear functionals L on C0((a, b)): Those for which there exists C <∞
such that for all f ∈ C1

c ((a, b))

|L(f ′)| ≤ C‖f‖∞ . (0.36)

We shall soon see that every such functional L C0((a, b)) arises in this way: There is a unique inte-

grable function h of bounded variation on (a, b) such that L(f) =
∫

(a,b) fhdx for all f ∈ C0((a, b)).

In the course of proving this, we shall obtain further information about the class of functions of

bounded variation. We begin with a lemma that provides a crucial “generalized integration by

parts” formula.

0.33 LEMMA. L ∈ (C0((a, b)))∗ be such that for some C < ∞ and all all f ∈ C1
c ((a, b)), (0.36)

is valid. Then there exists a unique pair of signed Borel measures µ and ν on (a, b) such that for

all f ∈ C0((a, b))

L(f) =

∫
(a,b)

fdµ (0.37)

and for all f ∈ C1
c ((a, b))

L(f ′) = −
∫

(a,b)
fdν . (0.38)

Moreover, ‖ν‖TV ≤ C, and for all f ∈ C1
c ((a, b)),∫

(a,b)
f ′dµ = −

∫
(a,b)

fdν . (0.39)

Proof. Direct application of the Riesz Representation Theorem for (C0((a, b)))∗, provides the signed

measure µ such that (0.37) is valid. Next, note that C1
c ((a, b)) is dense in C0((a, b)) in the uniform

norm, and the functional f 7→ L(f ′) is linear since differentiation and L are both linear. It

is bounded on the dense subspace C1
c ((a, b)) by (0.36), and hence it extends by continuity to a

linear functional M on all of C0((a, b)) and ‖M‖∗ ≤ C. Now a second application of the Riesz

Representation Theorem for (C0((a, b)))∗ provides the signed measure ν such that (0.38) is valid.

Finally, (0.39) follows directly from (0.37) and (0.38).
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0.34 EXAMPLE. Let h be a continuously differentiable function on (a, b) such that
∫ b
a |h

′(x)|dx =

C <∞. Define

L(f) =

∫ b

a
h(x)f(x)dx (0.40)

for all f ∈ Cc((a, b)). Then, integrating by parts, for f ∈ C1
c ((a, b)),

L(f ′) =

∫ b

a
h(x)f ′(x)dx = −

∫ b

a
f(x)h′(x)dx (0.41)

and hence |L(f ′)| ≤ C‖f‖∞ so that (0.36) is satisfied with C =

∫ b

a
|h′(x)|dx. Moreover, in this

case the measure ν is evidently given by

dν = −h′(x)dx .

We may regard −ν as the “generalized derivative” of the bounded variation function h even when

h is not differentiable.

0.35 LEMMA. Let L, C, µ and ν be as in Lemma 0.33. If b <∞, then the limits

lim
c↑b

1

b− c
µ(c, b) =: h(b) and lim

c↓a

1

c− a
µ(c, b) =: h(a) (0.42)

exit and

|h(a)|, |h(b)| ≤ 1

b− a
‖µ‖TV + C . (0.43)

Proof. Let f be a C1 function that monotonically increases from 0 to 1 such that f ′ has support

contained in [a′, b′] ⊂ (a, b). For each c ∈ (b′, b) define

fc(x) =

{
f(x) x ≤ c
1− x/(b− c) c < x < b .

While fc does not belong to C1
c ((a, b)), it is easy to approximate fc by a sequence {gc,k}k∈N of such

functions that converge uniformly to fc and whose derivatives converge at each x to

f ′(x)− 1

b− c
1(c,b)(x)

and are uniformly bounded in absolute value by max{‖f ′‖∞, (b − c)−1}. Applying (0.39) to gc,k
and taking the limit k →∞, we obtain∫

(a,b)
f ′dµ− µ((c, b))

b− c
= −

∫
(a,b)

fcdν . (0.44)

By the Lebesgue Dominated Convergence Theorem,

lim
c↑b

∫
(a,b)

fcdν =

∫
(a,b)

fdν , (0.45)
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and since the integral on the left hand side of (0.44) is independent of c, the first limit in (0.42)

exists. Moreover, for each c and k, |L(g′n,k)| ≤ C‖gn,k‖∞ = C, and hence for all c,∣∣∣∣∣
∫

(a,b)
f ′dµ− µ((c, b))

b− c

∣∣∣∣∣ ≤ C . (0.46)

Moreover, f can be chosen so that ‖f ′‖∞ is arbitrarily close to (b′ − a)−1, and we may take b′

arbitrarily close to c. In particular, if a = −∞, we can choose f with ‖f ′‖∞ is arbitrarily close to

0. Then (0.46) yields
|µ((c, b))|
b− c

≤ (c− a)−1‖µ‖TV + C ,

and this proves (0.43) for h(b). The statements involving h(a) are valid by symmetry.

0.36 LEMMA. Let L, C, µ and ν be as in Lemma 0.33. If b < ∞ let h(b) be defined as in

(0.42), and if b =∞, define h(b) = 0. Let f be any C1((a, b)) function with f ′(x) ≥ 0 for all x and

limx↓a f(x) = 0 and ‖f‖∞ = limx↑b f(x) <∞. Then∫
(a,b)

f ′dµ = −
∫

(a,b)
fdν + h(b)‖f‖∞ . (0.47)

Proof. Note that ‖f ′‖L1(m) = ‖f‖L∞(m). Since f(x) =
∫ x
a f
′(y)dy, making a change in f ′ that has

a small L1(m) norm results in a change in f that is correspondingly small in the uniform norm.

We may therefore suppose without loss of generality that f ′ has compact support in [a′, b′] ⊂ (a, b).

By homogeneity, we may assume that ‖f‖∞ = 1. In case b < ∞, we may then proceed as in the

last lemma, and then (0.42), (0.44) and (0.45) yield (0.47).

In case b =∞, pick ε > 0. Since ν is a finite Radon measure, by increasing b′ as necessary, we

may suppose that ν((b′, b)) < ε. Let g ∈ C1
c ((a, b)) be such that g′(x) = f ′(x) for x ≤ b′, and such

that |g′(x)| < ε for x > b′, which is easy to do since (b′, b) = (b′,∞). Define g(x) =
∫ x
a g
′(y)dy, and

note that for x ≤ b′, g(x) = f(x), and we may arrange that ‖g − f‖∞ = ‖f‖∞. Then by (0.39),∫
(a,b)

f ′dµ =

∫
(a,b)

g′dµ−
∫

(b′,b)
g′dµ

= −
∫

(a,b)
gdν −

∫
(b′,b)

g′dµ

= −
∫

(a,b)
fdν +

∫
(b′,b)

(f − g)dν −
∫

(b′,b)
g′dµ

Now note that

∣∣∣∣∣
∫

(b′,b)
(f − g)dν

∣∣∣∣∣ ≤ ‖f‖∞ν(b′, b) and

∣∣∣∣∣
∫

(b′,b)
g′dν

∣∣∣∣∣ ≤ ε‖ν‖TV. Thus, recalling that

‖ν‖TV ≤ C, ∣∣∣∣∣
∫

(a,b)
f ′dµ+

∫
(a,b)

fdν

∣∣∣∣∣ ≤ ε(‖f‖∞ + C) .

Since ε is arbitrary, the identity (0.47) is proved.
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0.37 THEOREM. L ∈ (C0((a, b)))∗ be such that for some C <∞ and all all g ∈ C1
c ((a, b)), (0.36)

is valid. Let µ and ν be the unique signed Borel measures on (a, b) such that (0.37) and (0.38) are

valid for all f ∈ C0((a, b) and all f ∈ C1
c ((a, b) respectively.

Then µ is absolutely continuous with respect to Lebesgue measure. Let h denote the Radon-

Nikodymn derivative of µ with respect to Lebesgue measure so that by the Lebesgue Differentiation

Theorem, at almost every x,

h(x) = lim
y↓x

µ((x, y)

y − x
. (0.48)

Then there is a preferred representative of the a.e. equivalence class of h such that (0.48) is valid

for every x ∈ (a, b), and with this version of h,

TV (h; (a, b)) ≤ C , (0.49)

and for all a ≤ x < y < b,

h(x)− h(y) = ν((x, y]) . (0.50)

In particular, h is right continuous and has a left limit at each point x ∈ (a, b).

Before giving the proof, we recall a basic measure theoretic result that we shall use. Let A
denote the half-open interval algebra which consists of all finite disjoint unions of sets of the form

(c, d] with a ≤ c < d < b or of the form (c, b) where a < c < b. By a standard application of the

Monotone Class Theorem, for every positive Radon measure λ on R and every Borel set E, for each

ε > 0, there is a set A ∈ A such that λ(E∆A) < ε.

Proof. Let µ = µ+ − µ− be the unique decomposition of µ into a different of mutually singular

finite (positive) Borel measures, and let |µ| = µ+ + µ−, and likewise define ν+ and ν− in terms of

ν. Let m denote Lebesgue measure and note that |µ|+m is a Radon measure.

Let E be a Borel set such that µ−(E) = 0 and µ+(Ec) = 0. Then for any ε > 0, there exists

Aε ∈ A such that

(|µ|+m)(E∆Aε) < ε .

Now let F be any Borel subset of E and suppose that µ+(F ) > 0. For ε > 0, let B ∈ A be such

that µ(F∆B) < ε. Then since F ⊂ E, 1B1Aε = (1B − 1F )1Aε + 1F (1Aε − 1E) + 1F . It follows that

(|µ|+m)(B ∩Aε − F ) ≤ 2ε . (0.51)

Since B ∩ Aε ∈ A, it can be written in as B ∩Aε =

n∑
j−1

(cj , dj ], where c1 < d1 < c2 < · · · < dn. At

the cost of another ε, we may assume that c1 > −∞ and dn <∞, which is automatic in case a and

b are finite.

Now for j = 1, . . . , n choose disjoint open intervals Uj such that [cj , dj ] ⊂ Uj and such that

n∑
j=1

(|µ|+m)(Uj) ≤ (|µ|+m)(B ∩Aε) + ε , (0.52)

which is possible by the outer regularity of |µ|+m. For each j, choose [cj , dj ] ≺ gj ≺ Uj , and define

g :=
∑n

=1 gj . Define f(x) =

∫ x

a

n∑
j=1

gj(y)dy.
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Then

‖f‖∞ ≤
n∑
j=1

m(Uj) ≤ ε+m(B ∩Aε) ≤ 3ε+m(F ) . (0.53)

Also, with U := ∩nj=1Uj , ∫
(a,b)

f ′dµ ≥ µ+(B ∩Aε)− µ−(U) .

By (0.52), µ−(U) ≤ µ−(Aε) + ε ≤ 2ε. By (0.51), µ+(B ∩ Aε) ≥ µ+(F ) − ε. Altogether, using

Lemma 0.36 together with the positivity of f ,

µ+(F ) ≤ 3ε+

∫
(a,b)

f ′dµ

≤ 3ε+

∫
(a,b)

fdν− + h(b)‖f‖∞

≤ 3ε+ (C + h(b))‖f‖∞ .

Combining this with (0.43) and (0.53), we have

µ+(F ) ≤ 3ε+ (2C + (b− a)−1)(3ε+m(F )) .

Since ε > 0 is arbitrary, µ+(F ) ≤ (2C + (b − a)−1‖µ‖TV)m(F ). and then since F is arbitrary,

this proves that µ+ is absolutely continuous with respect to Lebesgue measure, and then using

the Lebesgue Differentiation Theorem that the Radon-Nikodymn derivative h satisfies ‖h‖∞ ≤
2C + (b− a)−1‖µ‖TV.

For the final part, given any a ≤ x < y < b, for n sufficiently large that and y− 1/n > x, define

the “ramp function” fn approximation of 1(x,y] by

fn(t) =


n(t− x) x < t ≤ x+ 1/n

1 x+ 1/n ≤ t ≤ y
1− n(t− y) y < t ≤ y + 1/n

and fn(t) = 0 for all other t. Notice that limn→∞ fn(t) = 1(x,y](t) for all t. Though f is not in

C1
c ((a, b)), a simple approximation argument such as we made in the proof of Lemma 0.35 shows

that (0.39) is nonetheless valid and therefore

nµ((x− 1/n, x))− nµ((y − 1/n, y)) = −
∫
fndν .

Taking the limit n → ∞, we obtain h(y) − h(x) = ν((x, y]). It now follows that when a < x0 <

x1 · · ·xn < b,
n∑
j=1

|h(xj)− h(xj−1)| =
n∑
j=1

|ν((xj−1, xj ]) ≤ ‖ν‖TV.

0.38 COROLLARY. Let h be integrable on (a, b) and suppose that TV (h; (a, b)) < ∞. Then in

the a.e. equivalence class of h there is a preferred representative, also denoted by h, such that h is

right continuous and has a left limit at each point x ∈ (a, b). Moreover, h is the difference of two

monotone non-decreasing right continuous functions h = h+ − h−.
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Proof. The first part is a direct consequence of Lemma 0.32 and Theorem 0.37. Let ν be the signed

measure associated to h as in Theorem 0.37. Let ν = nu+−ν− be the Hahn-Saks decomposition of ν

into its positive and negative parts. Then since for all a < x < b, h(x)−h(a) = ν−((a, x])−ν+((a, x]).

Define h+(x) = h(a) + ν−((a, x]) and define h−(x) = ν+((a, x]).

0.39 DEFINITION (BV((a,b))). The real normed space BV ((a, b)), called the space of BV

functions on (a, b) is the vector space of real integrable functions h on (a, b) such that TV (h; (a, b)) <

∞. For h ∈ BV ((a, b)), let µ = hdx, so that by Lemma 0.32 and Lemma ??, there is a signed Borel

measure ν with ‖ν‖TV = TV (h; (a, b)) < ∞, and such that (0.39) is valid for all f ∈ C1
c ((a, b)).

Then we define the BV norm of h as

‖h‖BV = ‖h‖L1(m) + ‖ν‖TV = ‖µ‖TV + ‖ν‖TV (0.54)

By the uniqueness in Lemma 0.33 and the linearity of (0.39), the map h 7→ ν is linear, and

so it is evident that ‖ · ‖BV is a norm on BV ((a, b)). To see that BV ((a, b)) is complete in this

norm, Let {hn}n∈N be a Cauchy sequence in BV ((a, b)). Then {hn}n∈N is also a Cauchy sequence

in L1((a, b),B,m) and so there exist h ∈ L1((a, b),B,m) such that limn→∞ ‖hn − h‖L1(m) = 0. For

each n ∈ N, let µn be the signed Borel measures such that∫
(a,b)

f ′hndx = −
∫

(a,b)
fdνn

for all f ∈ C0((a, b)).

Since the space of signed Borel measures on C0((a, b)) is, like every dual space, complete, and

since by the definition of the BV norm {νn}n∈N is a Cauchy sequence in the total variation norm,

there exists a signed measure ν such that limn→∞ ‖νn − ν‖TV = 0. It follows that∫
(a,b)

f ′hdx = −
∫

(a,b)
fdν

for all f ∈ C0((a, b)), and hence h ∈ BV ((a, b)) and limn→∞ ‖hn − h‖BV = 0.

There is in fact a better way to see that BV ((a, b)) is a Banach space: It turns out the BV ((a, b))

is the dual of another Banach space. Let Y be the Banach space of of all pairs (f1, f2) with

f1, f2 ∈ C0((a, b)) and with the norm

‖(f1, f2)‖Y = ‖f1‖∞ + ‖f2‖∞ .

The dual space Y ∗ is the space of all pairs (µ1, µ2) of signed Borel measures on (a, b) with the norm

‖(µ1, µ2)‖Y = ‖µ1‖TV + ‖µ2‖TV .

Now let Z be closure of the subspace of Y consisting on (f1, f2) with f1, f2 ∈ C1
c ((a, b)) and f1 = −f ′2.

The annihilator of Z is the subspace of Y ∗ consisting of pairs (µ, ν) such that∫
(a,b)

f ′dµ =

∫
(a,b)

f ′dν (0.55)

for all f ∈ C1
c ((a, b)). By Theorem ??, (µ, ν) belongs to the annihilator of Z precisely when µ = hdx

where h ∈ BV ((a, b)), and then µ is the unique signed measure associated to h such (0.55) is valid

for all f ∈ C1
c ((a, b)), and in this case

‖h‖BV = ‖µ‖TV + ‖ν‖TV = ‖(µ, ν)‖Y ∗ .
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Since Z is a closed subspace of a Banach space Y , the annihilator of Z in Y ∗ is the dual of Y/Z

by a general result in the theory of Banach spaces. Therefore, BV ((a, b)) is the dual of Y/Z. By

the Banach-Aloglu Theorem, the unit closed ball in BV ((a, b)) is compact in the weak-∗ topology

induced on BV ((a, b)) by Y/Z.

The space BV ((a, b)) is not separable: For each y ∈ (a, b), let hy be the step function with

hy(x) = 1 for y ≥ x and hy(x) = 0 otherwise. Then for y 6= z, ‖hy − hz‖BV ≥ 2.


