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0.1 Markov kernels

0.1 DEFINITION. Let (Ω,M, µ) be a measure space. A Markov kernel on (Ω,M, µ) is a non-

negative function K on (Ω× Ω,M⊗M) such that for each x ∈ Ω,∫
Ω
K(x, y)dµ(y) = 1 . (0.1)

That is, for each x, K(x, y)dµ(y) is a probability measure on (Ω,M). A Markov kernel K is doubly

stochastic in case both ∫
Ω
K(x, y)dµ(y) = 1 and

∫
Ω
K(x, y)dµ(x) = 1 (0.2)

for all x, y. A Markov kernel K is symmetric in case K(x, y) = K(y, x) for all x, y ∈ Ω. Every

symmetric Markov kernel is doubly stochastic.

In probability theory, Markov kernels arise in the description of Markov jump process with

a state space Ω. When a jump from state x occurs, the probability of jumping from x into a

measurable set E ⊂ Ω is given by
∫
EK(x, y)dµ(y). Markov kernels play a prominent role in

analysis as well; the results in the rest of this section give a first indication of why this is the case.

0.2 THEOREM. Let K be a doubly stochastic Markov kernel on (Ω,M, µ). For each p ∈ [1,∞],

define a linear operator PK on Lp(Ω,M, µ) ∩ L∞(Ω,M, µ) by

PKf(x) =

∫
Ω
K(x, y)f(y)dµ(y) = 1 . (0.3)

Then ‖PKf‖p ≤ ‖f‖p, so that PK extends by continuity to a contraction on Lp(Ω,M, µ).

Proof. Suppose f is bounded and measurable. Then for each x, f is integrable with respect to

K(x, y)dµ(y), and∣∣∣∣∫
Ω
K(x, y)f(y)dµ(y)

∣∣∣∣ ≤ ∫
Ω
K(x, y)|f(y)|dµ(y) ≤ ‖f(y)‖∞

∫
Ω
K(x, y)dµ(y) = ‖f(y)‖∞ .

Now suppose that for p ∈ [1,∞), f ∈ Lp(Ω,M, µ). Since t 7→ |t|p is convex on R, Jensen’s inequality

implies ∣∣∣∣∫
Ω
K(x, y)f(y)dµ(y)

∣∣∣∣p ≤ (∫
Ω
K(x, y)|f(y)|dµ(y)

)p
≤
∫

Ω
K(x, y)|f(y)|pdy .
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Then by the Fubini-Toninelli Theorem,∫
Ω

∣∣∣∣∫
Ω
K(x, y)f(y)dµ(y)

∣∣∣∣p dµ(x) ≤
∫

Ω

(∫
Ω
K(x, y)dµ(x)

)
|f(y)|pdµ(y) = ‖f‖pp .

Let K be a symmetric Markov kernel on (Ω,M, µ), and let PK also denote the corresponding

contraction H := L2(Ω,M, µ). It is easy to see that PK is self-adjoint.

Convolution operators provide an important class of examples. Let ρ be a non-negative Borel

function on R such that
∫

R ρdx = 1. In this case, we say that ρ is a probability density on (R,B,dx).

Given such a function ρ, define K(x, y) = ρ(x − y). Then it is evident that K(x, y) is a doubly

stochastic Markov kernel. Therefore, for each p ∈ [1,∞] we may define an operator Tρ acting on

Lp(R,B, dx) by

Tρf(x) =

∫
R
ρ(x− y)f(y)dy =: ρ ∗ f(x) . (0.4)

Then ρ ∗ f is called the convolution of ρ and f , and Tρ is the operator of convolution by ρ. As an

immediate consequence of Theorem 0.2 we have that for any probability density ρ, and p ∈ [1,∞]

and and f ∈ Lp(R,B,dx),

‖ρ ∗ f‖p ≤ ‖f‖p . (0.5)

If ρ is any probability density, then for all λ > 0,

ρλ(x) = λ−1ρ(x/λ) (0.6)

is also a probability density. If ρ has support in a compact interval [−L,L], ρλ has support in a the

interval [−λL, λL]. Let f be a continuous compactly supported function on R. Then for all ε > 0,

there is a δ > 0 so that |x− y| < δ ⇒ |f(x)− f(y)| < ε. Then for λ such that λL < δ,

|ρλ ∗ f(x)− f(x)| =
∣∣∣∣∫

R
ρλ(x− y)(f(y)− f(x))dy

∣∣∣∣ ≤ ∫
R
ρλ(x− y)|f(y)− f(x)|dy ≤ ε

since ρλ(x − y) = 0 if |y − x| ≥ δ. Also note that if f is supported in the interval [−R,R], then

ρλ ∗ f is supported in the interval [−λL − R, λL + R] since ρλ(y − x)f(y) = 0 if |x| > R + λL. It

follows that |ρλ ∗ f − f | is bounded by ε and is supported in [−R − 1, R + 1] for all λ such that

λL < min{δ, 1}. For such λ, ‖ρλf − f‖p ≤ ε(2R+ 2)1/p. We have proved an important special case

of the following theorem:

0.3 THEOREM. For any probability density ρ on R, let ρλ be defined for λ > 0 by (0.6). Then

for all p ∈ [1,∞), and all f ∈ Lp(R,M, dx),

lim
λto0
‖ρλ ∗ f − f‖p = 0 .

Proof. Define ηL =
∫

[−L,L]c ρ(x)dx, and note that limL→∞ ηL = 0. For all L large enough that

ηL < 1, Define

ρ(L)(x) := (1− ηL)−11[−L,L](x)ρ(x) and r(L)(x) := η−1
L 1[−L,L]c(x)ρ(x) .
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Then evidently both ρ(L) and r(L) are probability densities ρ = (1 − ηL)ρ(L) + ηLr
(L) is a convex

combination of them. Hence for all f ∈ Lp(R,M, dx), Likewise, for all λ > 0, ρλ = (1− ηL)ρ
(L)
λ +

ηLr
(L)
λ , and then for all p ∈ [1,∞), and all f ∈ Lp(R,M, dx),

‖ρλ ∗ f − f‖p = ‖(1− ηL)(ρ
(L)
λ ∗ f − f) + ηL(r

(L)
λ ∗ f − f)‖p

≤ (1− ηL)‖ρ(L)
λ ∗ f − f‖p + ηL‖r(L)

λ ∗ f − f‖p
≤ (1− ηL)‖ρ(L)

λ ∗ f − f‖p + ηL2‖f‖p ,

where we used (0.5) in the last step,

Now fix ε > 0, and choose L sufficiently large that ηL2‖f‖p < ε/3. Since Cc(R) is dense

in Lp(R,B,dx), we may choose g ∈ Cc(R) such that ‖f − g‖p < ε/3. Then using Minkowski’s

inequality and (0.5),

‖ρ(L)
λ ∗ f − f‖p ≤ ‖ρ(L)

λ ∗ (f − g)‖p + ‖ρ(L)
λ ∗ g − g‖p + ‖f − g‖p ≤ ‖ρ(L)

λ ∗ g − g‖p + 2ε/3 .

Altogether, we have that

‖ρλ ∗ f − f‖p ≤ ‖ρ
(L)
λ ∗ g − g‖p + ε ,

and since ρL has support in [−L,L] and since g ∈ Cc(R), by what we have explained just before

the statement of the theorem, limλ→0 ‖ρ
(L)
λ ∗ g − g‖p = 0. Since ε > 0 is arbitrary, the proof is

complete.

0.2 The basic facts about convolution

Throughout this section, Lp denotes Lp(R,B, dx). Let f, g ∈ L1 ∩ L∞. Then the integral

g ∗ f(x) :=

∫
R
g(x− y)f(y)dy (0.7)

converges for all x, and we have the point-wise inequality

|g ∗ f(x)| ≤ |g| ∗ |f |(x) (0.8)

If g 6= 0, so that ‖g‖1 6= 0, ρ := ‖g‖−1
1 |g| is a probability density. Therefore, by (0.5), for all

p ∈ [1,∞],

‖g ∗ f‖p ≤ ‖|g| ∗ |f |‖p = ‖g‖1‖ρ ∗ |f |‖p ≤ ‖g‖1‖f‖p . (0.9)

In particular, g ∗ f ∈ L1 ∩ L∞. Thus, convolution is a product on L1 ∩ L∞, making it an algebra.

By the Fubini-Toninelli Theorem, and the change of variables w = y − x,∫
R
f ∗ gdx =

∫
R

(∫
R
g(x− y)f(y)dx

)
dy =

(∫
R
g(w)dw

)(∫
R
f(y)dy

)
, (0.10)

so that when f and g are non-negative, ‖f ∗ g‖1 = ‖f‖1‖g‖1.

Making the change of variables y = x− w,

g ∗ f(x) =

∫
R
g(x− y)f(y)dy =

∫
R
f(x− w)g(w)dw = f ∗ g(x) (0.11)
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Thus the convolution product on L1 ∩ L∞ is commutative. It is also associative: Let f, g, h ∈
L1 ∩ L∞. We have already seen that f ∗ g ∈ L1 ∩ L∞. Then making the change of variables

y = u− w, and applying the Fubini-Toninelli Theorem,

(f ∗ g) ∗ h(x) =

∫
R

(∫
R
f(x− w − y)g(y)dy

)
h(w)dw

=

∫
R
f(x− u)

(∫
R
g(u− w)h(w)dw

)
du = f ∗ (g ∗ h)(x) . (0.12)

There is an important complement to (0.9): Since L1∩L∞ ⊂ Lp for all p ∈ [1,∞], for p ∈ (1,∞),

g ∈ Lp/(p−1) and f ∈ Lp, and then by Hölder’s inequality, for all x,

|g ∗ f(x)| ≤
∫

R
|g(x− y)||f(y)|dy ≤ ‖g‖p/(p−1)‖f‖p .

Therefore,

‖g ∗ f‖∞ ≤ ‖g‖p/(p−1)‖f‖p . (0.13)

For all λ > 0 and all f ∈ L1, define

fλ(x) = λ−1f(x/λ) (0.14)

which reduces to (0.6) when f is a probability density. A simple change of variables shows that

‖fλ‖1 = ‖f‖1 for all λ > 0. A simple computation shows that for all f, g ∈ L1,

gλ ∗ fλ(x) = λ−2

∫
R
g(x/λ− y/λ)f(y/λ)dy = λ−1f ∗ g(x/λ) = (g ∗ f)λ(x) . (0.15)

Another simple computation shows that for f ∈ L1 ∩L∞, p ∈ [1,∞) and λ > 0, with fλ defined in

(0.14),

‖fλ‖p = λ1/p−1‖f‖p . (0.16)

Now suppose that for some p, q, r ∈ [1,∞), there is a finite constant C such that for all f, g ∈
L1 ∩ L∞,

‖g ∗ f‖r ≤ C‖g‖q‖f‖p . (0.17)

Then replacing f and g by fλ and gλ, and using (0.15),

‖g ∗ f‖r = λ1−1/r‖(g ∗ f)λ‖r = λ1−1/r‖gλ ∗ fλ‖r ≤ C‖gλ‖q‖fλ‖p = λ1/q+1/p−1/r−1C‖g‖q‖f‖p .

Since the left side is independent of λ, the right had side must be independent of λ also, since if

1/q+1/p−1/r−1 > 0, taking λ→ 0, we would conclude that ‖g ∗f‖r = 0, and thus that g ∗f = 0

almost everywhere. If 1/q + 1/p − 1/r − 1 < 0, taking λ → ∞ brings us to the same conclusion.

But for non-negative f, g, ‖g ∗ f‖1 = ‖g‖1‖f‖1, and so g ∗ f = 0 almost everywhere implies that

f = g = 0.

Therefore, there is no finite constant C for which the inequality (0.17) can hold in general unless

1

p
+

1

q
=

1

r
+ 1 . (0.18)

It turns out that when (0.18) is satisfied, then (0.17) is also valid in general, with a constant C no

greater than 1. This is Young’s inequality for convolution. We have already seen several important



5

cases, namely the case in which r = p, q = 1, which is (0.9) and the case r = ∞,q = p/(p − 1),

which is (0.13).

There are several ways to prove the remaining cases of Young’s inequality with the constant

C = 1. The inequality actually holds in these cases with an optimal constant C that is strictly less

than 1, We shall prove this sharp form of Young’s inequality, which is due to Beckner and Brascamo

and Lieb later in the Chapter. The main tool used in the proof that we give is the heat semigroup,

our next topic. For now, we close this section with the following lemma that summarizes our main

conclusions.

0.4 LEMMA. The convolution product on L1 ∩ L∞ is commutative and associative, and the

inequalities (0.9) and (0.13) for all f, g ∈ L1 ∩ L∞. Moreover, since L1 ∩ L∞ is dense in Lr for

all 1 < r <∞, the map (g, f) 7→ g ∗ f extends by continuity to a map from L×Lp to Lp for which

(0.9) is valid, and to a map from Lp/(p−1) × Lp to L∞ for which (0.13) is valid.

0.3 The Heat semigroup

The Gaussian probability density γ(x) associated to the normal distribution of probability theory

is given by

γ(x) =
1√
2π
e−x

2/2 .

For t > 0, define γt(x) = (2πt)−1/2e−x
2/2t. This is the Gaussian probability density with mean

0 and variance t. That is,∫
R
γt(x)dx = 1 ,

∫
R
xγt(x)dx = 0 and

∫
R
x2γt(x)dx = t . (0.19)

Note that the definition γt(x) = t−1/2γ(x/
√
t) duffers slightly from (0.6) due to the square roots

on the right. In the present context, this scaling will turn out to be more natural. The following

lemma explains why.

0.5 LEMMA. For all s, t > 0,

γt ∗ γs = γt+s . (0.20)

Proof. Note that γt(x− y)γs(y) =
1

2π
√
st
e−[(x−y)2/t+y2/s]/2, and

(x− y)2

t
+
y2

s
=
t+ s

st

(
y − s

t+ s
x

)2

+
1

t+ s
x2 .

∫
R
γt(x− y)γs(y)dy = γs+t(x)

√
s+ t

2πst

∫
R
e−(t+s)(y−sx/(t+s))2/(2st)dy = γs+t(x) .

0.6 DEFINITION (Heat semigroup). For each t > 0, define an operator Pt on L1 ∩ L∞ by

Ptf = γt ∗ f . (0.21)

For t > 0, define P0 = I. Then the family of operators {Pt}t≥0 constitute the heat semigroup. The

name will be justified shortly.
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0.7 THEOREM. Let {Pt}t≥0 be the heat semigroup on L1 ∩ L∞. Then for all s, t ≥ 0,

PsPt = Ps+t . (0.22)

For all p ∈ [1,∞], Pt extends by continuity to an element of B(Lp), and, for all f ∈ Lp, ‖Ptf‖p ≤
‖f‖p. Moreover, for all p ∈ [1,∞) and all f ∈ Lp, limt→0 ‖Ptf − f‖p = 0. Finally, for all

r > p ∈ [1,∞], and all t > 0, Pt extends by continuity to an element of B(Lp, Lr) with operator

norm

‖Pt‖p→r ≤
(

1

q

) r−p
2qr

(2πt)
− r−p

2qr . (0.23)

Proof. By Lemma 0.4 and the definition of the heat semigroup, and then Lemma 0.5, for all

f ∈ L1 ∩ L∞,

PsPtf = γs ∗ (γt ∗ f) = (γs ∗ γt) ∗ f = γs+t ∗ f = Ps+tf .

This proves (0.22). The inequality ‖Ptf‖p ≤ ‖f‖p is a direct consequence of (0.5) for f ∈ L1 ∩L∞,

and then evidently Pt extends by continuity to an element of B(Lp). The statement concerning

limt→0 ‖Ptf − f‖p is a direct consequence of Theorem 0.3. finally, by (0.13),

‖Ptf‖∞ ≤ ‖γt‖p/(p−1)‖f‖p =

(
1

q

)1/2q

(2πt)−1/2q‖f‖p ,

which proves (0.23) for r =∞. For r ∈ (p,∞) |Ptf(x)|r ≤ |Ptf(x)|p‖Ptf‖r−p∞ , and hence

‖Ptf‖rr ≤ ‖Ptf‖pp‖Ptf‖r−p∞ ≤ ‖f‖pp‖Ptf‖r−p∞ ≤
(

1

q

) r−p
2q

(2πt)
r−p
2q ‖f‖rp ,

which proves (0.23) in general.

The case p = 2 will be particularly important in what follows. Since for all f, g ∈ L2, t > 0,

〈f, Ptg〉L2 =

∫
R
fPtg(x)dx =

∫
R

∫
R
f(x)γt(x− y)g(y)dxdy = 〈Ptf, g〉L2 ,

it follows that Pt is self-adjoint on L2.

Theorem 0.7 says that for each p ∈ [1,∞] and each f ∈ Lp, Ptf converges to f in the Lp norm as

t→ 0. as t→ 0. Later in this chapter we will have the means to easily generate examples showing

that for all t, ε > 0 and all 1 ≤ p <∞, there exists h ∈ Lp, ‖h‖p = 1 and ‖Pth− h‖p > 1− ε. This

brings us to the notion of the strong operator topology

0.8 DEFINITION (The strong operator topology). Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach

spaces. For each x ∈ X, define the map ψx on B(X,Y ) by ψx(T ) = ‖Tx‖Y
The strong operator topology on B(X,Y ) is the weakest topology on B(X,Y ) making each of

the map ψx continuous.

By what we have seen in our study of topological vector spaces, this topology makes B(X,Y )

a topological vector space, an a neighborhood base at the origin is given by the sets

Vx1,...,xn,ε =

n⋂
j=1

{T ∈ B(X,Y ) : ‖Txj‖ < ε}

for ε > 0 and finite sets {x1, . . . , xn} ⊂ X.
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0.9 DEFINITION (Strongly continuous semigroup). Let (X, ‖ ·‖) be a Banach space. A strongly

continuous semigroup on X is a set {Pf : t ≥ 0} ⊂ B(X) such that P0 = I, t 7→ Pt is continuous

with respect to the strong operator topology on B(X), and such that for all s, t ≥ 0, PtPs = Ps+t.

0.10 EXAMPLE (The heat semigroup on Lp). For each 1 ≤ p ≤ ∞, t > 0, let Pt ∈ B(Lp)

be defined as in (0.23) and extended by continuity. Then by Theorem 0.7, t 7→ Pt is a strongly

continuous semigroup on Lp. It is called the heat semigroup on Lp.

The heat semigroup gets its name from the fact that, considered as a function of t > 0 and

x ∈ R, γt(x) satisfies the heat equation:

∂

∂t
γt(x) =

1

2

∂2

∂x2
γt(x) . (0.24)

Indeed, a calculation gives ∂
∂tγt(x) = x2

2t2
γt(x), which, as a function of x, belongs to Lq for all

1 ≤ q ≤ 1, Moreover, for all 0 < s, t, s 6= t,

γt(x)− γs(x) =

∫ t

s

x2

2r2
γr(x)dr = (t− s) x

2

2t2
γt(x) +

∫ t

s

[
x2

2r2
γr(x)− x2

2t2
γt(x)

]
dr

Simple estimates now yield, for all 1 ≤ q ≤ ∞,∥∥γt − γs − (t− s) ∂∂tγt
∥∥
q

= o(|t− s|) . (0.25)

Using (0.25) for q = 1, we have that for all f ∈ Lp if we define f(t, x) = Ptf(x),

lim
s→t

f(s, x)− f(t, x)

s− t
=

∂

∂t
γt ∗ f(x)

in the Lp norm, making use once more of (0.5). We may also use (0.25) with q = p/(p−1) to prove

point-wise convergence of this limit. This shows that t 7→ f(t, x) is differentiable for t > 0, and
∂

∂t
f(t, x) =

∂

∂t
γt ∗ f(x). The argument can be repeated to show that for all m ∈ N,

∂m

∂tm
f(t, x) =

∂m

∂tm
γt ∗ f .

A similar argument shows that x 7→ f(t, x) is infinitely differentiable everywhere on R, and in fact

∂m

∂xm
f(t, x) =

∂m

∂xm
γt ∗ f .

Together with (0.24) we have proved:

0.11 THEOREM. Let 1 ≤ p < ∞, f ∈ Lp, and define f(t, x) = Ptf(x). Then f(·, ·) is C∞ on

(0,∞)× R, satisfies the heat equation

∂

∂t
f(t, x) =

1

2

∂2

∂x2
f(t, x) (0.26)

on (0,∞)× R, and limt→0 ‖f(t, ·)− f‖p = 0.

We will come back to the question of uniqueness later in the chapter when we we have more

tools to deal with this question.
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0.12 LEMMA. For all t > 0, and 1 ≤ p ≤ 2, Pt is injective on Lp.

Proof. Suppose that f ∈ L2 and Ptf = 0. Then Pt/2f ∈ L2, and by by Theorem 0.7, and the fact

that each Pt/2 is self-adjoint,

0 = 〈f, Ptf〉 = 〈f, Pt/2Pt/2f〉 = 〈Pt/2f, Pt/2f〉 = ‖Pt/2f‖22 .

Hence Pt/2f = 0 as well. A simple induction shows that Pt/2nf = 0 for all n. Then by Theorem 0.7,

0 = lim
n→∞

‖Pt/2nf − f‖ = ‖f‖ ,

so that f = 0.

Now suppose that f ∈ Lp, 1 ≤ p < 2 and Ptf = 0. By the semigroup property, for all 0 < s < t

Ptf = Pt−s(Psf), and by Then by Theorem 0.7, Psf ∈ L2. Therefore, by what was proved just

above, Psf = 0 for all 0 < s < t, and so f = lims→0 Psf .

0.4 Hermite polynomials

Let ν be the normalized Gaussian probability measure that has the density γ(x) := (2π)−1/2e−|x|
2/2

with respect to Lebesgue measure dx. Let H = L2(R,B, ν). In this section, ‖ · ‖ denotes the norm

on H, and 〈·, ·〉 denotes the inner product on H. Also, in this section, Lp denotes Lp(R,B, ν).

0.13 DEFINITION (Hermite polynomials). For each n ∈ N, let Vn = span({1, x, . . . , xn}). Let

Pn be the orthogonal projection in H onto Vn. For n ∈ N, define the polynomial pn(x) = xn, and

define po(x) = 1. Note that ‖Hn‖ 6= 0. For all n ≥ 0, the nth Hermite polynomial Hn is given by

Hn := pn − Pn−1pn (0.27)

and the nth normalized Hermite polynomial hn is defined by

hn := ‖Hn‖−1Hn . (0.28)

By construction Hn is orthogonal to Hk for all k ≤ n, and hence 〈Hn, Hm〉 = 0 for all n 6= m.

It follows that {hn}n≥0 is an orthonormal sequence in H.

0.14 THEOREM. For 1 ≤ p <∞, the set P of polynomial functions is dense in Lp(R,B, ν).

Proof. For y ∈ R, define the function gy = eyx/2.∫
R
|gy|pγ(x)dx =

1√
2π

∫
R
exyp/2−x

2/2 =
ey

2p2/8

√
2π

∫
R
e−(x−yp/2)/2 = ey

2p2/8 .

Thus gy ∈ Lp(R,B, ν). For n ∈ N, let pn(x) = xn and let p0 := 1. Evidently, for all n ≥ 0, pn ∈

Lp(R,B, ν). We now claim that the point-wise series expansion gy(x) =
∞∑
n=0

1

n!

yn

2n
pn(x) converges

in Lp(R,B, ν). To see this, we compute

‖pn‖pp =

∫
R
|x|npγ(x)dx =

∫ ∞
0

(x2)(np−1)/2γ(x)2xdx =

∫ ∞
0

y(np−1)/2e−ydy = Γ((np+ 1)/2) .
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Stirling’s formula for the Gamma function says that

Γ((np+ 1)/2) ∼
√

2π((np− 1)/2)

(
(np− 1)/2

e

)(np−1)/2

=

√
2π

e

(
np− 1

2e

)np/2
.

Therefore,

‖pn‖p ∼
(

2π

e

)1/p(np− 1

2e

)n/2
.

Since the power series
∞∑
n=0

nn/2

n!
zn has an infinite radius of convergence,

∞∑
n=0

1

n!

|y|n

2n
‖pn‖p <∞.

Therefore, by Minkowski’s inequality, the series expansion gy =
∞∑
n=0

1

n!

yn

2n
pn converges in Lp(R,B, ν).

Suppose that P is not dense in Lp(R,B, ν). Then by the Hahn-Banach Theorem and the Riesz

Representation Theorem, there exists a unit vector h ∈ Lq, q = p/(p − 1), such that
∫

R hfdν = 0

for all f ∈ P. Since gy is the Lp norm limit of a sequence of polynomials,

∫
R
hgydν = 0 for all

y ∈ R. Define h̃ := γ1/qh, and note that

‖h̃‖Lq(dx) = ‖h‖Lq(ν) (0.29)

and also that∫
R
h(x)gy(x)dν =

∫
R
h̃(x)γ1/p(x)gy(x)dx

= (2π)−1/2p

∫
R
h̃(x)e−x

2/2p+xy/2dx = (2π)−1/2pepy
2/8

∫
R
h̃(x)e−(x−py/2))2/2pdx .

Since
1

4
√
πp

∫
R
h̃(x)e−(x−py/2))2/2pdx = P2ph̃(py) where {Pt}t≥0 is the heat semigroup, P2ph̃ = 0,

when q ∈ [1, 2], Lemma 0.12 implies that h̃ = 0. By (0.29), h = 0, which is a contradiction.

Therefore, P is dense in Lp for p ∈ [2,∞).

For p ∈ [1, 2), f ∈ Lp, and ε > 0, pick g ∈ L2 such that ‖g − f‖p < ε/2. Then pick h ∈P such

that ‖g − h‖2 < ε/2. Then since ν is a probability measure,

‖f − h‖p ≤ ‖f − g‖p + ‖g − h‖p ≤ ‖f − g‖p + ‖g − h‖2 ≤ ε

This proves the density of P in Lp for p ∈ [1, 2).

0.15 COROLLARY. The normalized hermite polynomials {hn}n≥0 are an orthonormal basis for

L2(R,B,dν).

0.5 The Mehler semigroup

Let ν be the normalized Gaussian probability measure that has the density γ(x) := (2π)−1/2e−|x|
2/2

with respect to Lebesgue measure dx. Let H = L2(R,B, ν). A function f on R is polynomially

bounded in case there exists a constant C and an n ∈ N such that |f(x)| ≤ C(1 + |x|n) for all x.

Clearly any polynomial bounded function belongs to Lp(R,B, ν) for all p ∈ [1,∞).
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For λ ∈ (0, 1), define a linear transformation Sλ on the continuous polynomially bounded

functions on R by

Sλf(x) =

∫
R
f(λx+

√
1− λ2y)γ(y)dy . (0.30)

Define z = λx+
√

1− λ2y so that

(
x

z

)
=

[
1 0

λ
√

1− λ2

](
x

y

)
. Computing the Jacobian

of the transformation, we find dxdy = (1− λ2)−1/2dxdz. Also,

x2 + y2 =
λ2

1− λ2

(
z2 + x2 − 2

λ
zx

)
+ x2 + z2 ,

Hence

γ(x)γ(y) = exp

[
− λ2

2(1− λ2)

(
z2 + x2 − 2

λ
zx

)]
γ(x)γ(z) .

and for g ∈ H,

∫
R
g(x)Sλ(x)γ(x)dx =

∫
R

∫
R
g(x)Kλ(x, z)f(z)γ(x)γ(z)dzdx where

Kλ(x, z) =
1√

1− λ2
exp

[
− λ2

2(1− λ2)

(
z2 + x2 − 2

λ
zx

)]
. (0.31)

Therefore, we can write (0.30) in the alternate form

Sλf(x) =

∫
R
Kλ(x, z)f(z)γ(z)dz . (0.32)

Note thatKλ(x, z)γ(z) =
1√
2π

1√
1− λ2

exp

[
− 1

2(1− λ2)
|z − λx|2

]
= γ1−λ2(z − λx). By (0.19),

(??) and symmetry, ∫
R
Kλ(x, z)γ(z)dz =

∫
R
γ(x)Kλ(x, z)dx = 1 . (0.33)

This shows that Kλ(x, y) is a symmetric (and therefore doubly stochastic) Markov kernel on

(R,B,dν). Since Sλ is the operators associated to Kλ, Theorem 0.2 immediately yields:

0.16 LEMMA. For all p ∈ [1,∞], all continuous polynomaily bounded functions f , and all

λ in(0, 1),

‖Sλf‖p ≤ ‖f‖p . (0.34)

Combining this with the density of P in Lp for p ∈ [1,∞), we have that for each λ ∈ (0, 1), Sλ
extends by continuity to a bounded linear operator of norm one on Lp. We denote the extension

also by Sλ.

0.17 THEOREM. For each λ ∈ (0, 1), the Hermite basis {hn}n≥0 of H is a complete orthonormal

set of eigenvectors for Sλ considered as an operator on H: For each λ ∈ (0, 1) and each n > 0

Sλhn = λnhn . (0.35)
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Proof. Let pn(x) := xn. By the definition (0.30),

Sλpn(x) =

n∑
m=0

xn−m(1− λ2)m/2λn−m
(
n

m

)(∫
R
ymγ(y)dy

)

=
n∑

m=0 , m even

[
(1− λ2)m/2λn−m

(
n

m

)
(m− 1)!!

]
pn−m(x) , (0.36)

where we have used the fact that
∫

R y
mγ(y)dy = (m − 1)!! = (m − 1)(m − 3) · · · 1 for m even and

is zero for m odd. The m = 0 term in the sum is λnxn, and all other terms are multiples of lower

powers of x. Therefore,

Sλpn(x) = λnxn + lower order . (0.37)

That is, for each n ∈ N, Sλpn is a polynomial of degree n at most. This shows that for each k ∈ N,

the subspace Vk of H spanned by polynomials of degree k or less is invariant under Sλ, and this is

the crucial point upon which the proof rests.

Then since Hn(x) = pn(x) + lower order, and since SλVn−1 ⊂ Vn−1,

SλHn = Sλpn + lower order = λnpn + lower order = λnHn + lower order . (0.38)

Since {h0, . . . , hn} spans Vn, SλHn =
n∑

m=0

〈hm, SλHn〉hm =
n∑

m=0

〈Sλhm, Hn〉, using the fact that

Sλ is self-adjoint. Then since Sλhm ∈ Vm, for m < n, 〈Sλhm, Hn〉 = 0. Therefore, SλHn is a

multiple of Hn, and the lower order terms on the right hand side of (0.38) must all be zero.

0.18 LEMMA. For all λ, µ ∈ (0, 1), p ∈ [1,∞),

SµSλ = Sλµ , (0.39)

holds as an identity in B(Lp), and for all f ∈ Lp,

lim
λ→1
‖Sλf − f‖p = 0 . (0.40)

Proof. It is not hard to prove (0.39) directly from the definition, but now that we have an orthonor-

mal basis for H consisting of eigenvectors, things are much easier. For every f ∈ H, consider the

expansion f =
∑∞

n=1〈hn, f〉hn. Then

Sλf =
∞∑
n=0

〈hn, f〉Sλhn =
∞∑
n=0

〈hn, f〉λnhn .

Therefore SµSλf =

∞∑
n=0

〈hn, f〉(µλ)nhn = Sµλf Since L2 ∩ Lp is dense in Lp for all p ∈ [1,∞), this

proves (0.39).

To prove (0.40), we first consider the case in which f is a polynomial. Again let pn(x) := xn,

and combine (0.36) with Minkowski’s inequality to conclude
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‖Sλpn − pn‖p ≤ (1− λn)‖pn‖+
n∑

m=0,m even

(1− λ2)m/2
(
n

m

)
(m− 1)!!‖pn−m‖p

This shows that limλ→1 ‖Sλpn − pn‖p = 0. It follows that for all g ∈P, limλ→1 ‖Sλg − g‖p = 1.

Next fix ε > 0, p ∈ [1,∞), and f ∈ Lp. Let g ∈ P be such that ‖g − f‖p < ε. Then since

‖Sλ‖ = 1,

‖Sλf − f‖p ≤ ‖Sλ(f − g)‖p + ‖Sλg − g‖p + ‖t− g‖ ≤ 2ε+ ‖Sλg − g‖p .

For λ sufficiently close to 1, ‖Sλg − g‖ < ε, and then ‖Sλf − f‖ < 3ε. This proves (0.40).

0.19 LEMMA. For all f ∈P, define

N f(x) =
∂2

∂x2
f(x)− x ∂

∂x
f(x) . (0.41)

Then for all q ∈ [1,∞), λ 7→ Sλf is left differentiable in Lq at λ = 1, and

lim
λ→1

Sλf − f
λ− 1

= −N f , (0.42)

and the same formula is valid point-wise.

Proof. Consider (0.36), and explicitly evaluate the terms for m = 0 and m = 2 in the sum on the

right to obtain

Sλpn(x)− pn(x) = (λn − 1)pn(x) + (1− λ2)λn−2n(n− 1)

2
pn−2(x)

+
n∑

m=4 , m even

[
(1− λ2)m/2λn−m

(
n

m

)
(m− 1)!!

]
pn−m(x) . (0.43)

Now note that

(λn − 1)pn(x) + (1− λ2)λn−2n(n− 1)

2
pn−2(x) = [npn(x)− n(n− 1)pn−2(x)] (λ− 1) +O(λ− 1)2) .

Therefore, for all q ∈ [1,∞)

‖Sλpn − pn − [npn − n(n− 1)pn−2](λ− 1)‖q = O(λ− 1)2 .

This proves that λ 7→ Sλpn is left differentiable in Lq at λ = 1, and that

lim
λ→1

1

λ− 1
(Sλpn − pn) = npn − n(n− 1)pn−2 .

Since subsequences of Lq convergent sequences converge almost everywhere, and since the limiting

function is continuous, the convergence also holds point-wise everywhere. Now note that

npn(x)− n(n− 1)pn−2(x) =
∂2

∂x2
pn(x)− x ∂

∂x
pn(x) .

By linearity, these formulae and conclusions extend to general f ∈P.
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For what follows, it will be convenient to reparameterize the map λ 7→ Sλ.

0.20 DEFINITION (Mehler semigroup). For each t > 0, define the operators Mt ∈ B(Lp) by

Mt = Se−t , where Sλ ∈ B(Lp) is the extension by continuity of the operator on P defined in (0.30).

Define M0 = I. Then for t > 0 and continuous polynomially bounded f ∈ H,

Ptf(x) =

∫
R
f(e−tx+

√
1− e−2ty)γ(y)dy . (0.44)

Since the Hermite basis {hn}n≥0 consists of eigenvectors of Sλ, with Sλhn = λnhn, it follows

that for all t > 0 and all n ≥ 0,

Mthn = e−nthn . (0.45)

Moreover, (0.39) becomes

MsMt = Ms+t (0.46)

so that {Mt}t≥0 has the semigroup property. By (0.40), for all p ∈ [1,∞), and all f ∈ Lp,

limt→0 ‖Mtf − f‖p = 0, and then by the semigroup property, for all t > s ‖Mtf − Msf‖p =

‖Mt−sMsf = Msf‖p, so that t 7→ Mtf is continuous into Lp. Thus, the Mehler semigroup is a

strongly continuous semigroup on Lp for all p ∈ [1,∞).

In this notation, the differentiability formulae of Lemma 0.21 become

lim
h↓0

Mhf − f
h

= −N f (0.47)

for all f ∈ N , which is valid in Lq, q ∈ [1,∞), and point-wise. Since P is invariant under M , this

and the semigroup property yield

lim
h→0

Mt+hf −Mtf

h
= −N f (0.48)

for all t > 0, again in Lq for all q ∈ [1,∞) and point-wise. This proves:

0.21 LEMMA. For all f ∈P, t > 0 and x ∈ R, define f(t, x) = Mtf(x). Then

∂

∂t
f(t, x) =

∂2

∂x2
f(t, x)− x ∂

∂x
f(t, x) . (0.49)

The equation (0.21) is known as the Fokker-Planck equation. It can be written in terms of the

operator N defined in (0.49) as
∂

∂t
f(t, x) = −N f(t, x). The operator N is known as the number

operator for reasons that we now explain.

By (0.48), for all f ∈ P,
d

dt
Mtf

∣∣
t=0

= −N f . Specializing to f = hn and using (0.45), we

obtain

N hn = nhn . (0.50)

That is, the Hermite basis {hn}n≥0 is an orthonormal basis if H consisting of eigenfunctions of N .

0.22 LEMMA. For all f, g ∈P,

〈f,N g〉H =
〈

d
dxf,

d
dxg
〉
H (0.51)

and

〈f, d
dxg〉H =

〈(
x− d

dx

)
f, g
〉
H (0.52)
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Proof. This is simply an integration by parts calculation.

0.23 THEOREM. Define h−1 = 0. Then for all n ≥ 0, and all x ∈ R,

d
dxhn(x) =

√
nhn−1(x) and

(
x− d

dx

)
hn(x) =

√
n+ 1hn+1(x) . (0.53)

Moroever,

xhn(x) =
√
nhn−1(x) +

√
n+ 1hn+1(x) . (0.54)

Proof. Since d
dxhn is a polynomial of degree n− 1, it may be expanded in the Hermite basis using

only {h0, . . . , hm−1}:

d
dxhn =

n−1∑
m=1

〈hm, d
dxhn〉Hhm . (0.55)

By (0.52), for m < n− 1,

〈hm, d
dxhn〉H =

〈(
x− d

dx

)
hm, hn

〉
H = 0

since when m < n − 1,
(
x− d

dx

)
hm is a polynomial of degree at most n − 1, and is therefore

orthogonal to hn. Hence (0.56) simplifies to

d
dxhn = 〈hn−1,

d
dxhn〉Hhn−1 . (0.56)

Combining this with (0.51),

n = 〈hn,N hn〉H =
〈

d
dxhn,

d
dxhn

〉
H =

∣∣〈hn−1,
d

dxhn〉H
∣∣2 . (0.57)

Since the leading coefficient of hn is positive for all n, combining (0.56) and (0.57) yields the first

identity in (0.53).

It now follows from (0.52) that for all m,n ≥ 0,

√
mδn,m−1 = 〈hn, d

dxhm〉H =
〈(
x− d

dx

)
hn, hm

〉
H (0.58)

and then by the completeness of the Hermite polynomials, this means that for all n ≥ 0,(
x− d

dx

)
hn =

√
n+ 1hn+1 .

Combining the identities in (0.53), we obtain (0.54).

0.6 The Fourier Transform

The map U : f 7→ √γf is evidently a unitary transformation from L2(R,B, ν) to L2(R,B,dx). The

image under U of the Hermite polynomial basis {hn}n≥0 for L2(R,B, ν) is evidently an orthonormal

basis for L2(R,B, dx)

0.24 DEFINITION (Hermite functions). For integers n ≥ 0, define gn =
√
γhn. Then gn is the

nth Hermite function and {gn}n≥0 is the Hermite function basis of L2(R,B,dx).
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0.25 LEMMA. For all n ≥ 0,

d

dx
gn(x) =

1

2

(√
ngn−1 −

√
n+ 1gn+1

)
(0.59)

and
x

2
gn(x) =

1

2

(√
ngn−1 +

√
n+ 1gn+1

)
(0.60)

Proof. We compute using (0.53) and (0.54):

d

dx
gn(x) =

√
γ(x)

d

dx
hn(x) +

(
d

dx

√
γ(x)

)
hn(x)

=
√
γ(x)
√
nhn−1(x)− x

2

√
γ(x)hn(x)

=
√
γ(x)
√
nhn−1(x)− 1

2

√
γ(x)

(√
nhn−1(x) +

√
n+ 1hn+1(x)

)
,

and this proves (0.59). Even more simply, (0.60) follows from (0.54).

0.26 DEFINITION (Fourier Transform on L2(R,B, dx)). Define a unitary transformation F on

L2(R,B,dx) by and

Fgn = (−i)ngn (0.61)

for all n ≥ 0. This is the Fourier transform on L2(R,B,dx)

In what follows, we write
x

2
to denote the operator of multiplication by x/2. Then by the

definition of F and Lemma 0.25, for all n ≥ 0

x

2
Fgn = (−i)n 1

2

(√
ngn−1 +

√
n+ 1gn+1

)
=

1

2

(√
n(−i)iFgn−1 −

√
n+ 1(−i)iFgn+1

)
= −iF d

dx
gn .

In other words,

F∗ ◦ x
2
◦ Fgn =

1

i

d

dx
gn and F ◦ 1

i

d

dx
◦ F∗gn =

x

2
gn . (0.62)

This identity is the primary source of the utility of the Fourier transform; it diagonalizes differen-

tiation in the sense that it unitarily identifies differentiation with a multiplication operator. The

formulae (0.62) would be more useful as a pair of identities between operators. To reformulate

them as such, we have to take into account that neither multiplication by x/2 nor differentiation

are defined on all of L2(R,B,dx). Therefore, we introduce a Hilbert space on which they are defined.

0.27 DEFINITION. The Hilbert space H1 consists of the functions f ∈  L2(R,B,dx) having the

Hermite function expansion

f =

∞∑
n=0

αngn

such that
∑∞

n=0(n+ 1)|αn|2 <∞. For f, g in H1, the H1 inner product is defined by

〈f, g〉H1 =
∞∑
n=0

(n+ 1)αnβn ,

where αn = 〈gn, f〉L2 and βn = 〈gn, g〉L2 . We denote the norm on H1 by ‖ · ‖H1 . Observe that H1,

considered as a subspace of L2, is dense in L2.
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Consider any finite linear combination f =
∑m

n=0 αngn for Hermite functions. Then

d

dx
f =

1

2

m∑
n=0

αn
(√
ngn−1 −

√
n+ 1gn+1

)
Now a simple computation shows that

∥∥∥∥ d

dx
f

∥∥∥∥
L2

≤ ‖f‖H1 . Likewise,
∥∥∥x

2
f
∥∥∥
L2
≤ ‖f‖H1 . Therefore,

both
d

dx
and

x

2
belong to B(H1, L

2). Since {(n+ 1)−1/2gn}n≥0 is an orthonormal basis for H1, F
is unitary on H1 as well as on L2. Therefore we have:

0.28 THEOREM. The operators
d

dx
and

x

2
in B(H1, L

2) are related through the Fourier trans-

form F by

F∗ ◦ x
2
◦ F =

1

i

d

dx
and F ◦ 1

i

d

dx
◦ F∗ =

x

2
. (0.63)

The Fourier transform was originally introduced in a rather different way. We now explain the

connection with the original definition. As we have seen, for each t > 0, Mt is a compact operator

on L2(R,B, ν) with the eigenfunction expansion

Mt =
∞∑
n=1

e−tn|hn〉〈hn| . (0.64)

Let D be the closed unit disk in C: D := {z ∈ C : |z| ≤ 1}. For z ∈ D we define

Sz =
∞∑
n=0

zn|hn〉〈hn| . (0.65)

Note that with z = e−t, (0.65) reduces to (0.64). For z ∈ Do, the series in (0.65) converges in the

operator norm, while for z = eiθ ∈ ∂D, the series converges in the strong operator topology and

Seiθ is unitary.

This family of operators can be transplanted from L2(R,B, ν) to L2(R,B,dx) using the unitary

transformation U : f 7→ √γf . For z ∈ D we define Tz = UMzU
∗, which is the same as

Tz =

∞∑
n=1

zn|gn〉〈gn| . (0.66)

As before, the series in (0.66) converges in the operator norm, while for z = eiθ ∈ ∂D, the series

converges in the strong operator topology and Teiθ is unitary. Now note that F = Ti.

0.29 LEMMA. The map z 7→ Tz is continuous from Do into B(L2) with the norm topology on

the range, and it is continuous from D into B(L2) with the strong operator topology on the range.

Proof. Consider z, w ∈ Do, Then for some r ∈ (0, 1), |z|, |w| ≤ r. Since ‖|gb〉〈gn|‖ = 1, Minkowski’s

inequality and the identity

zn − wn = (z − w)

n−1∑
m=0

zn−1−mwm (0.67)
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gives us

‖Tz − Tw‖ ≤
∞∑
n=0

|zn − wn| ≤ |z − w|

( ∞∑
n=0

nrn

)
= |z − w| r

(1− r)2
.

This proves the norm continuity into B(L2).

Next, fix f ∈ L2, and for n ≥ 0, define αn = 〈gn, f〉L2 so that ‖f‖22 =
∑∞

n=0 |αn|2. Fix z ∈ D,

which we may as well assume to belong to ∂D. We must show that for all ε > 0, there exists δ > 0

such that for all w ∈ D with |w − z| < δ, ‖Twf − Tzf‖2 < ε. Pick ε > 0, and then N such that∑∞
n=N+1 |αn|2 < ε/4. Then, using (0.67) once more in the last line

‖Twf − Tzf‖22 ≤
N∑
n=1

|zn − wn||αn|2 +

∞∑
n=N+1

|zn − wn||αn|2

≤ ‖f‖22
N∑
n=1

|zn − wn|+ 2
∞∑

n=N+1

|αn|2

≤ |z − w|‖f‖22
N∑
n=1

(n− 1) +
ε

2
.

Thus we may tale δ = ‖f‖22N(N − 1)ε/4.

For z = λ ∈ (0, 1), the operator Sz has the representation (0.31), in terms of the kernel Kλ(x, y)

defined there, and consequently, for any f, g ∈ L2(R,B,dx) and λ ∈ (0, 1),

〈f, Tλg〉L2(dx) =

∫
R

∫
R
f(x)
√
γ(x)Kλ(x, y)

√
γ(y)g(y)dxdy =

∫
R

∫
R
f(x)Mλ(x, y)g(y)dxdy

where

Mλ(x, y) :=
1√
2π

1√
1− λ2

exp

[
− 1 + λ2

4(1− λ2)

(
y2 + x2

)
+

λ

1− λ2
yx

]
. (0.68)

The from (0.66) we obtain the identity

1√
2π

1√
1− λ2

exp

[
− 1 + λ2

4(1− λ2)

(
y2 + x2

)
+

λ

1− λ2
yx

]
=
∞∑
n=0

λngn(x)gn(y) . (0.69)

Since z 7→
∑∞

n=0 z
ngn(x)gn(y) is evidently analytic from Do into L2(R2,B,dxdy), we may replace

λ ∈ (0, 1) by z ∈ Do in (0.69) to define Mz(x, y), and then with this definition, for all f ∈ L2,

z ∈ D,

Tzf(x) =

∫
R
Mz(x, y)f(y)dxdy . (0.70)

By the previous lemma, T−if = limz→−i Tzf in the norm topology on L2, Hence if we let

{zn}n∈N be any sequence in Do with limn→∞ zn = −i, we have that

T−if(x) = lim
n→∞

∫
R
Mzn(x, y)f(y)dxdy
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Since M−i(x, y) =
1

2
√
π
e−ixy/2, if we formally take the limit under the integral sign, we obtain

Ff(x) = Ttf(x) =
1

2
√
π

∫
R
e−ixy/2f(y)dy ,

If f ∈ L1 ∩ L2, there is nothing formal: We may take the limit n → ∞ two ways. Using the fact

that f ∈ L2, we have the L2 norm convergence of Tznf to Tif , and hence we have convergence

almost everywhere along a subsequence. Next, since f ∈ L1, and |Mz(x, y)| is uniformly bounded

by a constant for z in a neighborhood of i, we may apply the Lebesgue Dominated Convergence

Theorem to conclude the point-wise convergence

lim
z→−i

Tzf(x) = lim
z→−i

∫
R
Mzn(x, y)f(y)dxdy =

1

2
√
π

∫
R
e−ixy/2f(y)dy .

We have proved:

0.30 THEOREM. For all f ∈ L1(R,B,dx)∩L2(R,B, dx), the Fourier transform Ff of f is given

by

Ff(x) =
1

2
√
π

∫
R
e−ixy/2f(y)dy (0.71)

There is a one-parameter family of unitary transformations on L2(R,B, dx) by composing F
with a unitary scale transformation: For λ0, and f ∈ L2(R,B,dx), define

δλf(x) =
√
λf(λx) . (0.72)

Then δλ is unitary, and therefore so it δλF , and we have

δλFf(x) =

√
λ

2
√
π

∫
R
e−iλxy/2f(y)dy (0.73)

The choices λ = 2 and λ = 4π are traditional in various fields, and the resulting operators are

also known as the Fourier transform. The latter has many advantages; For f ∈ L2(R,B, dx), define

f̂ by f̂ := δ4πFf . Then for f ∈ L1(R,B,dx) ∩ L2(R,B, dx)

f̂(x) =

∫
R
e−i2πxyf(y)dy . (0.74)

0.31 Remark. We could have arrived directly at (0.74) had we used a different Gaussian den-

sity γt to define our reference measure ν, and thus the Hermite polynomials. The choice t = 1

for the density of ν makes the variance of ν equal to one, so that ν is what probabilists call the

“normal distribution” on R. This “normal” choice gives the “normal” formulas for the “normal”

Hermite polynomials, though of course other Hermite polynomials can be defined as the orthonor-

mal sequence in L2(R,B, γt(x)dx) that one obtains by applying the Gram-Schmidt algorithm to

the sequence of non-negative powers of x. Then one obtains identities analogous to those found in

Theorem 0.23, which are the basis of the key properties of the Fourier transform given in Theo-

rem 0.28. Had we use γte
−x2/2tdx for t = 1

2π as our reference measure; that is, e−π|x
2
dx, we would

have arrived directly at (0.74) as the definition of the Fourier transform.
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Partly for the reasons explained above, it is useful to record the simple interaction of F with

several other one parameter families of unitary operations on L2(R,B, dx). Another is the uni-

tary group of translation τy, y ∈ R where τyf(x) = f(x − y). Another is the group of phase

transformations φy given

φyf(x) = e−ixyf(x) . (0.75)

In the formulation of the following lemma, we will use the physics convention of writing k for

the variable that is the argument of Ff . In this context, k ranges over R and not N or Z.

0.32 LEMMA. For λ > 0, let δλ be given by (0.72). Then

δλ ◦ F = F ◦ δλ−1 . (0.76)

Moreover for all y ∈ R, let τy be the translation operator on L2(R,B,dx), τyf(x) = f(x − y), and

let φy be the phase transformation defined in (0.75). Then

F ◦ τy = φy/2 ◦ F . (0.77)

Proof. For f ∈ L1(R,B, dx) ∩ L2(R,B,dx), making the change of variables x = u/λ,

δλFf(x) =

√
λ

2
√
π

∫
R
e−iλkx/2f(y)dx = δλFf(k) =

√
λ

2
√
π

∫
R
e−iλk(u/λ)/2f(u/λ)

1

λ
du = Fδλ−1f(k) .

Likewise, making the change of variable u = x− y,

Fτyf(k) =
1

2
√
π

∫
R
e−ikx/2f(x− y)dx =

1

2
√
π

∫
R
e−ik(u+y)/2f(u)du = e−iky/2Ff(k) = φy/2Ff(k) .

Another way to rephrase (0.77) is

F ◦ τy ◦ F ∗ = φy/2 , (0.78)

so that F “diagonalizes” translation, in the sense that it relates translation to a unitary “multipli-

cation operator” (multiplication by e−iky/2) as specified in (0.78).

0.33 THEOREM. For any function h ∈ L1 ∩ L∞ define

f̂(k) =

∫
R
e−i2πkxf(x)dx . (0.79)

Then for f, g ∈ L1 ∩ L∞,

f̂ ∗ g(k) = f̂(k)ĝ(k) . (0.80)

Proof. We compute

f̂ ∗ g(k) =

∫
R
e−i2πkx

(∫
R
f(x− y)g(y)dy

)
dx

=

∫
R

∫
R
e−i2πk(x−y)f(x− y)e−i2πkyg(y)dxdy = f̂(k)ĝ(k) .
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Since γt(x)ei2πkx = 1√
2πt

exp(− 1
2t(x− 2πikt)2) exp(2π2k2t)

γ̂t(k) = exp(2π2k2t) . (0.81)

In particular, taking t = (2π)−1 so that γ1/2pi(x) = e−πx
2
,

γ̂1/2π(k) = γ1/2π(k) . (0.82)

That is, γ1/2π is a fixed point of the map f 7→ f̂ , as we have seen earlier.

For f ∈ L1 ∩L2, recall that Ptf(x) = γt ∗ f ∗ x), where {Pt}t≥0 is the heat semigroup. Then by

Theorem 0.33,

P̂tf(k) = γ̂t(k)f̂(k) = exp(2π2k2t)f̂(k) .

Since L1 ∩ L2 is dense in L2, the formula P̂tf(k) = exp(2π2k2t)f̂(k) extends by continuity to all

f ∈ L2. Since f 7→ f̂ is unitary and Pt is contractive on L2, Ptf = 0 implies that P̂tf(k) = 0

for almost every k, and then the identity above shows that f̂(k) = 0 for almost every k. By the

unitarity of f 7→ f̂ , this means that f = 0. This gives another proof of the infectivity of the heat

semigroup operators on L2, however, it relies on the unitarity of f 7→ f̂ , and in the approach to

this taken her, we have relied on this infectivity to prove the unitarity of f 7→ f̂ , but there are

other approaches in which the order can be inverted.

0.7 Higher dimensions

So far, we have discussed the Fourier transform and convolution for functions on R. It is easy to

extend our results to functions on Rn. In this section, Lp(Rn) denotes Lp(Rn,B,dx).

We begin with the Fourier transform and n = 2. For integers n,m ≥ 0 define

gm ⊗ gm(x1, x2) = gm(x1)gn(x2) . (0.83)

It is then evident that {gm ⊗ gm}m,n≥0 is an orthonormal basis of L2(R2).

For a function f ∈ L1(R2) ∩ L2(R2) define

f̂(k) =

∫
R2

e−i2πk·xf(x)dx , (0.84)

where k · x denotes the standard inner product in R2, so that k · x = k1x1 + k2x2 and

e−i2πk·x = e−i2πk1x1e−i2πk2x2 .

It follows that

̂gm ⊗ gn(k1.k2) =

(∫
R
e−i2πk1x1gm(x1)dx1

)(∫
R
e−i2πk2x2gn(x2)dx2

)
= ĝm(k1)ĝn(k2) = (−i)m+ngm ⊗ gn(k1.k2) .

Since {(−i)m+ngm ⊗ gm}m,n≥0 is also an orthonormal basis of L2(R2), the map f 7→ f̂ defined in

(0.84) is unitary on L2(Rn).
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The same considerations extend in the obvious way to functions on Rn for arbitrary n ∈ N . For

f ∈ L1(Rn) ∩ L2(Rn), we define

f̂(k) =

∫
Rn
e−i2πk·xf(x)dx , (0.85)

and then f 7→ f̂ extends by continuity to a unitary transformation on L2(Rn). Even more simply,

|f̂(k)| ≤
∫

Rn
|f(x)|dx = ‖f‖1

so that f 7→ f̂ extends by continuity to a contraction from L1(Rn) to L∞(Rn). In summary,

we have two operator norm bounds for the map f 7→ f̂ : It extends by continuity to an ele-

ment of B(L2(Rn), L2(Rn)) with operator norm 1, and it extends by continuity to an element of

B(L1(Rn), L∞(Rn)) with operator norm 1

Likewise, if f ∈ L1(Rn), f 6= 0, define ρ(x) = ‖f‖−1
1 |f(x)| so that ρ is a probability density on

Rn and K(x, y) := ρ(x − y) is a doubly stochastic Markov Kernel. It then follows directly from

Theorem 0.2 that for all g ∈ L1(Rn) ∩ L∞(Rn), that if we define

f ∗ g(x) :=

∫
Rn
f(x− y)g(y)dy = ‖f‖1

∫
Rn
K(x, y)g(y)dy ,

then for all p ∈ [1,∞], then ‖f∗g‖p ≤ ‖f‖1‖g‖p. Even more simply if we assume that both f and g

belong to L1(Rn) ∩ L∞(Rn), and therefore to Lp(Rn) for all p ∈ [1,∞], H ”older’s inequality gives

us, for each x, and each p,

|f ∗ g(x)| ≤ ‖f‖p/(p−1)‖g‖p .

We may rephrase the last two inequalities as a pair of operator bounds. For g ∈ Lp(Rn)

define an operator Tg on g ∈ L1(Rn) ∩ L∞(Rn) Tgf = f ∗ g, Then we have ‖Tgf‖p ≤ ‖g‖p‖f‖1 and

‖Tgf‖∞ ≤ ‖g‖p‖f‖p/(p−1). Therefore, Tg extends by continuity to an element of B(L1(Rn), Lp(Rn))

an its operator norm in this space is no more that ‖g‖p. Likewise, Tg extends by continuity to an

element of B(Lp/(p−1)(Rn), L∞(Rn)) an its operator norm in this space is no more that ‖g‖p.
Thus for both the Fourier transform and for convolution we have operator norm bounds in

B(Lp(Rn), Lq(Rn)) for two specific pair of values of p and q. In the next section we shall see how to

“interpolate” between such pairs of inequalities producing a one parameter family of inequalities.

0.8 The Riesz-Thorin Interpolation Theorem

0.34 THEOREM. Let (Ω,M, µ) be an arbitrary measure space, and for p ∈ [1,∞], let Lp denote

Lp(Ω,M, µ). For p1, p2 ∈ [1,∞], The T be a linear operator defined on Lp1 ∩Lp2. Suppose that for

q1, q2 ∈ [1,∞] there exists finite constants C1, C2 such that for all f ∈ Lp1 ∩ Lp2,

‖Tf‖q1 ≤ C1‖f‖p1 and ‖Tf‖q2 ≤ C1‖f‖p2 . (0.86)

Then for all λ ∈ [0, 1], T extends to a bounded linear transformation from Lp(λ) to Lq(λ) where

1

p(λ)
= (1− λ)

1

p1
+ λ

1

p2
and

1

q(λ)
= (1− λ)

1

q1
+ λ

1

q2
, (0.87)

and for all f ∈ Lp(λ),

‖Tf‖q(λ) ≤ C1−λ
1 Cλ2 ‖f‖p(λ) . (0.88)
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This has a number of consequences; we give two of these in which the measure space is (Rn,B, dx)

before giving the proof.

0.35 THEOREM (Huassdoerff-Young-Titschmarsh). Define the Fourier transform f 7→ f̂ on

L1(Rn,B,dx) ∩ L2(Rn,B,dx) by

f̂(k) =

∫
Rn
e−i2πk·xf(x)dx . (0.89)

Then for all p ∈ [1, 2], f 7→ f̂ extends to a contraction from Lp(R,B,dx) to Lq(R,B,dx) where

q = p/(p− 1).

Proof. It is evident that |f̂(k)| ≤
∫
R
|f(x)|dx = ‖f‖1m so that ‖|f̂‖∞ ≤ ‖f‖1. By the unitarity of

the Fourier transform on L2, ‖f̂‖2 = ‖f‖2. Therefore (0.86) is valid with p1 = 1, q1 =∞, C1 = 1,

and p2 = q2 = 1, C2 = 1.

For all p ∈ (1, 2) write

1

p
=

1

p(λ)
= (1− λ)1 + λ

1

2
= 1 +

λ

2
and hence λ = 2

(
1− 1

p

)
=

2

q
.

Then, with this value of λ, 1/q(λ) = (1 − λ)(1/∞) + λ(1/2) = 1/q. Since C1 = C2 = 1, (??)

becomes ‖f̂‖q ≤ ‖f‖p.

0.36 THEOREM (Young’s Inequality for Convolution). For all f, g ∈ L1(R,B,dx)∩L∞(R,B, dx)

and all r, s, t ∈ [1,∞] such that
1

s
+

1

t
= 1 +

1

r
, (0.90)

‖f ∗ g‖r ≤ ‖f‖s‖g‖t . (0.91)

Proof. Fix g ∈ L1 ∩ L∞ and let T denote the operator on L1 ∩ L∞ defined by

Tf = g ∗ f .

Then for t ∈ (1,∞), the inequality ‖g ∗ f‖t ≤ ‖f‖1‖g‖t and be written as ‖Tf‖t ≤ ‖g‖p‖f‖1, while

the inequality ‖g ∗ f‖∞ ≤ ‖f‖t/(t−1)‖g‖t can be written as ‖Tf‖∞ ≤ ‖g‖t‖f‖t/(t−1. Therefore

(0.86) is valid with

p1 = 1 , q1 = t , C1 = ‖g‖p and p2 = t/(t− 1) , q2 =∞ , C2 = ‖g‖t .

Note from (0.90) that s ≤ t/(t− 1) with equality if and only if r = ∞. Therefore, s ∈ [p1, p2].

Define λ ∈ [0, 1] so that

1

s
=

1

p(λ)
= (1− λ) + λ

t− 1

t
and hence 1− λ =

1

t

(
1

s
+

1

t
− 1

)
.

Then for this λ,
1

q(λ)
= (1− λ)

1

t
+ λ

1

∞
=

1

s
+

1

t
− 1 =

1

r
.

It follows from the Riesz-Thorin Theorem that T extends to map from Ls to Lr with norm ‖g‖t,
and this yields (0.91).
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We now turn to the basic lemma upon which the Riesz-Thorin Theorem rests. For x ∈ Cn,

p ∈ [1,∞], let ‖x‖p denote the `p norm on Cn. Consider the bilinear form A(x, y) on Cn given by

A(x, y) =
n∑

j,k=1

xjaj,kyk .

For 1 ≤ p, q ≤ 1, define

C(1/p, 1/q) = sup {|A(x, y)| : ‖x‖p = ‖y‖q = 1} .

It will be convenient to write α =
1

p
and β =

1

q
. Notice then that 0 ≤ α, β ≤ 1.

0.37 LEMMA. [Riesz–Thorin Interpolation Lemma] The function (α, β) 7→ ln (C(α, β)) is convex

on [0, 1]× [0, 1].

0.38 Remark. Marcel Riesz proved this in 1927 for α + β ≥ 1; i.e., in the upper right half of

the unit square. His method was a direct assault on the maximization problem using Lagrange

multipliers. This approach worked only in the restricted domain α+β ≥ 1, and he even conjectured

that this wasn’t die to his method, but that the result wasn’t true in general except in this case.

About a decade later, his student Thorin proved the full result by a completely different method.

It is the lower–left half of the square that is of most interest to us.

Proof. Fix any two pairs of numbers (α1, β1) and (α2, β2) in [0, 1]× [0, 1]. Let p1 = 1/α1, q1 = 1/β1,

p2 = 1/α2 and q2 = 1/β2 with the obvious meaning if any of the denominators vanish. Next, any

x with ‖x‖p1 = 1 can be written as

(x1, x2, . . . , xn) = (eiφ1bα1
1 , eiφ2bα1

2 , . . . , eiφ1bα1
n ) ,

where each bj ≥ 0 and
∑n

j=1 bj = 1. Let Pn denote the set of all n–tuples (d1, d2, . . . , dn) of

non–negative numbers such that
∑n

j=1 dj = 1, so that we may express the condition on the finite

sequence {bj} as {bj} ∈ Pn. Similarly y with ‖y‖q1 = 1 can be written as

(y1, y2, . . . , yn) = (eiψ1cβ11 , e
iψ2cβ12 , . . . , e

iψ1cβ1n ) ,

where {cj} ∈ Pn.

Then we can rewrite the definition of C(α1, β1) as

C(α1, β1) = sup


n∑

j,k=1

aj,ke
i(ψk−φj)bα1

j c
β1
k : {bj}, {ck} ∈ Pn, {φj}, {ψk}

 .

It will be convenient to take the supremum in two parts, as follows:

C(α1, β1) = sup {C(α1, β1, {φj}, {ψk}) : {φj}, {ψk}}

where

C(α1, β1, {φj}, {ψk}) = sup


n∑

j,k=1

ãj,kb
α1
j c

β1
k | {bj}, {ck} ∈ Pn

 and ãj,k = aj,ke
i(ψk−φj) .
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We can do the same for (α2) and (β2), and all we are changing is the exponents in the sum
n∑

j,k=1

ãj,kb
α
j c
β
k . In particular, we optimize over the same sets of sequences {bj}, {ck}, {φj} and {ψk}

in each case. Thorin’s idea is now to interpolate between (α1, β1) and (α2, β2) with a complex

variable z as follows: For all z belonging to the infinite strip given by

0 ≤ R(z) ≤ 1

define

f(z) =

∑n
j,k=1 ãj,kb

(1−z)α1+zα2

j c
(1−z)β1+zβ2
k

C(α1, β1)1−zC(α2, β2)z
.

Now for any positive number a, az = e(ln a)z is an analytic function on the entire complex

plane, and has no zeros. For this reason, f(z) is an analytic function everywhere on its domain

0 ≤ R(z) ≤ 1. Also, on the left boundary of this domain; i.e., where R(z) = 0,

|f(z)| =

∣∣∣∑n
j,k=1 aj,ke

i(ψ̃k−φ̃j)bα1
j c

β1
k

∣∣∣
C(α1, β1)

where the φ̃j and ψ̃k include additional phases involving the imaginary part of z. By definition,

the numerator is no more than C(α1, β1), and hence we arrive at the conclusion that |f(z)| ≤ 1 for

all z with R(z) = 0. That is,

sup
y∈R
|f(iy)| ≤ 1 .

In the exact same way, we see that |f(z)| ≤ 1 for all z with R(z) = 1. That is,

sup
y∈R
|f(1 + iy)| ≤ 1 .

Now we are in a position to apply the maximum modulus principle of complex analysis to

conclude that |f(z)| is largest on the boundary of the strip 0 ≤ R(z) ≤ 1, and hence that |f(z)| ≤ 1

for all such z.

We will come back to the maximum modulus principle argument shortly to make the proof self

contained, but let us suppose for the moment that it has been established that |f(z)| ≤ 1 whenever

0 ≤ R(z) ≤ 1. We are now done with the complex interpolation; take z = λ with 0 < λ < 1. Then

|f(λ)| ≤ 1 implies that∣∣∣∣∣∣
n∑

j,k=1

ãj,kb
(1−λ)α1+λα2

j c
(1−λ)β1+λβ2
k

∣∣∣∣∣∣ ≤ C(α1, β1)1−λC(α2, β2)λ .

Since this is true for each {bj}, {ck} ∈ Pn, and each {φj} and {ψk}, we can take the supremum to

arrive at

C((1− λ)α1 + λα2, (1− t)β1 + tβ2) ≤ C(α1, β1)1−λC(α2, β2)λ

and taking the natural logarithm, we obtain the stated convexity result.

We now return to the part of the argument involving the maximum modulus principle. First

modify f(z) by multiplying by ez
2/n−1/n. For z = x + iy with 0 ≤ x ≤ 1, the real part of z2 is
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x2 − y2 ≤ 1, and so for all z with 0 ≤ R(z) ≤ 1, |ez2/n−1/n| ≤ 1. In fact, the real part of z2

becomes strongly negative for y large, and so g(z) = f(z)ez
2/n−1/n vanishes as z tends to infinity

in 0 ≤ R(z) ≤ 1, and it is also clearly analytic there. In particular, it is continuous, and so there

is a point z0 in this domain so that

|g(z0)| ≥ |g(z)| (0.92)

for all z with 0 ≤ R(z) ≤ 1. We claim that a point z0 satisfying (0.92) lies on the boundary of

the strip. To see this, consider any point z0 satisfying 0.92). If it is not already on the boundary,

appeal to the Cauchy integral formula

g(z0) =
1

2πi

∫ 2π

0
g(z0 + reiφ)dφ

where r is the distance from z0 to the boundary; i.e., r = min{R(z), 1−R(z)}. Then

|g(z0)| ≤ 1

2π

∫ 2π

0
|g(z0 + reiφ)|dφ ≤ 1

2π

∫ 2π

0
|g(z0)|dφ = |g(z0)|

where in the first inequality we simply to absolute values, and in the second one we used (0.92)

with z = z0 + reiφ. The conclusion is that |g(z0 + reiφ)| = |g(z0)| for almost every φ, and then by

continuity, for all φ. For either φ = 0 or φ = π, z0 + reiφ lies on the boundary, and the claim is

proved. Hence |g(z)| is maximized on the boundary, and so

|g(z)| = |f(z)ez
2/n−1/n| ≤ 1

for all 0 ≤ R(z) ≤ 1. Taking the limit in which n tends to infinity, we obtain the desired result.

Proof of Theorem 0.34. Given any t with 0 < λ < 1, and any simple function f , we we first observe

that f ∈ Lp1 ∩ Lp2 , and hence Tf is defined. By the variational characterization of the Lp norms,

‖Tf‖q(t) = sup

{∣∣∣∣∫
Rd
gTfdµ

∣∣∣∣ : ‖g‖q(t)′ = 1

}
where 1/q(t)′ + 1/q(t) = 1.

By the density of simple functions, for any ε > 0, there is a simple function g with ‖g‖q(t)′ = 1

so that

‖Tf‖q(t) ≤
∣∣∣∣∫
Rd
gTfdµ

∣∣∣∣+ ε .

Now by further partitioning the subsets on which the simple functions f and g take on their

various values, we may write them in the form

f(x) =
n∑
j=1

fj

µ(Aj)1/p(t)
1Aj (x) and g(x) =

n∑
k=1

gk
µ(Ak)1/q′(t)

1Ak(x)

with the same n and the same family of disjoint measurable sets Aj . Notice that with the way the

coefficients are defined,

‖f‖p(t) =

 n∑
j=1

|fj |p(t)
1/p(t)

and ‖g‖q′(t) =

(
n∑
k=1

|gk|q
′(t)

)1/q′(t)
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Then

∫
Rd
gTfdµ =

n∑
j,k=1

aj,kfjgk where aj,k =

∫
Rd

1AkT1Ajdµ. This reduces the Corollary to

the Reisz–Thorin Lemma and, since ε > 0 is arbitrary, the theorem is proved.


