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1 Topological Vector Spaces

1.1 Neighborhood bases for topological vector spaces

1.1 DEFINITION (Topological Vector Space). A topological vector space is a vector space X

over C that is equipped with a topology of open sets O such that the maps (α, x) 7→ αx and

(x, y) 7→ x+ y are continuous on C×X and X ×X respectively. A real topological vector space is

defined in the same way except that the field C replaced by R.

Let X be a vector space. For all x ∈ X and A,B ⊂ X, define

x+B := {x+ y : y ∈ B} and A+B := {x+ y : x ∈ A, y ∈ B} . (1.1)

Then A+B is said to be the Minkowski sum of A and B. For x ∈ X, let Tx denote the map from

X to X given by Tx(y) = x + y. Then T−1x = T−x, and Tx vector space isomorphism from on X.

The maps Tx, x ∈ X, are called translations.

1 c© 2017 by the author. This article may be reproduced, in its entirety, for non-commercial purposes.
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Likewise, for α ∈ C\{0} let Sα denote the map form X to X given by x 7→ αx. Since S−1α =

Sα−1 , each Sα is a vector space isomorphism on X. The maps Sα, α ∈ C\{0} are called scale

transformations. For all α ∈ C and all A ⊂ X, define

αA := {αx : x ∈ A} . (1.2)

Whenever (X,O) is a topological vector space, both Tx and T−1x are continuous. Hence each

Tx, x ∈ X, is a homeomorphism on X. Likewise, each Sα, α ∈ C\{0}, is a homeomorphism on X.

It follows that U ⊂ X is open if and only if x + U = Tx(U) is open for each x ∈ X. If U is any

non-empty set, and −x ∈ U , then 0 ∈ x + U = Tx(U). Therefore, the sets in O are precisely the

translates of the sets in O that contain 0. Likewise, U ⊂ X is open if and only Sα(U) ∈ O for all

α ∈ C\{0}.

1.2 DEFINITION (Neigborhood base at 0). Let (X,O) be a topological vector space. A neigbor-

hood base at 0 for the topology O is a set V ⊂ O such that 0 ∈ V for all V ∈ V , and if 0 ∈ U ∈ O,

there exists some V ∈ V such that V ⊂ U .

A given topology O on X such that (X,O) is a topological vector space will have infinitely many

neighborhood bases at 0, but given a neighborhood base V at 0 for (X,O), there does not exist

any different topology Õ such that (X, Õ) is a topological vector space and V is a neighborhood

base at 0 for Õ.

1.3 LEMMA. (X,O) be a topological vector space, and let V be a neighborhood base at 0 for the

topology O. Then a non-empty U ⊂ X is open if and only if for each x ∈ U , there is some V ∈ V

such that x+ V ⊂ U .

Proof. Suppose that for each x ∈ U , there is some Vx ∈ V such that x+Vx ⊂ U . Then each x+Vx
is open and writing U =

⋃
{x+ Vx : x ∈ U} displays U as a union of open sets. Hence U ∈ O.

Conversely, suppose that U ∈ O. Then for each x ∈ U , −x + U is an open set containing 0.

Hence for some Vx ∈ V , Vx ⊂ −x+ U . But then x+ Vx ⊂ U .

There is a useful construction of topologies O on a vector space X such that (X,O) is a

topological vector space. The construction is closely related to the previous lemma.

1.4 LEMMA. Let X be a vector space, and let W be a family of subsets of X that is closed under

finite intersections.

Define O to be the set of subsets U of X given by

O = ∅ ∪ {U ⊂ X : for all x ∈ U there exists Wx ∈ W such that x+Wx ⊂ U} . (1.3)

Then O is a topology on X, and under this topology, each of the maps Tx, x ∈ X, is continuous.

Proof. Evidently, ∅ ∈ O, and evidently an arbitrary union of sets U such that for each x ∈ U , there

is some Wx ∈ W such that x + Wx ⊂ U also has this same property. Hence O is closed under

arbitrary unions.

To see that O is closed under finite intersections, let {U1, . . . , Un} ⊂ O, and let U = ∩nj=1Uj .

By definition, for each x ∈ U , x ∈ Uj , j = 1, . . . , n, and hence there is some Wx,j such that

x+Wx,j ⊂ Uj . But then

x+

n⋂
j=1

Wx,j ⊂ U ,
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and by the closure under finite intersections, ∩nj=1Wx,j ∈ W , and hence U ∈ O.

For the final statement, since T−1x = T−x, it suffices to show that each Tx is open. By definition,

the general open set U has the form U = ∪{y + Wy : y ∈ U} for some set {Wy : y ∈ U} ⊂ W .

Bu then Tx(U) = ∪{x+ y +Wy : y ∈ U} which is open.

The condition that (x, y) 7→ x+ y is continuous on X ×X in the product topology is stronger

than the condition that each of the maps Tx are continuous. The latter condition amounts to

separate continuity of the map (x, y) 7→ x+ y, and for (X,O) to be a topological vector space, we

require joint continuity. To achieve this, and to ensure that the topology O provided by Lemma 1.4

is Hausdorff and has the other properties that would make (X,O) is a topological vector space, we

must impose further conditions on the sets in W .

1.5 DEFINITION. Let X be a vector space over C. a set A ⊂ X is absorbing if for all x ∈ X,

there is a δx > 0 so that for |t| < δx, tx ∈ A, or, what is the same thing, that x ∈ tA for all t > 1/δx.

A set A ⊂ X is balanced in case for all α ∈ C with |α| = 1, αA ⊂ A. (Hence every balanced set

contains 0.)

1.6 LEMMA. Let X be a vector space, and let W be a family of subsets of X such that that is

closed under finite intersections, and let O be the topology on X defined in Lemma 1.4. Suppose

that each W ∈ W is absorbing, balanced and convex, and that for all W ∈ W , 1
2W belongs to W .

Then the map (α, x) 7→ αx is jointly continuous on (C\{0})× (X,O), and the map (x, y) 7→ x+ y

is jointly continuous on X ×X.

Proof. Let α0 ∈ C\{0} and x ∈ X. It suffices to show that if U ∈ O and α0x ∈ U , then there is a

δ > 0 and a W̃ ∈ W such that if |α− α0| < δ, then α(x+ W̃ ) ⊂ U .

Since α0x ∈ U ∈ O, there is some W ∈ W such that α0x+W ⊂ U . Then

αx+
1

2
W = (α− α0)x+ (α0x+

1

2
W ) .

Since W is absorbing and balanced, for δ sufficiently small, if |α− α0| < δ, then (α− α0)x ∈ 1
2W .

Then since W is convex, αx + 1
2W ⊂

1
2W + (α0x + 1

2W ) ⊂ α0x + W ⊂ U . Taking W̃ = 1
2W , we

have what we sought for the scalar multiplication. The vector additions is simpler: Let x, y ∈ X,

and let U ∈ O be such that x+ y ∈ U . Then there exists W ∈ W such that x+ y +W ⊂ U . But

then (x+ 1
2W ) + (y + 1

2W ) ⊂ U .

1.7 LEMMA. Let X be a vector space, and let W be a family of subsets of X such that that is

closed under finite intersections, and let O be the topology on X defined in Lemma 1.4. Suppose

that each W ∈ W is absorbing, convex and balanced, and that for all W ∈ W , 1
2W belongs to W .

Suppose also that for all x 6= 0, there exists W ∈ W such that x /∈W . Then (X,O) is a Hausdorff

topological space.

Proof. Let x, y ∈ X, x− y 6= 0. Then there exists W ∈ W such that x− y /∈ W . Then x+ 1
2W is

an open set containing x, and y + 1
2W is an open set containing y. If z ∈ (x + 1

2W ) ∩ (y + 1
2W )

there exist wx, wy ∈W such that z = x+ 1
2wx = y + 1

2wx, and hence x− y = 1
2(wx −wy) Since W

is balanced, −wy ∈ W , and then since W is convex, 1
2(wx − wy) ∈ W . Hence x− y ∈ W , which is

a contradiction showing that no such z exists, and hence (x+ 1
2W ) ∩ (y + 1

2W ) = ∅. Thus, (X,O)

is a Hausdorff topological space.
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Combining Lemmas 1.4, 1.6 and 1.7, we have proved:

1.8 THEOREM. Let X be a vector space, and let W be a family of subsets of X such that that

is closed under finite intersections. Suppose further that: each W ∈ W is absorbing, convex and

balanced, and that for all W ∈ W , 1
2W belongs to W . Let O be defined by

O = ∅ ∪ {U ⊂ X : for all x ∈ U there exists Wx ∈ W such that x+Wx ⊂ U} .

Then (X,O) is a topological vector space, and W is a neighborhood base at 0 for this topology.

Moreover, if for all x 6= 0, there exists W ∈ W such that x /∈ W , then (X,O) is a Hausdorff

topological vector space.

Let X be a vector space and let V be a set of of absorbing, convex and balanced subsets of X.

Since any finite intersection of absorbing, convex and balanced sets is again absorbing, convex and

balanced, if we define W to be the set of all finite intersections of sets in V , then by Theorem 1.8,

W is a neighborhood base at 0 of a uniquely determined topology O on X such that (X,O) is a

topological vector space.

The vector spaces topologies that we consider below are always generated this way, and we will

often need to determine when two such topologies are comparable. The following lemma facilitates

this.

1.9 LEMMA. Let X be a vector space. Let V1 and V2 be two sets of absorbing, convex and

balanced subsets of X, both also closed under multiplication by 2−k, k ∈ N. Let W1 and W2 be the

sets of all finite intersections of sets in V1 and V2 respectively. Let O1 and O2 be the topological

vector space topologies on X that have W1 and W2 respectively as neighborhood bases at 0. Then

O1 ⊂ O2 if each V1 ∈ V1 contains some V2 ∈ V2.

Proof. Let U ∈ O1. By definition, for each x ∈ U , there exists Wx ∈ W1 such that x + Wx ⊂ U .

Suppose that each W ∈ W1 contains some W̃ ∈ W2. In particular, writing U = ∪x∈U{x + Wx},
and letting W̃x denote some element of W2 contained in Wx, we have U = ∪x∈U{x + W̃x}. Thus

U ∈ O2.

Therefore, it suffice to show that whenever each V1 ∈ V1 contains some V2 ∈ V2, then each

W1 ∈ W1 contains some W2 ∈ W2.

Let W1 ∈ W1. Then W1 is a finite intersection of elements of V1. Each of these contains a set

in V2. The intersection over the later sets belongs to W2, and is contained in W1.

1.2 Seminorms, norms and normed vector spaces

1.10 DEFINITION. Let X be a vector space over C or R. A function f : X → R is convex in

case for all λ ∈ (0, 1) and all x, y ∈ X,

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) , (1.4)

and is subadditive in case for all x, y ∈ X,

f(x+ y) ≤ f(x) + f(y) , (1.5)

and is homogenous of degree one in case for all x ∈ X and α ∈ C

f(αx) = |α|f(x) . (1.6)
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1.11 LEMMA. Let X be a vector space over C or R and let f : X → R be homogeneous of degree

one. Then f is convex if and only if f is subadditive.

Proof. Suppose that f is homogeneous of degree one and convex. Then

f(x+ y) = 2f

(
x+ y

2

)
≤ 2

(
1

2
f(x) +

1

2
f(y)

)
= f(x) + f(y) .

Conversely, Suppose that f is homogeneous of degree one and subadditive. Then for λ ∈ (0, 1)

f((1− λ)x+ λy) ≤ f((1− λ)x) + f(λy) = (1− λ)f(x) + λf(x) .

1.12 DEFINITION (Seminorm and norm). Let X be a vector space over C or R. A seminorm on

X is a function p : X → [0,∞) such that p is homogeneous of degree one and convex, or, what is the

same thing, homogeneous of degree one and subadditive. A seminorm p is a norm in case p(x) = 0

implies that x = 0. A different notation, namely x 7→ ‖x‖ is usually used for norm functions, also

sometimes for seminorms.

1.13 LEMMA. Let p be a seminorm on the vector space X. Define the set Bp by

Bp := {x ∈ X p(x) ≤ 1} . (1.7)

Then Bp is absorbing, balanced and convex. Moreover,

Bp = ∩r>1rBp . (1.8)

Proof. For x ∈ X, λ > 0, p(λx) = λp(x) < 1, so that λx ∈ Bp, for all λ < 1/p(x). Therefore,

Bp is absorbing. For x ∈ Bp, α ∈ C, |α| ≤ 1, p(αx) = |α|p(x) ≤ 1, so that αx ∈ Bp. Therefore,

Bp is balanced. For all x, y ∈ Bp, and all λ ∈ (0, 1), p((1 − λ)x + λy) ≤ (1 − λ)p(x) + λp(y) ≤ 1.

Therefore, Bp is convex.

To prove (1.8), note that x ∈ rBp if and only if r−1x ∈ Bp if and only if p(r−1x) ≤ 1. By the

homogeneity of p, p(r−1x) ≤ 1 is the same as p(x) ≤ r. Hence x ∈ ∩r>1rBp if and only if p(x) ≤ r
for all r > 1, and this means that p(x) ≤ 1.

It turns out that there is a one-to-one correspondence between absorbing, balanced, convex sets

V in X with the property that V = ∩r>1rV , and seminorms p on X, as the lemmas show.

1.14 LEMMA. Let V be any absorbing, balanced, convex set in X. Define a function pV : X →
[0,∞) by

pV (x) = inf{t > 0 : x ∈ tV } . (1.9)

Then pV is a seminorm on X.

Proof. Since V is absorbing, pV (x) < ∞ for all x ∈ X. Next, let x, y ∈ X. Let t, s be such that

x ∈ tV and y ∈ sV . That is, t−1x, s−1y ∈ V . Since V is convex, (1 − λ)t−1x + λs−1y ∈ V for all

λ ∈ (0, 1). Define λ = s/(t+s). Then we have x+y ∈ (t+s)V . Therefore, pV (x+y) ≤ pV (x)+pV (y).
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Let α ∈ C, α = 1, Since V is balanced, SαV ⊂ V , and then V ⊂ Sα(SαV ) ⊂ SαV . Thus

V = αV . Therefore, for all x ∈ X and all t > 0,

αx ∈ tV ⇐⇒ x ∈ tαV ⇐⇒ x ∈ tV .

Therefore, pV (αx) = pV (x) when |α| = 1. Also, for all r, t > 0,

t(rx) ∈ V ⇐⇒ (tr)x ∈ V

and therefore pV (rX) = rpV (x). Then for r > 0 and α ∈ C, α = 1, for all x ∈ X,

pV (rαx) = rpV (αx) = rpV (x) = |rα|pv(x) .

This shows that pV is homogeneous of degree one. Altogether, we have shown that pV is a seminorm.

1.15 LEMMA. Let V be any absorbing, balanced, convex set in X. Suppose also that V = ∩r>1rV .

Let pV be the seminorm defined by (1.9), and then let BpV be the absorbing, balanced, convex set

defined by (1.7) with pV in place of V . Then V = BpV .

Proof. If x ∈ V , then pV (x) ≤ 1, and hence x ∈ BpV . If x ∈ BpV , pV (x) ≤ 1, and then x ∈ rV for

all r > 1. Since V = ∩r>1rV , x ∈ V . Thus, V = BpV .

1.16 LEMMA. Let V ⊂ X be absorbing, balanced and convex, and let pV be the seminorm defined

in (1.9). Then pV is a norm if and only if for all non-zero x ∈ X, there is some t > 0 such that

x /∈ tV

Proof. If for all non-zero x ∈ X, there is some t0 > 0 such that x /∈ tV , pV (x) = inf{t > 0 : x ∈
tV } ≥ t0, and hence pV (x) > 0 for all x 6= 0. Conversely, if pV (x) > 0 for all x 6= 0, then for all x

and all 0 < t < pV (x), x /∈ tV .

Summarizing, we have the following reuslt:

1.17 THEOREM. Let X be a vector space over C. For each absorbing, balanced, convex set V

in X, the function pV defined by (1.9) is a seminorm. Conversely, for each seminorm p, the set is

absorbing, balanced and convex. Moreover the map p 7→ Bp, with Bp defined in (1.7), is a bijection

between the set of seminorms on X and the set of absorbing, balanced, convex sets V ⊂ X with the

property that V = ∩r>1rV . Finally, for any absorbing, balanced and convex V ⊂ X, the seminorm

pV defined in (1.9) is a norm if and only if for all non-zero x ∈ X, there is some t > 0 such that

x /∈ tV .

As a consequence of Theorem 1.8 and Theorem 1.17, there is a topology O on a vector space X

associated to any set P of seminorms p on X, and (X,O) is a topological vector space such that

for each p ∈P and each ε > 0, εBp ∈ O, and consequently, such that each p ∈P is continuous.

Let p be any seminorm on the vector space X. Consider the nested family of absorbing,

balanced, convex sets W = {2kBp : k ∈ Z}. Since this set is nested, it is closed under finite

intersections. Then by Theorem 1.8, the set O defined by (1.3) is a topology on X such that (X,O)

is a topological vector space. This topology is Hausdorff if and only if p is a norm.
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To get a Hausdorff topology out of seminorms, one must use a sufficiently large family of them.

Let P be a set of seminorms on X. Define

WP := {2kBp : k ∈ Z , p ∈P} . (1.10)

Then W is closed under finite intersections and each set W ∈ W is balanced, convex and absorbing

and by Theorem 1.8, the set O defined by (1.3) is a topology on X such that (X,O) is a topological

vector space. This topology is Hausdorff if and only if for each x ∈, there is some p ∈P such that

p(x) 6= 0.

1.18 DEFINITION. Let P be a family of seminorms on a vector space X. The weakest topology

on X that contains all translates of all of the sets in WP , as defined in (1.10) is called the topology

on X generated by P.

If P is a countable set of seminorms on X, then topology on X generated by P is metrizable.

This is the main content of the next theorem.

1.19 THEOREM. Let P be a countable family of seminorms on a vector space X, and suppose

that for each x ∈ X, there is some p ∈ P such that p(x) 6= 0. Then there is a translation is a

translation invariant metric ρ on X such that the topology induced on X by this metric coincides

with the topology on X generated by P.

Proof. Order the elements of P in a sequence {pn}n∈N. Define the function φ : [0,∞)→ [0, 1) by

φ(t) = t/(1 + t). Then for s, t ≥ 0,

φ(s+ t) =
s

1 + s+ t
+

t

1 + s+ t
≤ φ(s) + φ(t) (1.11)

and φ is strictly monotone increasing. For x, y ∈ X define

ρ(x, y) =

∞∑
n=1

2−nφ(pn(x− y)) , (1.12)

and note that the sum converges absolutely and in fact ρ(x, y) < 1 for all x, y ∈ X. It is evident

that ρ(x, y) = ρ(y, x), and since if x 6= y, there is some n such that pn(x− y) 6= 0, then ρ(x, y) 6= 0.

Finally, by the subadditivity of each pn, for all x, y, z ∈ X,

pn(x− z) = pn((x− y) + (y − z)) ≤ pn(x− y) + pn(y − z) ,

and then by (1.11), φ(pn(x − z)) ≤ φ(pn(x − y)) + φ(pn(x − z)). It follows that ρ satisfies the

triangle inequality, and therefore is a metric on X. Notice that by definition, for all x, y, z ∈ X,

ρ(Txy, Txz) = ρ(y, z) ,

so that ρ is translation invariant. For r > 0, let Bρ(r, 0) := {x ∈ X : ρ(x, 0) < r}.
It remains to show that for each k ∈ Z and n ∈ N, 2kBpn contains Bρ(r, 0) for some r > 0, and

that for each r > 0, Bρ(r, 0) contains a set that is open in the topology generated by P.

Consider the set 2kBpn = {x : pn(x) < 2k}. Since for each n, and each x, ρ(x, 0) ≥ 2−nφ(pn(x)),

pn(x) ≤ 2nρ(x, 0)

1− 2nρ(x, 0)
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for all x such that ρ(x, 0) < 2−n. Hence for each n ∈ N , and each ε > 0, there is an rn,ε > 0 such

that pn(x) < ε whenever x ∈ B(rn,ε, 0). Taking ε = 2k, this can be written as

B(rn,2k , 0) ⊂ 2kBpn .

Next, fix r > 0 and n ∈ N. Fix N ∈ N such that 2−N < r/2. Then

ρ(x, 0) =
N∑
n=1

2−nφ(pn(x)) +
∞∑

n=N+1

2−n ≤
N∑
n=1

2−nφ(pn(x)) + r/2

Since for all t > 0, φ(t) ≤ t, if x ∈ (r/2)Bpn , then φ(pn(x)) ≤ (r/2). Now pick ` ∈ N so that

2−` < r/2, and note that

W :=
N⋂
n=1

2−`Bpn

is in the canonical neighborhood base at 0 of the topology generated by P. By what we have noted

above, for all x ∈P, ρ(x, 0) < r. That is W ⊂ B(r, 0).

A single seminorm that is not a norm cannot generate a Hausdorff topology: If p is a seminorm

but not a norm, there is some non-zero x ∈ X such that p(x) = 0, and therefore tx ∈ Bp for all

t > 0, or what is the same, x ∈ 2kBp or all k ∈ Z. Hence x belongs to each open set containing

0. However, when the seminorm p is norm, this problem is eliminated. A very important class of

topological vector space topologies arises this way.

1.3 Normed vector spaces

1.20 DEFINITION (Normed vector space). A normed vector space (X, ‖ · ‖) is a vector space X

equipped with a norm function ‖ · ‖. For each r > 0 and x0 ∈ X, define

B(r, x0) = {x ∈ X : ‖x− x0‖ < r} . (1.13)

For each r > 0, B(r, 0) is balanced, convex and absorbing. Define W = {B(2k, 0) : k ∈ Z}, which

is nested and therefore closed under finite intersections. Then by Theorem 1.8, W is a neigborhood

base for a topology on X that makes it a topological vector space. This topology is called the norm

topology. The set B(r, x0) is call the open ball of radius r centered at x0.

Let (X, ‖ · ‖) be a vector space, and define a function ρ : X ×X → [0,∞) by ρ(x, y) = ‖x− y‖.
Then evidently ρ(x, y) = ρ(y, x) for all x, y, and ρ(x, y) = 0 if and only if x = y. Moreover, by the

subadditivity of the norm, for all x, y, z ∈ X,

ρ(x, z) = ‖x− z‖ = ‖(x− y) + (y − z)‖ ≤ ‖x− y‖+ ‖y − z‖ = ρ(x, y) + ρ(y, z) .

Therefore, the triangle inequality is satisfied, and hence ρ is a metric on X called the norm metric.

For all x0 ∈ X, the metric open ball of radius r about is precisely the set B(r, x0) defined in

(1.13), and U ⊂ X is open in the metric topology if and only if for each x0 in U , there is some

r > 0 such that B(r, x0) ⊂ U . Decreasing r if need be, we may assume that r = 2k for some k ∈ Z,

and then since B(2k, x0) = x0 +B(2k, 0), the metric topology is precisely the topology determined

by the neighborhood base W = {B(2k, 0) : k ∈ Z}.
A normed vector space is therefore not only a Hausdorff topological vector space, but the norm

topology is a metric topology, and it has a countable neighborhood base.
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1.21 DEFINITION (Equivalent norms). Let ‖ · ‖0 and ‖ · ‖1 be two norms on a vector space X.

These norms are equivalent in case for some constant 0 < C <∞,

C‖x‖1 ≤ ‖x‖0 ≤
1

C
‖x‖1 for all x ∈ X . (1.14)

‖ · ‖0 and ‖ · ‖1 be two norms on a vector space X such that (1.14) is satisfied. For j = 0, 1, let

Bj(r, 0) be the centered open ball of radius r for the norm ‖ · ‖j . Then is equivalent to

B1(Cr, 0) ⊂ B0(r, 0) ⊂ B1(r/C, 0) (1.15)

for all r > 0. Therefore, two norms generate the same topology if and only if they are equivalent.

1.22 THEOREM. Let (X, ‖ · ‖) be a normed vector space, and let Y be a finite dimensional

subspace of X. Then Y is closed. Moreover, all norms on any finite dimensional vector space are

equivalent to one another.

Proof. Let V be a finite dimensional vector space over C, and let {x1, . . . , xn} be any basis for it.

Define a linear map T : Cn → V by T (α1, . . . , αn) =
n∑
j=1

αjxj , which is a vector space isomorphism.

Let ||| · ||| denote the Euclidean norm on Cn; i.e.,

|||(α1, . . . , αn)||| =

 n∑
j=1

|αj |2
1/2

.

Define the norm ‖ · ‖0 on V by ‖x‖0 = |||T−1x|||; it is left to the reader to check that this is indeed

a norm. Now let ‖ · ‖1 be any other norm on V . Since

(α1, . . . , αn) 7→

∥∥∥∥∥∥
n∑
j=1

αjxj

∥∥∥∥∥∥
1

= ‖T (α1, . . . , αn)‖1

is continuous, this function has a maximum and a minimum on the unit sphere in Cn; i.e., the set

of vectors (α1, . . . , αn) such that
∑n

j=1 |αj |2 = 1, since this set is compact in the Euclidean norm

topology. The minimum is non-zero since {x1, . . . , xn} is linearly independent and ‖x‖1 = 0 only for

x = 0. Hence there exists 0 < C <∞ such that for all (α1, . . . , αn) satisfying |||(α1, . . . , αn)||| = 1,

C ≤ ‖T ((α1, . . . , αn)‖1 ≤
1

C
.

However, writing x = T (α1, . . . , αn), and recalling that ‖x‖0 = |||T−1x||| this is the same as

C‖x‖0 ≤ ‖x‖1 ≤
1

C
‖x‖0 ,

whenever ‖x‖0 = 1, and by the homogeneity of the norms, this last condition can be dropped.

Hence the arbitrary norm ‖ · ‖1 is equivalent to the norm ‖ · ‖0 induced by the Euclidean norm and

any choice of basis.

Now let Y be any finite dimensional subspace of a normed vector space (X, ‖ · ‖), and let ‖ · ‖0
be the norm on Y induced by the Euclidean norm and any choice {x1, . . . , xn} of a basis for Y , as
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in the first part of the proof. Let {ym}m∈N be any sequence in Y that converges to some x ∈ X.

We must show that x ∈ Y . Expand each ym in the basis {x1, . . . , xn}:

ym =
n∑
j=1

αj,mxj .

By the equivalence proved above, since {ym}m∈N is a Cauchy sequence in Y with respect to the

norm ‖ · ‖, {(α1,n, . . . , αn,m)}m∈N is a Cauchy sequence in Cn, and by the completeness of Cn, this

Cauchy sequence has the limit (α1, . . . , αn) ∈ Cn. By the equivalence once more, this implies that

lim
m→∞

ym = lim
m→∞

n∑
j=1

αj,mxj =

n∑
j=1

αjxj := x ,

showing that x ∈ Y .

1.23 THEOREM. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ). Let BX(r, 0) and BY (r, 0) denote the open balls

of radius r > 0 in X and Y respectively. Let T be a linear transformation from X to Y . Then T

is continuous if and only if

‖T‖ := sup{ ‖Tx‖Y : x ∈ BX(1, 0) } <∞ . (1.16)

Proof. Suppose that T is continuous. Then T−1(BY (1, 0)) contains BX(r, 0) for some r > 0, and

hence for all x ∈ BX(1, 0), ‖Tx‖Y ≤ 1/r. Hence ‖T‖ ≤ 1/r. Conversely, suppose that (1.16) is

valid. Then for all x1, x2 ∈ X and all λ > ‖x1 − x2‖X ,

‖Tx1 − Tx2‖Y = λ‖T ((x2 − x2)/λ)‖Y ≤ λ‖T‖ .

It follows that

‖Tx1 − Tx2‖Y ≤ ‖T‖‖x1 − x2‖X .

Thus, T is not only continuous, it is Lipschitz continuous.

On account of this theorem, the term bounded linear transformation is often used as a synonym

for the term continuous linear transformation when referring to transformations from one normed

vector space to another. The bounded transformations themselves are often called operators.

1.24 DEFINITION. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be normed vector spaces. Let B(X,Y )

denote the vector space of continuous (bounded) linear transformations from X to Y . The function

T 7→ ‖T‖, with ‖T‖ defined by (1.16) is called the operator norm on B(X,Y ).

The terminology in the previous definition is appropriate; it is easy to see, and left to the reader,

that the operator norm, is indeed a norm on the vector space B(X,Y )

We shall be forced to consider topologies O in vector spaces X that are not topologies coming

from norms on account a simple corollary of the following result of Riesz.

1.25 LEMMA (Riesz’s Lemma). Let (X, ‖·‖) be a normed vector space. Let Y be a proper, closed

subspace of X. Then for all α ∈ (0, 1), there exists u ∈ X, ‖u‖ = 1, such that

α ≤ inf{‖u− y‖ : y ∈ Y } .
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Proof. Since Y is proper, there exists some x0 /∈ Y , and then since Y is closed, there exists some

r > 0 such that B(r, x0)∩Y = ∅. Therefore, d := inf{‖u− y‖ : y ∈ Y } ≥ r > 0. By the definition

of d, for all α ∈ (0, 1), there exists y0 ∈ Y such that ‖x0 − y0‖ < d/α. Then, by the definition of d,

α‖x0 − y0‖ ≤ d ≤ ‖x0 − y0 − y‖ for all y ∈ Y .

That is,

α ≤
∥∥∥∥ x0 − y0
‖x0 − y0‖

− y

‖x0 − y0‖

∥∥∥∥ for all y ∈ Y .

Let u = ‖x0−y0‖−1(x0−y0). Notice that ‖x0−y0‖−1y ranges over all of Y as y ranges over Y .

1.26 COROLLARY. In every infinite dimensional normed vector space (X, ‖ · ‖), there exists an

infinite sequence {un}n∈N such that ‖un‖ = 1 for all n, but from which no convergence subsequence

can be extracted. In other words, the closed unit ball in an infinite dimensional normed vector space

is never sequentially complete.

Proof. The sequence {un}n∈N is constructed inductively as follows: Pick some u1 ∈ X with ‖u1‖ =

1. For the induction, suppose that we have found vectors {u1, . . . , un} such that ‖uj‖ = 1 for

each j and if j 6= k, then ‖uj − uk‖ ≥ 1/2. Let Vn := span({u1, . . . , un}) which is is closed by

Theorem 1.22 proper since X is infinite dimensional. By Riesz’s Lemma, we may choose un+1 with

‖un+1‖ = 1 snd ‖un+1 − y‖ ≥ 1/2 for all y ∈ Y . In particular we have ‖uj − uj‖ ≥ 1/2 for all

1 ≤ j < k ≤ n+ 1.

1.4 Topologies induced by sets of linear transformations

The usual way of constructing seminorms on X is to consider linear transformations T from X to a

normed vector space (Y, ‖·‖). (A particularly important example is that in which (Y, ‖·‖) = (C, |·|).)
Then evidently the function pT on X defined by

pT (x) = ‖Tx‖ (1.17)

is a seminorm, and is a norm if and only if T is injective.

Let (Y, ‖ · ‖) be a normed space and let T be any set of linear maps from X → Y . For each

T ∈ T , let pT be defined as in (1.17). Let Õ be any translation invariant topology on X. Then T

is continuous from (X, Õ) to Y equipped with the norm topology if and only if for each x0 ∈ X,

and each ε > 0, there is a set U ∈ Õ such that for all x− xo ∈ U ,

‖Tx− Tx0‖ = ‖T (x− x0)‖ < ε .

Since pT (x− x0) = ‖T (x− x0)‖, for all k ∈ Z,

x ∈ x0 + 2−kBpT ⇐⇒ x− x0 ∈ 2−kBpT ⇐⇒ ‖Tx− Tx0‖ < 2−k .

Hence T is continuous on (X, Õ) if and only if if Õ contains each of the sets x0 + 2kBpT , k ∈ Z,

x0 ∈ X. This proves:
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1.27 THEOREM. Let T be any set of linear transformations from a vector space X to a normed

space (Y, ‖ · ‖). Let P be the set of seminorms on X given by P = {pT : T ∈ T } where

pT (x) = ‖T (x)‖. Let O be the topology generated by P, as in Definition 1.18. Then (X,O) is a

topological vector space such that each T ∈ T is continuous from (X,O) to (Y, ‖ · ‖), and O is the

weakest topology of any sort on X such that each T ∈ T is continuous from (X,O) to (Y, ‖ · ‖).

In what follows, the case in which (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are two normed vector spaces, and

T = B(X,Y ), the set of all bounded linear transformations from X to Y , is especially important.

In many cases we shall be able to show that norm closed, norm bounded, convex sets K ⊂ X are

compact in the weak topology on X generated by T . (To say that K is norm bounded, or simply

bounded, means that there exists C < ∞ such that ‖x‖ ≤ C for all x ∈ K.) This will be more

useful to us if we have not only compactness, but sequential compactness, which is the same thing

if this weak topology, or at least the relative weak topology on K is metrizable.

The following theorem gives a useful sufficient condition for weak topology generated by T to

be metrizable on bounded subsets of X.

1.28 THEOREM. (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are two normed vector spaces, and let T be any

subset of B(X,Y ). Suppose that T0 is a countable subset of T that is dense in T in the operator

norm. Then restricted to bounded subsets the weak topologies generated by T0 and T coincide.

Proof. Let K be a bounded subset of X. Let O0 and O be the relative weak topologies generated

by T0 and T respectively. Evidently, O0 ⊂ O.

Let C < ∞ be such that ‖x‖X ≤ C for all x ∈ K. For any T ∈ T and any ε > 0, there is

T0 ∈ T0 such that ‖T − T0‖ < ε, and then for all x ∈ K,

|‖Tx‖Y − ‖T0x‖Y | ≤ ‖(T − T0)x‖Y ≤ ‖T − T0‖‖x‖ ≤ εC .

It follows that ‖T0x‖Y ≤ ‖Tx‖Y + εC for all x ∈ K. Hence for all k ∈ N, if we choose ε (and then

T0) so that ε < 2−k−1/C, 2−k−1BpT0 ∩K ⊂ 2−kBpT ∩K. By Lemma 1.9, O ⊂ O0.

2 Banach spaces

2.1 Banach spaces of bounded linear transformations

2.1 DEFINITION (Banach space). A Banach space is a normed vector space (X, ‖ · ‖) that is

complete in its norm topology.

2.2 THEOREM. Let (X, ‖ · ‖X) be a normed space, and let (Y, ‖ · ‖Y ) be a Banach space. Then

B(X,Y ), equipped with the operator norm is Banach space.

Proof. Let {Tn}n∈N be a Cauchy sequence in B(X,Y ). Then for each x ∈ X, {Tnx}n∈N is a

Cauchy sequence in Y . Since Y is complete, there exists y ∈ Y such that y = limn→∞ Tnx. Define

a function T mapping X to Y by Tx = y.

To see that T is linear, fix x1, x2 ∈ X and α1, α2 ∈ C. Then

T (α1x1 + α2x2) = lim
n→∞

Tn(α1x1 + α2x2) = α1 lim
n→∞

Tnx1 + α2 lim
n→∞

Tnx2 = α1Tnx1 + α2Tx2 .
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To see that T is bounded, first observe that since |‖Tn‖ − ‖Tm‖| ≤ ‖Tn − Tm‖, {‖Tn‖}n∈N is a

Cauchy sequence in R, and hence a := limn→∞ ‖Tn‖ exists.

Now consider any x ∈ X with ‖x‖X < 1. By the triangle inequality,

‖Tx‖Y ≤ ‖Tnx‖Y + ‖(T − Tn)x‖Y ≤ ‖Tn‖+ ‖(T − Tn)x‖Y , (2.1)

and since limn→∞ ‖(T − Tn)x‖Y = 0, ‖Tx‖Y ≤ limn→∞ ‖Tn‖. This shows that T is bounded,

and in fact, ‖T‖ ≤ limn→∞ ‖Tn‖. Now the same reasoning that led to (2.1) shows that ‖Tnx‖ ≤
‖T‖+ ‖(T − Tn)x‖Y for all x ∈ X with ‖x‖X < 1. Therefore,

lim
n→∞

‖Tnx‖ ≤ ‖T‖ . (2.2)

Altogether, ‖T‖ = limn→∞ ‖Tn‖. Now considering the Cauchy sequence {Tn−T}n∈N, we conclude

that limn→∞ ‖Tn−T‖ = 0. which shows that T is the operator norm limit of the Cauchy sequence

{Tn}n∈N.

An important spacial case of Theorem 2.2 is that in which (Y, ‖ ·‖) = (C, | · |), which is of course

the simplest example of a Banach space.

2.3 DEFINITION (Dual space). Let (X, ‖ · ‖) be a normed space. Let X∗ denote the set of

bounded linear transformations from (X, ‖ · ‖) to (C, | · |) and let ‖ · ‖∗ denote the operator norm on

X∗. Then (X∗, ‖ · ‖∗) is a Banach space called the dual space to (X, ‖ · ‖). The norm ‖ · ‖∗ is called

the dual norm. Elements of X∗ are referred to as bounded linear functionals on X. Applying the

same construction to (X∗, ‖ · ‖∗) we obtain the second dual (X∗∗, ‖ · ‖∗∗), which is also a Banach

space.

There is a natural embedding of X into X∗∗: For each x ∈ X, define the function φx on X∗ by

φx(L) = L(x) for all L ∈ X∗ . (2.3)

It is evident that φx is a linear functional from X∗ to C, and for all x ∈ X, L ∈ X∗, |φx(L)| =

|L(x)| ≤ ‖L‖∗‖x‖. Therefore φx is bounded, so that φx ∈ X∗∗, and in fact,

‖φx‖∗∗ ≤ ‖x‖ .

Thus, the map x 7→ φx is a contractive linear map from (X, ‖ · ‖) into (X∗∗, ‖ · ‖∗∗), which

is a Banach space. The results of the next section show that this contractive map is actually an

isometry, so that every normed vector spaces is isometrically embedded into a Banach space in a

canonical manner. We may identify the closure of the image as the completion of (X, ‖ · ‖).

2.2 The real Hahn-Banach extension theorem

In this section we consider real vector spaces X. Every complex vector space X is also a vector

space over R, only now, for each non-zero x ∈ X, x and ix are linearly independent, and in the next

section we shall extend the results of this section to complex vector spaces through this connection.
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2.4 LEMMA (Helly’s Lemma). Let (X, ‖·‖) be a real normed vector space, and let V be a subspace

of X. Let x ∈ X, x /∈ V , and let W = span({x}∪V ), so that V is a subspace of W of co-dimension

1. Let L be a linear functional on V such that

|L(y)| ≤ C‖y‖ for all y ∈ V . (2.4)

Then there exists an extension L̃ of L as a linear functional to W such that with this same C,

|L(w)| ≤ C‖w‖ for all w ∈W .

Proof. Let y1, y2 ∈ V . By the triangle inequality,

L(y1)− L(y2) = L(y1 − y2) ≤ C‖y1 − y2‖ = C‖(y1 + x)− (y2 + x)‖ ≤ C‖y1 + x‖+ C‖y2 + x‖ .

Rearranging terms, to bring all y2 terms to the left, and all y1 terms to the right,

−L(y2)− C‖y2 + x‖ ≤ −L(y1) + C‖y1 + x‖ .

Since y1, y2 are arbitrary,

a := sup
y∈V
{ −L(y)− C‖y + x‖} ≤ inf

y∈V
{ −L(y) + C‖y + x‖} =: b .

Pick any real number λ̃ satisfying λ̃ ∈ [a, b]. Define L̃(y + tx) = L(y) + tλ̃. Then for t > 0,

L̃(y + tx) = t[L(y/t) + λ̃] ≤ t[L(y/t)− L(y/t) + C‖y/t+ x‖] = C‖y + tx‖ ,

while for t < 0,

L̃(y + tx) = t[L(y/t) + λ̃] ≥ t[L(y/t)− L(y/t)− C‖y/t+ x‖] = |t|C‖y/t+ x|| = C‖y + tx‖ ,

Hence, for all t ∈ R, and all y ∈ V , |L̃(y + tx)| ≤ C‖y + tx‖.

2.5 THEOREM (The Real Hahn-Banach Extension Theorem ). Let (X, ‖ · ‖) be a real normed

vector space, and let Y be a subspace of X. Let L be a linear functional on Y such that for some

C <∞, |L(y)| ≤ C‖y‖ for all y ∈ Y . Then there exists a linear functional L̃ on all of X such that

for this same C, |L̃(x)| ≤ C‖x|| for all x ∈ X and such that L̃y = Ly for all Y ∈ Y .

Proof. Consider the set of pairs (V,LV ) of subspaces V of X and bounded linear functionals LV
on V partially ordered so that (V,LV ) ≺ (W,LW ) in case V ⊂ W and LW

∣∣
V

= LV . By Zorn’s

Lemma, since every linearly ordered chain containing (Y, L) has a maximal element, the set of all

such pairs has a maximal element (V,LV ). By Lemma 2.4, Y = X, or else (Y, L) would not be

maximal.

2.3 The complex Hahn-Banach extension theorem

In this section (X, ‖ · ‖) will denote a complex normed vector space, and (XR, ‖ · ‖) will denote the

real normed vector space obtained by regarding X as a real vector space, and equipping it with

the same norm. As usual, X∗ denotes the set of bounded (complex) linear functionals on (X, ‖ · ‖),
and X∗R denotes the set of bounded (real) linear functional on (XR, ‖ · ‖).
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2.6 LEMMA (Murray’s Lemma). Let (X, ‖ · ‖) be a complex normed vector space. Let p be a real

linear functional on X. That is p : X → R and for all x1, x2 ∈ X and t1, t2 ∈ R, p(t1x1 + t2x2) =

t1p(x1) + t2p(x2). Define the functional Lp on X by

Lp(x) = p(x)− ip(ix) . (2.5)

Then Lp is complex linear on X, and for all x ∈ X, p(x) = <(Lp(x)), and ‖Lp‖ = ‖p‖. That is,

sup{|Lp(x)| : ‖x‖ < 1 } = sup{|p(x)| : ‖x‖ < 1 } . (2.6)

Finally, if p = < ◦ L, L ∈ X∗, then L = Lp. Thus the map L 7→ < ◦ L is a real linear isometric

isomorphism between X∗ and X∗R.

Proof. Evidently, for all x1, x2 ∈ X and t1, t2 ∈ R, Lp(t1x1 + t2x2) = t1Lpp(x1) + t2Lp(x2). There-

fore, it suffices to show that for all x, y ∈ X, Lp(x + iy) = Lp(x) + iLp(y), and this is a simple

calculation. The fact that p(x) = <(Lp(x)) is evident. It follows that |p(x)| ≤ |Lp(x)| ≤ ‖Lp‖‖x‖
for all x ∈ X, and therefore that ‖p‖ ≤ ‖Lp‖. Conversely, for all x ∈ X, there is some θ ∈ [0, 2π)

such that eiθLp(x) > 0, and then

|Lp(x)| = eiθLp(x) = Lp(e
iθx) = <(Lp(e

iθx)) = p(eiθx) ≤ ‖p‖‖eiθx‖ = ‖p‖‖x‖ .

This shows that ‖Lp‖ ≤ ‖p‖. altogether, we have ‖Lp‖ = ‖p‖. Finally, if p = < ◦ L, then L(x) and

Lp(x) are complex linear functionals that have the same real parts for all x ∈ X. Hence L = Lp.

2.7 THEOREM (The Complex Hahn-Banach Extension Theorem). Let (X, ‖ · ‖) be a complex

normed vector space, and let Y be a subspace of X. Let L be a linear functional on Y such that

for some C <∞, |L(y)| ≤ C‖y‖ for all y ∈ Y . Then there exists a linear functional L̃ on all of X

such that for this same C, |L̃(x)| ≤ C‖x|| for all x ∈ X and such that L̃y = Ly for all y ∈ Y .

Proof. Define p = < ◦ L. By Lemma 2.6, ‖p‖ = ‖L‖, where the norms are computed on Y . By

Theorem 2.5, there exists a linear functional p̃ on XR such that p̃(y) = p(y) for all y ∈ Y , and such

that ‖p̃‖ = ‖p‖. Then Lp̃ is a complex linear functional on X such that for all y ∈ Y ,

<(Lp̃(y)) = p̃(y) = p(y) = <(L(y)) .

Replacing y by iy, yields equality of the imaginary parts as well. Therefore, Lp̃(y) = L(y) for all

y ∈ Y , and again by Lemma 2.6, ‖Lp̃‖ = ‖p̃‖. Altogether, ‖Lp̃‖ = ‖L‖.

2.8 THEOREM. Let (X, ‖ · ‖) be a non-trivial normed vector space. For all x ∈ X, there exists

Lx ∈ X∗ such that ‖Lx‖ = 1 and Lx(x) = ‖x‖.

Proof. Let x ∈ X, x 6= 0, and let Y be the one-dimensional subspace X spanned by x. The general

element of Y has the form αx, α ∈ C. Define a linear functional L on Y by L(αx) = α‖x‖.
Evidently ‖L‖ = 1 and L(x) = ‖x‖. Let Lx denote the norm-preserving extension of L to all of

X that is provided by the Hahn-Banach Theorem. For x = 0, the claim is true, since by the first

part, unit vectors L in X∗ exist, and any such unit vector will do.

2.9 THEOREM. Let (X, ‖ · ‖) be a normed vector space. For x ∈ X, let φx denote the element

of X∗∗ given by φx(L) = L(x) for all L ∈ X∗. The map x 7→ φx is an isometric imbedding of X

into X∗∗.
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Proof. We have already observed that x 7→ φx is linear and that ‖φx‖ ≤ ‖x‖. Let Lx be an element

of X∗ such that ‖Lx‖∗ = 1 and Lx(x) = ‖x‖. Then φx(Lx) = Lx(x) = ‖x‖, and hence ‖φx‖ ≥ ‖x‖.
Altogether, we have the isometry ‖φx‖ = ‖x‖.

2.10 DEFINITION. A Banach space (X, ‖ · ‖) is reflexive in case every element of X∗∗ is of the

form φx for some x ∈ X where φx is the element of X∗∗ given by φx(L) = L(x) for all L ∈ X∗. In

other words, X is reflexive if the natural isometry that embeds X in X∗∗ is surjective.

Theorem 2.9 provides a natural way to complete a normed vector space that is not a Banach

space: Identify it with its image in the Banach space X∗∗ under the isometric map x 7→ φx. The

closure of the image in X∗∗ is a Banach space in which the isometric image of X is dense.

A number of applications of the Hahn-Banach Theorem will be made it what follows, but a

simple alternative proof of Lemma 1.25, Riesz’s Lemma, is worthwhile to give at this point. Recall

that Lemma 1.25 says that if (X, ‖·‖) be a normed vector space, and Y be a proper, closed subspace

of X, then for all α ∈ (0, 1), there exists u ∈ X, ‖u‖ = 1, such that

α ≤ inf{‖u− y‖ : y ∈ Y } .

Second Proof of Lemma 1.25. Let x ∈ X, x /∈ Y . Define L on span(Y ∪ {x}) by L(y + αx) = α

for all y ∈ Y , α ∈ C. Then ker(L) = Y which is closed in span(Y ∪ {x}), and hence is bounded on

span(Y ∪{x}). By the Hahn-Banach Theorem, there is a non-zero element L̃ of X∗ that is zero on

all of Y .

By the definition of ‖L̃‖∗, for all α ∈ (0, 1), there is a unit vector u ∈ X such that L̃(u) is real

and L̃(u) ≥ α‖L̃‖∗. Since for all y ∈ Y ,

α‖L̃‖∗ ≤ L̃(u) = L̃(u− y) ≤ ‖L̃‖∗‖u− y‖ ,

inf{‖u− y‖ : y ∈ Y } ≥ α.

2.4 The weak and weak-∗ topologies

2.11 DEFINITION. Let (X, ‖ · ‖) be a normed space, and let (X∗, ‖ · ‖∗) be its dual. For x ∈ X,

let φx ∈ X∗∗ be given by φx(L) = L(x) for all L ∈ X∗. The weak topology on X is the weakest

topology on X under which each L ∈ X∗ is continuous. The weak-∗ topology on X∗ is the weakest

topology on X under which each of the functionals φx, x ∈ X, is continuous

By Theorem 1.27, the weak topology makes X a topological vectors space, and the weak-∗
topology makes X∗ a topological vector space. By Theorem 1.28, if X∗ is separable, then the

relative weak topology is metrizable on bounded subsets of X, and if X is separable, then the

relative weak-∗ topology is metrizable on bounded subsets of X∗

One reason it is often useful to consider the weak-∗ topology on X∗ is on account of the following

Theorem:

2.12 THEOREM (Alaoglu’s Theorem). Let (X, ‖ · ‖) be a normed space, and let B denote the

closed unit ball in X∗. Then B is compact in the weak-∗ topology.
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Proof. For each x ∈ X, define Dx = {z ∈ C |z| ≤ ‖x‖} which is a compact subset of C. By

Tychonov’s Theorem, D :=
∏
x∈X Dx, which consists of all complex values functions φ on X such

that for each x ∈ X, φ(x) inDx, is compact in the product topology. Let L denote the subset of D

consisting of linear functions. It is easy to that  L is a closed subset of D . (The same argument that

we applied in the Hilbert space setting can be made here.) Hence L is compact, and the elements of

L are precisely the elements of B. Moreover, the product topology on D is precisely the weakest

topology that makes all of the evaluation maps φ 7→ φ(x) continuous, but this is precisely the

weak-∗ topology on B.

If (X, ‖ · ‖) is reflexive, then the closed unit ball in X is weakly compact since we may then

identify the weak topology on X with the weak-∗ topology on X∗∗. But when (X, ‖ · ‖) is reflexive,

the unit ball in X need not be weakly compact.

2.5 The uniform boundedness principle and related theorems

2.13 THEOREM. Let (X, ‖ · ‖X) be a Banach space, and let (Y, ‖ · ‖Y ) be a normed space. Let

T ⊂ B(X,Y ). For each T in T , let ‖T‖ denote the operator norm of T . Suppose that for all

x ∈ X,

sup
T∈T
{‖Tx‖Y } <∞ . (2.7)

Then

sup
T∈T
{‖T‖} <∞ . (2.8)

Proof. For n ∈ N, define En =
⋂
T∈T

{x ∈ X : ‖Tx‖Y ≤ n} = {x ∈ X : sup
T∈T
{‖Tx‖Y } ≤ n}. Since

for each T , {x ∈ X : ‖Tx‖Y ≤ n} is closed, En is closed, and by (2.7),
⋃
n∈N

En = X. By Baire’s

Theorem, for some n, the interior of En is non-empty.. Hence for some n ∈ N, r > 0 and x0 ∈ X,

B(r, x0) ⊂ En. That is, if ‖x‖X ≤ 1, and 0 ≤ s < r, x0 + sx ∈ En. Therefore, for all T ∈ T ,

s‖Tx‖Y = ‖T (sx− x0) + Tx0‖Y ≤ n+ ‖Tx0‖ .

Define C = supT∈T {‖Tx0‖Y } which is finite by (2.7). Then ‖Tx‖Y ≤ (n + C)/s for all x with

‖x‖X ≤ 1, and this means that ‖T‖ ≤ (n+ C)/r, showing that supT∈T {‖T‖} ≤ (n+ C)/r.

2.14 THEOREM (Open Mapping Theorem). Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces.

Let T ∈ B(X,Y ) be surjective. Then T is an open mapping. In particular, when T ∈ B(X,Y ) is

injective as well as surjective, its inverse belongs to B(Y,X).

Proof. Let BX(r, 0) denote the open unit ball of radius r > 0 in X, and let BY (r, 0) denote the

open unit ball of radius r > 0 in Y , Since {BX(r, 0) r > 0} is a neighborhood base at the origin

for the topology on X, and {BY (r, 0) r > 0} is a neighborhood base at the origin for the topology

on Y , if for each r > 0, there is an s > 0 so that BY (s, 0) ⊂ T (BX(r, 0)), then T maps open sets

in X to open sets in Y . moreover, by homogeneity, to show that T has this property, it suffices to

show that there is some s > 0 so that BY (s, 0) ⊂ T (BX(1, 0)).
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Since X = ∪n∈NBX(n, 0), and since T is surjective,

Y =
⋃
n∈N

T (BX(n, 0)) =
⋃
n∈N

nT (BX(1, 0)) .

By Baire’s Theorem, for some n, the interior of nT (BX(1, 0)) is non-empty. Since these sets are a

homeomorphic to one another, each of them has a non-empty interior, and hence T (BX(1, 0)) 6= ∅.
Thus, for some y0 ∈ Y , and some t > 0, BY (t, y0) ⊂ T (BX(1, 0)). In other words, of ‖y−y0‖Y <

t, then y − y0 ∈ T (BX(1, 0)). In particular, y0 ∈ T (BX(1, 0)) Then since T (BX(1, 0)) is convex,

1

2
y =

1

2
(y − y0) +

1

2
y0 ∈ T (BX(1, 0)) .

This shows that BY (t/2, 0) ⊂ T (BX(1, 0)).

What we have proved so far shows that for all y ∈ BY (t/2, 0) and all ε > 0, there is an

x ∈ BX(1, 0) such that ‖y − Tx‖Y < ε. By homogeneity, we have that for all r > 0,

for all ε > 0 , ‖y‖Y < r ⇒ there exists x ∈ BX(2r/t, 0) such that ‖y − Tx‖Y < ε . (2.9)

Pick y ∈ BY (t/4, 0), and then pick x1 ∈ BX(1/2, 0) so that ‖y − Tx1‖Y ≤ t/8. Now apply

(2.9) with y − Tx1 in place of y, and choose x2 ∈ BX(1/4, 0) such that ‖(y1 − Tx1) − Tx2‖ ≤
t/16. Proceeding inductively, we construct an infinite sequence {xn}n∈N such that for all n, xn ∈
BX(2−n−1, 0) and ‖y − T (

∑n
j=1 xj)‖Y ≤ t2−n−2. Note the

∑∞
j=1 xj coverages to an element x ∈

BX(1, 0), and then ‖y− Tx‖Y = limn→∞ ‖y− T (
∑n

j=1 xj)‖Y = 0. Thus y ∈ T (BX(1, 0)) whenever

y ∈ BY (t/4, 0) which means that BY (t/4, 0) ⊂ T (BX(1, 0)).

The final statement is clear since T−1 is continuous if and only if whenever U is open in X,

(T−1)−1(U) = T (U) is open in Y .

2.15 DEFINITION. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be normed vector spaces, and let T be a

linear transformation from X to Y , not necessarily bounded. The graph of T , Γ(T ), is the subset

of X × Y given by

Γ(T ) = {(x, Tx) : x ∈ X} .

The norm ‖(x, y)‖ := ‖x‖X +‖y‖Y makes X×Y into a normed vector space with the obvious rules

for vector addition and scalar multiplication. A linear operator T from X to Y is said to be closed

in case Γ(T ) is norm closed in X × Y .

Beware the terminology, which is standard: while a map T is open if and only if the image

under T of every open set is open, to say that T is closed does not mean that the image under T

of every closed set is closed.

2.16 THEOREM (Closed Graph Theorem). Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces. Let

T be a linear transformation from X to Y . If T is closed, then T ∈ B(X,Y ).

Proof. It is easy to see that X×Y is a Banach space in the norm ‖(x, y)‖ = ‖x‖+ ‖y‖. Then since

Γ(T ) is a norm closed subspace ofX×Y , it is a Banach space in this norm. The map (x, Tx) 7→ x is a

linear bijection of X with Γ(X), and since ‖x‖X ≤ ‖x‖X+‖Tx‖Y , it is bounded. (Its operator norm

is no greater than 1.) By the Open Mapping Theorem, its inverse, which is the map x 7→ (x, Tx) is

bounded. That is, there is a finite constant C such that ‖x‖X + ‖Tx‖Y ≤ C‖x‖X , which certainly

implies that the operator norm of T is no greater than C.



EAC March 6, 2017 19

The following example of the use of the Closed Graph Theorem is due to Terry Tao.

2.17 THEOREM. Let (X,O) be a Hausdorff topological vector space, and let ‖ · ‖1 and ‖ · ‖2 be

two norms on X such that these norm topologies are both at least as strong as O, and such that X

is complete in both norms. Then ‖ · ‖1 and ‖ · ‖2 are equivalent norms.

Proof. To say that ‖ · ‖1 and ‖ · ‖2 are equivalent norms means that the identity transformation I is

bounded from (X, ‖·‖1) to (X, ‖·‖2) and vice-versa. Note that Γ(I) = {(x, x) : x ∈ X}. Let (x, y)

belong to the closure of Γ(I). Then there is a sequence {xn}n∈N such that limn→∞ ‖xn − x‖1 = 0

and limn→∞ ‖xn − y‖2 = 0. But then every open set U ∈ O that contains x contains xn for all but

finitely n, and every open set V ∈ O that contains y contains xn for all but finitely n. If U ∩V = ∅,
this is impossible, and since O is Hausdorff, it must be that x = y. Hence (x, y) ∈ Γ(I). This Γ(I)

is closed, and hence I is bounded from (X, ‖ · ‖1) to (X, ‖ · ‖2). By symmetry, it is also bounded

from (X, ‖ · ‖2) to (X, ‖ · ‖1).

The utility of the closed graph theorem lies in the fact that if we seek to prove continuity of

a linear transformation T between two normed space (X, ‖ · ‖X) and (Y, ‖ · ‖Y ), we must show

that whenever limn→∞ xn = x in X, then limn→∞ Txn = Tx in Y . When the normed spaces are

Banach spaces, the closed graph theorem reduces our burden to show that if limn→∞ xn = x in X

and limn→∞ Txn = y, then y = Tx. That is we may assume that both sequences converge and need

only identify the limit, as in the proof of Theorem 2.17. The do not need to prove that {Txn}n∈N

is convergent.
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