Midterm Solutions, Math 502, Spring 2017

Eric A. Carlen¹ Rutgers University

March 9, 2017

Instructions Solve 3 of the 5 problems. Circle the number of the problems you want to be graded here:

 $1 \quad 2 \quad 3 \quad 4 \quad 5$

1. Let X be a Banach space. A set $A \subset X$ is *weakly bounded* in case for all $L \in X^*$, $\{|L(x)| : x \in A\}$ is a bounded subset of $[0, \infty)$. A is *norm bounded* in case $\{||x|| : x \in A\}$ is a bounded subset of $[0, \infty)$. Show that A is weakly bounded if and only if it is norm bounded.

SOLUTION If $||x|| \leq C$ for all $x \in A$, then $|L(x)| \leq ||L|| ||x|| \leq C ||L||$ for all $L \in X^*$ and $x \in A$. Therefore, strong boundedness implies weak boundedness.

On the other hand, for each $x \in A$, let ϕ_x denote the evaluation functional $L \mapsto L(x)$ on L^* . Then if A is weakly bounded, for all $L \in X^*$,

$$\sup_{x \in A} |\{|\phi_x(L)|\} = \sup_{x \in A} |\{|L(x)|\} < \infty$$

By the Uniform Boundedness Principle, $\sup_{x \in A} |\{\|\phi_x\|\} < \infty$, but, as a consequence of the Hahn-Banach Theorem, for each x, $\|\phi_x\| = \|x\|$. Thus, weak boundedness implies strong boundedness.

2. Let \mathcal{H} be a Hilbert space, and $T \in \mathscr{B}(\mathcal{H})$. Let B be the norm closed unit ball in \mathcal{H} .

(a) Show that T(B) is weakly closed in \mathcal{H} .

(b) Let S be a linear transformation from \mathcal{H} to \mathcal{H} . Show that $\{Sf_n\}_{n\in\mathbb{N}}$ converges in norm whenever $\{f_n\}_{n\in\mathbb{N}}$ converges weakly iff and only if S(B) is compact in \mathcal{H} for the norm topology.

SOLUTION (a) Since *B* is norm closed and convex, as a consequence of the Separation Theorem, *B* is weakly closed. Since *B* is also bounded, by Alaoglu's theorem, *B* is weakly compact. Since bounded operators are continuous from the weak to the weak topology, the image of every weakly compact set under *T* is weakly compact, and then (since the weak topology is Hausdorff) weakly closed. In particular, T(B) is weakly closed. (Which trivially implies that *B* is also strongly closed.)

For (b), assume first that $\{Sf_n\}_{n\in\mathbb{N}}$ converges in norm whenever $\{f_n\}_{n\in\mathbb{N}}$ converges weakly. Since S(B) is closed in the norm topology by part (a), and since the norm topology is metric,

 $^{^{1}}$ © 2017 by the author.

it suffices to show that from every sequence $\{g_n\}_{n\in\mathbb{N}} \in S(B)$, we can select a norm convergent subsequence. Since each $g_n \in S(B)$, there exists a sequence $\{f_n\}_{n\in\mathbb{N}}$ such that $Sf_n = g_n$ for all n. As a consequence of Alaoglu's Theorem, we can select a subsequence $\{f_{n_k}\}_{k\in\mathbb{N}}$ that converges weakly to some $f \in B$. But then $\{g_n\}_{n\in\mathbb{N}} = \{Sf_n\}_{n\in\mathbb{N}}$ converges in norm to Sf.

Conversely, suppose that S(B) is compact in \mathcal{H} for the norm topology. Let $\{f_n\}_{n\in\mathbb{N}}$ be any weakly convergent sequence in \mathcal{H} with weak limit f. As a consequence of the Uniform Boundedness Principle, $\sup_{n\in\mathbb{N}}\{\|f_n\|\} < \infty$, and rescaling the sequence, we may assume without loss of generality that $\{f_n\}_{n\in\mathbb{N}} \subset B$, and hence $\{Sf_n\}_{n\in\mathbb{N}} \subset S(B)$. Since S(B) is sequentially compact (the norm topology being metric), we may select a subsequence $\{Sf_{n_k}\}_{k\in\mathbb{N}}$ that converges strongly to some $h \in \mathcal{H}$. Then for all $g \in \mathcal{H}$,

$$\langle g,h\rangle = \lim_{k \to \infty} \langle g,Sf_{n_k}\rangle = \lim_{k \to \infty} \langle S^*g,f_{n_k}\rangle = \langle S^*g,f\rangle = \langle g,Sf\rangle$$
.

Since g is arbitrary, h = Sf.

3. Let X be a Banach space. Recall that X is *reflexive* in case the isometric embedding $x \mapsto \phi_x$ of X into X^{**} , where $\phi_x(L) = L(x)$ for all $L \in X^*$, is surjective. Show that X is reflexive if and only if X^* is reflexive.

SOLUTION Let $f \in X^{***}$. The embedding $x \mapsto \phi_x$ is continuous (even isometric), and hence $x \mapsto f(\phi_x)$ is the composition of continuous functions, so that for some $L_f \in X^*$, for all $x \in X$,

$$f(\phi_x) = L_f(x) = \phi_x(L_f) . \tag{(*)}$$

Suppose that X is reflexive. Then every $\phi \in X^{**}$ has the form ϕ_x for some $x \in X$, and then (*) becomes

$$f(\phi) = \phi(L_f) \tag{**}$$

Since f is an arbitrary element of X^{***} , this shows that every element of X^{***} is an evaluation functional on X^{**} . Hence X^* is reflexive.

For the converse, suppose that X^* is reflexive. If X is not reflexive, the image of X under the isometric embedding $x \mapsto \phi_x$ is a proper closed subspace V of X^{**} , and then by the Hahn-Banach Theorem, there exists a non-zero $f \in X^{***}$ that vanishes on V. Since X^* is reflexive, there exists $L_f \in X^*$ such that (**) is true for all $\phi \in X^{**}$. But then

$$0 = f(\phi_x) = L_f(\phi_x) = L_f(x)$$

for all x, so that $L_f = 0$, and hence f = 0. This contradiction shows that V cannot be a proper subspace of X^{**} .

4. (a) Let m denote Lebesgue measure on $[0, 2\pi]$. Show that if E is any Borel set in $[0, 2\pi]$ then

$$\lim_{j \to \infty} \int_E \cos(jx) dm = \lim_{j \to \infty} \int_E \sin(jx) dm = 0 .$$

(b) Consider any increasing sequence $\{n_k\}$ of the natural numbers. Define E to be the set of all x for which

$$\lim_{k \to \infty} \sin(n_k x) \quad \text{exists} \quad$$

Use part (a) and the identity $2\sin^2 x = 1 - \cos(2x)$ to how that m(E) = 0.

SOLUTION For $n \in \mathbb{N}$, define $u_{2n} = (2\pi)^{-1/2} \cos(nx)$ and $u_{2n-1} = (2\pi)^{-1/2} \sin(nx)$. Then $\{u_n\}_{n\in\mathbb{N}}$ is orthonormal, and hence for any $f \in \mathcal{H} = L^2([0, 2\pi], \mathscr{B}, m)$, $\lim_{n\to\infty} \int_{[0, 2\pi]} fu_m dm = 0$ In particular, for all Borel $E \subset [0, 2\pi]$,

$$\lim_{n \to \infty} \int_E u_m \mathrm{d}m = 0$$

which takes care of (a). Now let E be the set on which $\lim_{k\to\infty} \sin(n_k x)$ exists, and define

$$f(x) = \begin{cases} \lim_{k \to \infty} \sin(n_k x) & x \in E \\ 0 & x \notin E \end{cases}.$$

By the identity $2\sin^2 x = 1 - \cos(2x)$, part (a), and the Lebesgue Dominated Convergence Theorem with dominating function 1,

$$2\int_{[0,2\pi]} f^2 dm = m(E) - \lim_{k \to \infty} \int_E \cos(2n_k x) dx = m(E) .$$

Hence if $D := \{x \in E : f(x) \ge 2^{-1/2}\}$, and m(E) > 0, then m(D) > 0. But then by part (a), and the Lebesgue Dominated Convergence Theorem with dominating function 1,

$$2^{-1/2}m(D) \le \lim_{k \to \infty} \int_D \sin(2n_k x) \mathrm{d}x = 0$$

which is a contradiction. Hence, m(E) > 0 is impossible.

5. Let \mathscr{J} be an operator norm-closed two sided ideal in $\mathscr{B}(\mathcal{H})$, \mathcal{H} separable. (That is, \mathscr{J} is a closed subalgebra of $\mathscr{B}(\mathcal{H})$ and for all $S \in \mathscr{J}$ and all $T \in \mathscr{B}(\mathcal{H})$, $ST, TS \in \mathscr{J}(\mathcal{H})$. Show that if \mathscr{J} contains a single non-compact operator S, then $\mathscr{J} = \mathscr{B}(\mathcal{H})$. (*Hint:* We know that if S is not compact, there exists an infinite dimensional closed subspace in its range.)

SOLUTION We will show that $I \in \mathscr{J}$, where I is the identity. Then for all $T \in \mathscr{B}(\mathcal{H})$, $T = TI \in \mathscr{J}$. Let S be a non-compact element of \mathscr{J} . Let V be a closed infinite dimensional subspaces in its range. Let P be the orthogonal projection onto \mathcal{K} , Then $PS \in \mathscr{J}$. Let $\mathcal{L} = (\ker(PS))^{\perp}$, which is a closed subspace of \mathcal{H} . Let Q be the orthogonal projection onto \mathcal{L} . Then $R := PS|_{\mathcal{L}}$ is a bounded injective map from \mathcal{L} onto \mathcal{K}

Now let $\{u_n\}_{n\in\mathbb{N}}$ be an orthonormal basis of \mathcal{H} , let $\{v_n\}_{n\in\mathbb{N}}$ be an orthonormal basis of \mathcal{K} , and let $\{w_n\}_{n\in\mathbb{N}}$ be an orthonormal basis of \mathcal{L} . Define

$$V := \sum_{n \in \mathbb{N}} |u_n \rangle \langle v_n|$$
 and $W := \sum_{n \in \mathbb{N}} |w_n \rangle \langle u_n|$.

Then V is an isometry from \mathcal{K} onto \mathcal{H} , and W is an isometry from \mathcal{H} onto \mathcal{L} . Then VPSW is a bounded injective map from \mathcal{H} onto \mathcal{H} , and hence by the Open Mapping Theorem, it has a bounded inverse. It also belongs to \mathcal{J} since $S \in \mathcal{J}$. Thus \mathcal{J} contains an element with a bounded inverse, and thus $I \in \mathcal{J}$.

If \mathcal{H} is not separable, the set of all operators on $\mathscr{B}(H)$ whose ranges have a countable dimension is a proper two sided ideal that contains non-compact operators. It is of little interest compared to the ideal of all compact operators.