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1 Hilbert Space

The modern definition of a Hilbert space was given by John von Neumann in 1929 during the course

of his work on the mathematical foundations of the then new quantum theory. He had gone to

Götingen to work with Hilbert on problems in mathematical logic. When he arrived, he was drawn

to a seminar on quantum theory, and embarked on a new direction. More information on the

fascinating history can be found in K. O. Friedrich’s review paper [1].

1.1 Inner product spaces

1.1 DEFINITION (Sesqilinear form). Let H be a complex vector space. A sesqilinear form on H
is a functions on H×H with values in C such that for fixed f ∈ H, g 7→ 〈f, g〉 is a linear functional

on H, and such that for all f, g ∈ H, 〈g, f〉 = 〈f, g〉 The sesqilinear form is positive definite in case

〈f, f〉 > 0 for all f 6= 0.

1.2 DEFINITION (Inner product space). An inner product space (H, 〈·, ·〉) is a complex vector

space H equipped with a positive definite sesqilinear form 〈·, ·〉 on H×H. The norm ‖f‖ of a vector

f ∈ H is defined by

‖f‖ =
√
〈f, f〉 . (1.1)

The example behind these definitions is `2, the space of complex valued square-summable se-

quences where for two such sequences f, g,

〈f, g〉 =
∞∑
n=1

f(n)g(n) ,

which was basic to Hilbert’s theory of “infinite matrices”.

The fundamental theorem concerning inner product spaces is that the Cauchy-Schwarz inequal-

ity is satisfied:

1.3 THEOREM (Cauchy-Schwarz). Let (H, 〈·, ·〉) be an inner product space, and let f, g ∈ H.

Then

|〈f, g〉| ≤ ‖f‖‖g‖ (1.2)

and there is equality in (1.2) if and only if {f, g} is linearly dependent.

Proof. If either f = 0 or g = 0, equality holds in (1.2). Suppose that this is not the case. Then

‖f‖ 6= 0 and ‖g‖ 6= 0, and we may define u = ‖f‖−1f and v = eiθ‖g‖−1g for θ ∈ [0, 2π) to be

chosen later. Then ‖u‖ = ‖v‖ = 1 and hence

‖u− v‖2 = 〈u− v, u− v〉 = ‖u‖2 + ‖v‖2 + 2<(〈u, v〉) = 2(1 + <(〈u, v〉)) .

Now choose θ so that <(〈u, v〉) = |〈u, v〉|, and hence |〈u, v〉| = 1− 1

2
‖u− v‖2. Multiplying through

by ‖f‖‖g‖, this becomes

|〈f, g〉| ≤ ‖f‖‖g‖ − 1

2
‖ (‖g‖f − eiθ‖f‖g) ‖2 . (1.3)

This proves the inequality and shows that equality holds if and only if ‖g‖f = eiθ‖f‖g, which is

the cases if and only if {f, g} is linearly dependent.
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A consequence of the Cauchy-Schwarz Inequality is that the function f 7→ ‖f‖ is sub-additive

on H. That is, for all f, g ∈ H, ‖f + g‖ ≤ ‖f‖+ ‖g‖.

1.4 DEFINITION (Unit vectors and orthogonality). A vector u in an inner product space H is

a unit vector in case ‖u‖ = 1. Two vectors f, g ∈ H are orthogonal in case 〈f, g〉 = 0. A subset

{uj}j∈J of H is orthonormal in case for all j, k ∈J , 〈uj , uk〉 = 0 if j 6= k while 〈uj , uj〉 = 1.

By the Cauchy-Schwarz inequality, for any two unit vectors u, v ∈ H, <(〈u, v〉) ∈ [−1, 1], and

hence it makes sense to define the angle between two unit vectors in H to be arccos(<(〈u, v〉)). The

angle between two non-zero vectors f, g is defined to be the angle between their normalizations

‖f‖−1f and ‖g‖−1g; which is consistent with Definition 1.4.

1.5 THEOREM (Minkowski’s inequality for inner product spaces). Let (H, 〈·, ·〉) be an inner

product space. Then for all f, g ∈ H,

‖f + g‖ ≤ ‖f‖+ ‖g‖ (1.4)

and there is equality in (1.4) if and only if {f, g} is linearly dependent.

Proof. for any f, g ∈ H, by the Cauchy-Schwarz inequality,

‖f + g‖2 = 〈f + g, f + g〉 = ‖f‖2 + ‖g‖2 + 2<〈f, g〉 ≤ ‖f‖2 + ‖g‖2 + 2‖f‖‖g‖ = (‖f‖+ ‖g‖)2 .

The square root function is strictly monotone, and there is equality above if and only if there is

equality in the Cauchy-Schwarz inequality.

Define a metric d on the inner product space (H, 〈·, ·〉) by

d(f, g) = ‖f − g‖ (1.5)

for all f, g ∈ H. This is indeed a metric: Evidently, d(f, g) = d(g, f), and d(f, g) = 0 if and only

if f = 0 since the sesqilinear form is non-degenerate. Finally, for f, g, h ∈ H, by Minkowski’s

inequality,

d(f, h) = ‖f − h‖ = ‖(f − g) + (g − h)‖ ≤ ‖f − g‖+ ‖g − h‖ = d(f, g) + d(g, h) ,

so that the triangle inequality is satisfied. This metric is called the inner product metric, or the

norm metric, on H.

1.6 DEFINITION (Bounded linear transformation). Let H and K be two inner product spaces

with norms ‖ · ‖H and ‖ · ‖K. A linear transformation T : H → K is bounded in case

‖T‖ := sup
u∈H,‖u‖<1

{‖Tu‖K} <∞ . (1.6)

. Let B(H,K) denote the set of all bounded linear transformations from H to K, and in the special

case K = H, let B(H) denote B(H,H). The function T 7→ ‖T‖ is evidently a norm on the vector

space B(H,K) which is called the operator norm. Elements of B(H,K) will often be referred to as

operators.
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By what has been explained earlier about general normed vector spaces, a linear transformation

T : H → K is continuous if and only if it is bounded. That is, B(H,K) is precisely the set of

continuous linear transformations form H to K .

There are two important identities that hold in any complex inner product space H, both of

which are easily verified by direct computation: The polarization identity is

〈f, g〉 =
1

4
[〈f + g, f + g〉 − 〈f − g, f − g〉 − i〈f + ig, f + ig〉+ i〈f − ig, f − ig〉]

=
1

4
[‖f + g‖2 − ‖f − g‖2 − i‖f + ig‖2 + i‖f − ig‖2] . (1.7)

The polarization identity shows that the correspondence between inner products and norms is one-

to-one: Every inner product defines a norm, and the inner product may be recovered from the

norm.

The parallelogram identity is∥∥∥∥f + g

2

∥∥∥∥2

+

∥∥∥∥f − g2

∥∥∥∥2

=
‖f‖2 + ‖g‖2

2
. (1.8)

This expresses a quantitative strict convexity property of the function f 7→ ‖f‖2.

1.2 Hilbert spaces and the Projection Lemma

1.7 DEFINITION (Hilbert Space). A Hilbert space is a complex vector space H equipped with

a sesqilinear form 〈·, ·〉 such that H is complete in its inner product metric.

By what has been explained earlier about general normed vector spaces, if H and K are both

Hilbert spaces, then B(H,K) is complete in the operator norm, and hence is a Banach space.

The next theorem makes essential use of the completeness of Hilbert space.

1.8 THEOREM (Projection Lemma). Let K be a non-empty closed convex set in a Hilbert space

H. Then K contains a unique element of minimal norm. That is, there exists f0 ∈ K such that

‖f0‖ < ‖f‖ for all f ∈ K, f 6= f0. Moreover, if {fn}n∈N is any sequence in K such that

lim
n→∞

‖fn‖ = inf{‖f‖ : f ∈ K} ,

then limn→∞ ‖fn − f0‖ = 0.

Proof. Let D := inf{‖f‖ : f ∈ K}. If D = 0, then 0 ∈ K since K is closed, and this is the unique

element of minimal norm. Hence we may suppose that D > 0. Let {fn}n∈N be a sequence in K

such that limn→∞ ‖wn‖ = D. By the parallelogram identity∥∥∥∥fm + fn
2

∥∥∥∥2

+

∥∥∥∥fm − fn2

∥∥∥∥2

=
‖fm‖2 + ‖fn‖2

2
.

By the convexity of K, and the definition of D,

∥∥∥∥fm + fn
2

∥∥∥∥2

≥ D2 and so

∥∥∥∥fm − fn2

∥∥∥∥2

=

(
‖fm‖2 −D2

)
+
(
‖fn‖2 −D2

)
2

.
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By construction, the right side tends to zero, and so {fn}n∈N is a Cauchy sequence. By the

completeness of H, {fn}n∈N is a convergent sequence. Let f0 denote the limit. By the continuity

of the norm, ‖f0‖ = limn→∞ ‖fn‖ = D. Finally, if f1 is any other vector in K with ‖f1‖ = D,

(f0 + f1)/2 ∈ K, so that ‖(f0 + f1)/2‖ ≥ D. Then by the parallelogram identity once more

‖(f0 − f1)/2‖ = 0, and so f0 = f1. This proves the uniqueness.

1.3 Orthogonal complements

As a first application, we discuss orthogonal complements.

1.9 DEFINITION (Orthogonal complement). Let H be a Hilbert space and S ⊂ H. Then S⊥,

the orthogonal complement of S is the set

S⊥ =
⋂
g∈S
{f ∈ H ; 〈g, f〉 = 0} . (1.9)

By the continuity of f 7→ 〈g, f〉, for each g, {f ∈ H ; 〈g, f〉 = 0} is closed, and hence S⊥ is

closed. Also it is evident that if f1, f2 ∈ S⊥ and α1, α2 ∈ C, for all g ∈ S,

〈α1f1 + α2f2, g〉 = α1〈f1, g〉+ α2〈f2, g〉 = 0 .

Hence S⊥ is a subspace of H for all S ⊂ H.

1.10 THEOREM. Let H be a Hilbert space, and let K be a closed subspace of H. Let f ∈ H.

Then there exist unique vectors f0 ∈ K and f1 ∈ K⊥ such that f = f0 + f1. That is, H = K⊕K⊥.

Finally, define the distances d(f,K⊥) and d(f,K) from f to K⊥ and K respectively,

d(f,K⊥) := inf{‖f − g : g ∈ K⊥} and d(f,K) := inf{‖f − g‖ : g ∈ K} . (1.10)

Then f1 is the unique vector in K⊥ such that ‖f − f1‖ = d(f,K⊥), and f0 is the unique vector in

K such that ‖f − f0‖ = d(f,K).

Proof. We first show that if such a decomposition of f exists, then it is unique. Suppose that

f0, g0 ∈ K and f1, g1 ∈ K⊥, and that f = f0 +f1 = g0 + g1. Then f0− g0 = g1−f1, and f0− g0 ∈ K
while g1 − f1 ∈ K⊥, so that f0 − g0 and g1 − f1 are orthogonal. Therefore

0 = 〈f0 − g0, g1 − f1〉 = 〈f0 − g0, f0 − g0〉 = ‖f0 − g0‖2 ,

and hence f0 = g0, from which it follows that f1 = g1.

To prove the existence of such a decomposition, Let K = {f − g : g ∈ K}. Then K is a non-

empty closed convex subset ofH, and hence it contains a unique element f−g0 of minimal norm. By

construction, for all g ∈ K and t ∈ R, f− (g0 + tg) ∈ K, and so the function ϕ(t) = ‖(f−g0)− tg)‖2

has a maximum at t = 0. Differentiating,

0 = ϕ′(0) = 2<〈f − g0, g〉 .

This shows that f − g0 ∈ K⊥ and then f = (f − g0) + g0 where f − g0 ∈ K⊥ and g0 ∈ K.

Finally, for any g ∈ K⊥, ‖f − g‖2 = ‖(f − f1) + (f1 − g)‖2 = ‖(f − f1)‖2 + ‖(f1 − g)‖2 since

f − f1 = f0 ∈ K and f1 − g ∈ K⊥. Therefore, ‖f − g‖ ≥ ‖f − f1‖ with equality if and only if

f = f1. The same reasoning shows that for all g ∈ K, ‖f − g‖ ≥ ‖f − f0‖ with equality if and only

if g = f0.
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Let K be a closed non-zero, proper subspace of a Hilbert space H. For any f ∈ H, define

Pf and P⊥f to be the unique elements of K and K⊥ respectively such that f = Pf + P⊥f . By

the uniqueness of Theorem 1.10, the transformations f 7→ Pf and f 7→ P⊥f are both linear,

and since ‖f‖2 = ‖Pf‖2 + ‖P⊥f‖2 ≥ max{‖Pf‖2, ‖P⊥f‖2}, it is evident that ‖P‖, ‖P⊥‖ ≤ 1.

That is, P, P⊥ ∈ B(H). (Since K is a subspace of H, we may regard B(H,K) as a subspace of

B(H), and likewise with B(H,K⊥).) Moreover, since neither K nor K⊥ is the zero subspace, there

are unit vectors u and v in K and K⊥ respectively such that Pu = u and P⊥v = v. Therefore,

‖P‖ = ‖P⊥‖ = 1.

1.11 DEFINITION. Let K be a closed non-zero, proper subspace of a Hilbert space H. The

bounded linear transformations P and P⊥ such that for all f ∈ H, Pf ∈ K, P⊥f ∈ K⊥ and

f = Pf + P⊥f are the orthogonal projections of H onto K and K⊥ respectively.

2 Duality in Hilbert space

2.1 The dual space of an inner product space

2.1 DEFINITION (The dual space of an inner product space). Let H be an inner product space.

The dual space H∗ of H is the vector space space of all continuous linear functional on H.

Let L be a continuous linear functional on an inner product space H. As a linear transformation

L from the normed space H to the normed space C, L is continuous if and only if L is bounded, so

that the continuity of L is equivalent to the condition that ‖L‖∗ <∞ where ‖L‖∗ defined by

‖L‖∗ = sup{|L(u)| : ‖u‖ ≤ 1} . (2.1)

By what we have said earlier about bounded linear transformations from one normed space to

another, ‖ · ‖∗ is a norm on H∗, and therefore d∗(L,M) := ‖L−M‖∗ defined a metric on H∗.
As an example of a bounded linear functional on an inner product space H, consider any g ∈ H,

and define

Lg(f) = 〈g, f〉 . (2.2)

Then Lg is linear, and by the Cauchy-Schwarz inequality, |Lg(f)| ≤ ‖g‖‖f‖, so that ‖Lg‖∗ ≤ ‖g‖.
Thus, Lg is a bounded linear functional on H.

We shall soon prove that when H is a Hilbert space, every L ∈ H∗ is of this form.. However,

the more elementary fact that for each g ∈ H, Lg ∈ H∗ with ‖Lg‖∗ ≤ ‖g‖, which is valid in any

inner product space, already has significant consequences.

2.2 THEOREM. For any inner product space H, H∗ separates points in H. That is for all

f, g ∈ H, f 6= g, there is an L ∈ H∗ such that L(f) 6= L(g).

Proof. For f, g ∈ H, f 6= g, Lf−g(f − g) = 〈f − g, f − g〉 = ‖f − g‖2 > 0.

2.3 THEOREM. For all f in an inner product space H, there is an L ∈ H such that ‖L‖∗ = 1

and L(f) = ‖f‖.
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Proof. If f = 0, we may take L = Lg for any unit vector g ∈ H. Otherwise, suppose that f 6= 0 so

that f/‖f‖ is a unit vector in H, and hence Lf/‖f‖ is a unit vector in H∗. Then

Lf/‖f‖(f) = ‖f‖−1〈f, f〉 = ‖f‖ .

2.2 The Riesz Representation Theorem and the dual space of a Hilbert space

2.4 THEOREM (Riesz Representation Theorem). Let H be a Hilbert space, and let L ∈ H∗.
There is a unique vector gL ∈ H such that L(f) = 〈gL, f〉 for all f ∈ H, and ‖gL‖ = ‖L‖∗.

Proof. If L(f) = 0 for all f ∈ H, the assertion is trivial, so suppose that ‖L‖∗ > 0. Define K to be

the set

K := {f ∈ H : <(L(f)) = ‖L‖∗ } .

It is readily checked that this is a closed convex set in H.

If f ∈ K, then ‖L‖∗‖f‖ ≥ |L(f)| ≥ <(L(f)) = ‖L‖∗, and hence ‖f‖ ≥ 1. On the other hand,

by the definition of ‖L‖∗, there is a sequence of unit vectors {un}n∈N such that |L(un)| → ‖L‖∗.

Then choosing θn ∈ [0, 2π) so that eiθnL(un) = |L(un)|, vn := eiθn
‖L‖∗
|L(un)|

un ∈ K and ‖vn‖ → 1.

Thus, inf{‖v‖ : v ∈ K} = 1.

It now follows from the Projection Lemma that there is a (unique) unit vector u0 ∈ K with

‖L‖∗ = <(L(u0)) . (2.3)

For all f ∈ H, <(L(f)) ≤ |L(f)| ≤ ‖L‖‖f‖, when f with f 6= 0,

<(L(f))

‖f‖
≤ ‖L‖∗ =

<(L(u0))

‖u0‖
.

Hence, for any g ∈ H, the function ϕ :

(
− 1

2‖g‖
,

1

2‖g‖

)
→ R defined by ϕ(t) :=

<(L(u0 + tg))

‖u0 + tg‖
has

a maximum at t = 0. One readily checks that ϕ is differentiable and computes

ϕ′(0) = <(L(g))− ‖L‖∗<(〈u0, g〉) .

Since the left hand side is zero for all g, <(L(g)) = ‖L‖∗<(〈u0, g〉) for all g. Replacing g by ig, the

same is true of the imaginary parts, and so L(g) = 〈‖L‖∗u0, g〉 for all g. Thus, gL = ‖L‖∗u0 is such

that L(f) = 〈gL, f〉 for all f ∈ H, and ‖gL‖ = ‖L‖∗.
If hL were any other vector with L(f) = 〈hL, f〉 for all f ∈ H, we would have 〈gL − hL, f〉 = 0

for all f ∈ H, Taking f = gL − hL, we see that ‖gL − hL‖2 = 0, and so hL = gL, proving the

uniqueness of gL.

The Riesz Representation Theorem allows us to identify a Hilbert space H with its dual space

H∗: The mapping L→ gL is an isometry from H∗ onto H. (The range is all of H by our example

just before the theorem.) This mapping is even conjugate linear.

An elementary but important application of the Riesz Representation Theorem concerns the

adjoint A∗ of an operator A ∈ B(H), H a Hilbert space. Let A ∈ B(H), and for g ∈ H, let Lg be

defined as in (2.2). Then Lg ◦A is a continuous, and hence it is a bounded linear functional on H.
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By the Riesz Representation Theorem, since Lg ◦ A ∈ H∗, there exists a unique h ∈ H so that

for all f ∈ H,

〈g,Af〉 = Lg ◦A(f) = 〈h, f〉 .

Therefore we may define a function A∗ : H → H by defining A∗g to be the unique element of H
such that

〈g,Af〉 = 〈A∗g, f〉 (2.4)

for all f, g ∈ H.

Again because of the uniqueness, the linearity of A implies that A∗ is a linear transformation

on H. Moreover, for all unit vectors u, v ∈ H,

|〈u,A∗v〉| = |〈A∗v, u〉| = |〈v,Au〉| ≤ ‖v‖‖Au‖ ≤ ‖A‖ .

Taking u = ‖A∗v‖−1A∗v, we obtain ‖A∗v‖ ≤ ‖A‖. Since v is an arbitrary unit vector in H, this

yields

‖A∗‖ ≤ ‖A‖ . (2.5)

Therefore, A∗ ∈ B(H).

Taking complex conjugates of both sides of (2.4), 〈f,A∗g〉 = 〈Af, g〉, and then swapping the

roles of f and g,

〈g,A∗f〉 = 〈Ag, f〉 (2.6)

for all f, g ∈ H. Comparing (2.4) and (2.6), it is evident that A∗∗ := (A∗)∗ = A for all bounded

linear transformations A. Then by (2.5),

‖A‖ = ‖A∗∗‖ ≤ ‖A∗‖ ≤ ‖A‖ .

This means that for all bounded linear transformations ‖A‖,

‖A∗‖ = ‖A‖ . (2.7)

Summarizing, we have proved the following:

2.5 THEOREM. Let A ∈ B(H), H a Hilbert space. Then there exists a unique bounded linear

transformation A∗ on H that that (2.4) is valid for all f, g ∈ H. The map A 7→ A∗ is conjugate

linear, and satisfies ‖A∗‖ = ‖A‖.

Theorem 2.5 says that the map A 7→ A∗ is a conjugate linear isometry on the Banach space

B(H), and since A∗∗ = A, it is an involution. Because of its canonical nature, it is often called the

involution on B(H). The above considerations are readily extended to maps in B(H,K) for two

Hilbert spaces. This is left to the reader.

2.6 DEFINITION. Let A ∈ B(H), H a Hilbert space. Then the unique bounded linear trans-

formation A∗ on H that that (2.4) is valid for all f, g ∈ H is called the adjoint of A. A ∈ B(H) is

called self-adjoint in case A = A∗, that is, in case for all f, g ∈ H,

〈g,Af〉 = 〈Ag, f〉 . (2.8)
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As an example, let K be a closed, proper, non-zero subspace of a Hilbert space H. Let P be

the orthogonal projection onto K. Then for all f, g ∈ H,

〈f, Pg〉 = 〈P⊥f + Pf, Pg〉 = 〈Pf, Pg〉 = 〈Pf, Pg + P⊥g〉 = 〈Pf, g〉 .

Thus P is self-adjoint, and for the same reason, so is P⊥.

2.7 THEOREM (Hellinger-Toeplitz Theorem). Let A be a linear transformation from H to H
defined everywhere on H and such that for all f, g ∈ H, (2.8) is valid. Then A ∈ B(H).

Proof. By the Closed Graph Theorem, it suffices to show that the graph of A is closed. Suppose

that {fn} is a sequence in H such that f = limn→∞ fn and g = limn→∞Afn both exist. Then for

all h ∈ H,

〈h, g〉 = lim
n→∞

〈h,Afn〉 = lim
n→∞

〈Ah, fn〉 = 〈Ah, f〉 = 〈h,Af〉 .

That is, for all h ∈ H, 〈h, g − Af〉 = 0, Taking h = g − Af , we conclude that g = Af , and the

graph of A is closed.

2.8 THEOREM (Gram-Schmidt). Let H be a Hilbert space, and let {fj}j∈J be a linearly inde-

pendent subset of H where either J = {1, . . . , N} for some N ∈ N, N ≤ dim(H), or, in case H
is infinite dimensional, J = N. Then there exists an orthonormal set {uj}j∈J such that for all

n ∈J ,

span({f1, . . . , fn}) = span({u1, . . . , un}) . (2.9)

We may further require that 〈fn, un〉 > 0 for all n, and under this condition, {uj}j∈J is uniquely

determined.

Proof. To have span({f1}) = span({u1}) and ‖u1‖ = 1, we must choose u1 = α1‖f1‖−1f1 for some

α1 ∈ C with |α| = 1. For each n ∈ J , n > 1, let Kn = span({f1, . . . , fn}). Since dim(Kn) = n,

Kn is closed. Let Pn denote the orthogonal projection onto Kn. Since {f1, . . . , fn−1} spans Kn−1,

and since {fj}j∈J is linearly independent, fn /∈ Kn−1, and hence P⊥n−1fn 6= 0. Choose αn ∈ C with

|αn| = 1, and define

un =
αn

‖P⊥n−1fn‖
P⊥n−1fn . (2.10)

This formula is valid for all n including n = 1 if we define P0 to be the identity operator.

Note that

fn = Pn−1fn + P⊥n−1f = Pn−1fn +
‖P⊥n−1fn‖

αn
un

and Pn−1fn ∈ Kn−1. Hence

Kn = span({f1, . . . , fn−1, fn}) = span(Kn−1 ∪ {fn})) = span(Kn−1 ∪ {un})) .

Therefore, if Kn−1 = span({u1, . . . , un−1}), then Kn = span({u1, . . . , un}). Since evidently

span{f1}) = span{u1}), induction shows that Kn = span({u1, . . . , un}) for all n, and thus (2.9) is

valid for all n, and for all n,

un ∈ K⊥n−1 = (span({u1, . . . , un}))⊥ .
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That is, for all j < n 〈uj , uk〉 = 0 for all n ∈ J . Since each uj is a unit vector, {uj}j∈J is

orthonormal.

For the uniqueness, note that un must be orthogonal to every vector in Kn−1 =

span({u1, . . . , un−1}), and must belong to Kn = span({f1, . . . , fn}), there are βj ∈ C, j = 1, . . . , n

such that un =
∑n

j=1 βjfj , and therefore

un = P⊥n−1un = P⊥n−1

 n∑
j=1

βjfj

 = βnP
⊥
n−1fn .

and so un must have the form given in (2.10), and the only freedom in the choice of {uj}j∈J is the

choice of the multiples αj , but the further condition 〈fn, un〉 > 0 fixes αj = 1 for all j.

In any infinite dimensional Hilbert space H, there is an infinite linearly independent sequence

{fn}n∈N in H, and then by Theorem 2.8, there is an infinte orthonormal sequence {un}n∈N in H.

Since for m 6= n, ‖un − um‖ =
√

2, no subsequence of this sequence is Cauchy, and hence this

sequence has no convergent subsequence. This proves:

2.9 THEOREM. In an infinite dimensional Hilbert space H, B := {f : ‖f‖ ≤ 1}, the closed

unit ball, is not compact.

3 The Hilbert space L2(X,M, µ)

3.1 L2(X,M, µ) as an inner product space

So far, our only example of an infinite dimensional Hilbert space is `2. The Lebesgue theory of

integration provided a vast new range of examples. If (X,M, µ) is a measure space, the vector

space of square integrable complex valued function f on X, identified under almost everywhere

equivalence, has a natural inner product making it a Hilbert space. This is the content of the

Riesz-Fisher Theorem. A particular case is that in which X = N, M = 2N, and µ is counting

measure. In this case, L2(X,M, µ) = `2.

Let (X,M, µ) be a measure space. As a set, L2(X,M, µ) consists of the equivalence classes,

under equivalence almost everywhere with respect to µ, of functions on X that are M-measurable

and such that

∫
X
|f |2dµ <∞. Clearly, if z ∈ C and f ∈ L2(X,M, µ), |zf |2 = |z|2|f |2 is integrable,

and if f, g ∈ L2(X,M, µ),

|f + g|2 ≤ (|f |+ |g|)2 ≤ 2(|f |2 + |g|2) . (3.1)

is integrable. Thus, L2(X,M, µ) is a vector space under the usual rules of addition and scalar

multiplication for functions. Also, for α, β ∈ C, 2|αβ| ≤ |α|2 + |β|2 so that for L2(X,M, µ),

fg ∈ L1(X,M, µ).

3.1 DEFINITION (The L2 inner product). For f, g ∈ L2(X,M, µ), we define

〈f, g〉 =

∫
X
fgdµ . (3.2)
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Note that 〈·, ·〉 is a positive sesquilinear form on L2(X,M, µ), and it is non-degenralte since

〈f, f〉 = 0 if and only if
∫
X |f |

2dµ = 0 if and only if f = 0 almost everywhere. Therefore,

L2(X,M, µ) equipped with this inner product is an inner product sapce. We write d2 to denote

the metric corresponding to this inner product, and refer to is as the L2 metric.

3.2 The Reisz-Fischer Theorem

3.2 THEOREM (Riesz-Fischer Theorem). L2(X,M, µ) equipped with the L2 metric is complete,

and hence a Hilbert space. Moreover, if {fn}n∈N is any Cauchy sequence in L2(X,M, µ), then

there is a subsequence of {fn}n∈N that converges almost everywhere with respect to µ.

Proof. Let {fn}n∈N be a Cauchy sequence in L2(X,M, µ). Recursively define an increasing se-

quence of natural numbers {nk}k∈N such that ‖fn − fnk
‖2 ≤ 2−k for all n ≥ nk. Since {nk}k∈N is

increasing, it follows that ‖fnk+1
− fnk

‖2 ≤ 2−k for all k.

Now define Fm = |fn1 |+
m−1∑
k=1

|fnk
− fnk−1

|. By Theorem 1.5, applied iteratively,

‖Fm‖2 ≤ ‖fn1‖2 +
m−1∑
k=1

‖fnk
− fnk−1

‖2 ≤ ‖fn1‖2 + 1 .

Thus, by the Lebesgue Monotone Convergence Theorem, F := lim
m→∞

Fm is square-integrable and∫
X
F 2dµ ≤ ‖fn1‖2 + 1 .

It follows that F <∞ a.e. µ, and thus that
∞∑
k=1

(fnk
− fnk−1

) is absolutely convergent a.e. µ. But

since absolute convergence implies convergence, lim
m→∞

[
fn1 +

m−1∑
k=1

(fnk
− fnk−1

)

]
= lim

m→∞
fnm exists

almost everywhere. Call this limit f . As a point-wise limit of measurable functions, f is measurable.

Also, f ∈ L2(X,M, µ) by Fatou’s Lemma.

Next, |fnm − f |2 ≤ 4F 2, and since 4F 2 is integrable, the Lebesgue Dominated Convergence

Theorem implies that

lim
m→∞

‖fnm − f‖2 = 0 .

Thus, a subsequence of the Cauchy sequence {fn}n∈N converges of f in the L2 metric. But then

the whole sequence converges to f . The subsequence {fnm}m∈N converges to f a.e. µ.

3.3 Landau’s Theorem

The next result illustrates the way in which the various abstract results we have proved so far may

be combined to prove a theorem that refers only to the Lebesgue theory of integration, but is not

easy to prove using only the tools of that theory.

3.3 THEOREM (Landau’s Theorem). Let (X,M, µ) be a measure space such that for every

set B ∈ M with µ(B) = ∞, there is a set A ∈ M, A ⊂ B, with 0 < µ(A) < ∞. Suppose f is a

measurable function on X such that whenever g is a measurable function on M with
∫
X |g|

2dµ <∞,

|fg| is integrable. Then
∫
X |f |

2dµ <∞.
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Proof. The Riesz-Fischer Theorem identifies the set of measurable g such that
∫
X |g|

2dµ <∞ with

the elements of the Hilbert space H := L2((X,M, µ), and then the hypotheses allow us to define a

linear functional L on H the by L(g) =
∫
X fgdµ for all g ∈ H, For n ∈ N, define En ⊂ H by

En :=

{
g :

∫
X
‖fg|dµ ≤ n

}
.

Then En is closed. To see this, let {gm}m∈N be a sequence in En that converges to g ∈ H. By the

final part of Theorem 3.2, there is a subsequence {gmk
}k∈N that converges almost everywhere to g.

By Fatou’s Lemma, ∫
|fg|dµ ≤ lim inf

k→∞

∫
X
|fgmk

|dµ ≤ n .

Therefore, g ∈ En, and hence En is closed.

By hypothesis,H = ∪∞n=1En, and then by Baire’s Theorem, there exists some n such that En
has a non-empty interior. Hence for some g0 ∈ H and some r > 0, B(r, g0) ⊂ En; i.e., for all

g ∈ B(1, 0), and all 0 < s < r, g0 + sg ∈ En. Therefore

|L(g0) + sL(g)| =
∣∣∣∣∫
X
f(g0 + sg)dµ

∣∣∣∣ ≤ ∫
X
|f(g0 + sg)|dµ ≤ n .

It follows that |L(g)| ≤ (n + |L(g0|)/r for all g ∈ B(1, 0), and hence L is bounded. By the Reisz

Representation Theorem, there exists a unique f0 ∈ H such that L(g) =
∫
X f0gdµ for all g ∈ H,

and thus, ∫
X

(f0 − f)gdµ = 0

for all g ∈ H. This implies that f = f0 almost everywhere. To see this, for each n ∈ H define the

set Bn = {x : |f0(x)−f(x)| ≥ 1/n}. By hypothesis, even if µ(Bn) =∞, there exists a measurable

set An ⊂ Bn with 0 < µ(An) <∞. Define gn by

gn(x) =

{
f0(x)− f(x)/|f0(x)− f(x)| x ∈ An

0 x /∈ An .

then gn ∈ H and
∫
X f0 − fgndµ ≥ µ(An)/n, which is a contradiction. Hence µ(Bn) = 0 for all

n.

The condition on the measure space is much weaker than countable additivity, but the condition

is necessary: If there exists a set B ∈M with µ(B) =∞, and such that for all measurable A ⊂ B,

either µ(A) = 0 or µ(A) = ∞, let f be the function 1B, the indicator function of B. Since

every g ∈ L2(X,M, µ) must equal zero almost everywhere on B,it follows that fg is zero almost

everywhere for all g ∈ L2(X,M, µ), and therefore certainly fg is integrable. However, f is not

square integrable.

4 Bessel’s inequality and complete orthonormal sets

4.1 Best approximation in a Hilbert space and Bessel’s inequality

Let H be a Hilbert space space, and let {u1, . . . , un} be an orthonormal set in H. Let K =

span({u1, . . . , un}) which is finite dimensional and therefore closed. Let P denote the orthogonal
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projection onto K. For any f ∈ H, by Theorem 1.10, the best approximation to f by elements of K
is given by Pf in the sense that ‖f −Pf‖ < ‖F − g‖ for any g 6= Pf in K. This result will be more

useful once we have a formula for Pf in terms of {u1, . . . , un}. We now derive such a formula.

The general element of K has the form
n∑
j=1

αjuj for some complex numbers α1, . . . , αn. To

determine the choice of these coefficients that gives the best approximation to f , we compute∥∥∥∥∥∥f −
n∑
j=1

αjuj

∥∥∥∥∥∥
2

=

〈
f −

n∑
j=1

αjuj , f −
n∑
j=1

αjuj

〉

= ‖f‖2 −
n∑
j=1

2<(αj〈uj , f〉) +
∑
j=1

|αj |2

= ‖f‖2 −
n∑
j=1

|〈uj , f〉|2 +
n∑
j=1

|αj − 〈uj , f〉|2 . (4.1)

Evidently, the best choice is given by αj = 〈uj , f〉 for each = 1, . . . , n, and therefore,

Pf =
n∑
j=1

〈uj , f〉uj . (4.2)

We summarize so far:

4.1 THEOREM. Let {uj}j∈N be an onrthonormal sequence in an Hilbert sapce H. Thren for all

n ∈ N, ∥∥∥∥∥∥f −
n∑
j=1

αjuj

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥f −

n∑
j=1

〈uj , f〉uj

∥∥∥∥∥∥ (4.3)

and there is equality if and only if αj = 〈uj , f〉 for all j.

Making the choice αj = 〈uj , f〉 for each = 1, . . . , n, we have∥∥∥∥∥∥f −
n∑
j=1

〈uj , f〉uj

∥∥∥∥∥∥
2

= ‖f‖2 −
n∑
j=1

|〈uj , f〉|2 . (4.4)

Since the left hand side is non-negative, we have that for any finite orthonormal set {u1, . . . , un},

n∑
j=1

|〈uj , f〉|2 ≤ ‖f‖2 . (4.5)

Now suppose that H contains an uncountable orthonormal set {uj}j∈J . (Hence J is some

uncountable set.) For any f ∈ H, if |〈f, uj〉| > 0 for uncountably many j ∈J , there is some n ∈ N
such that |〈f, uj〉| > 1/n for uncountably many j ∈J since

{j : |〈f, uj〉| > 0} =
∞⋃
n=1

{j : |〈f, uj〉| > 1/n}
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and a countable union of countable sets is countable. But then there is a sequence {uj.k}k∈N

such that
∞∑
k=1

|〈f, uj,k〉|2 =∞, and this contradicts (4.5). Therefore, even when H contains an

uncountable orthonormal set {uj}j∈J . |〈f, uj〉| > 0 only for countably many j ∈J , and then we

have from (4.4) that ∑
j∈J

|〈uj , f〉|2 ≤ ‖f‖2 . (4.6)

Summarizing, we have proved:

4.2 THEOREM (Bessel’s Inequality). Let H be a Hilbert space, and let {uj}j∈J be an orthonor-

mal set in H. Then for all f ∈ H, |〈f, uj〉| > 0 only for countably many j ∈ J , and (4.6) is

valid.

4.2 Complete orthonormal sets

4.3 LEMMA. Let {αj}j∈N be any square-summable sequence of complex numbers; i.e,
∞∑
j=1

|αj |2 <∞. Let {uj}j∈N be any orthonormal sequence in a Hilbert space H. Then the sequence{∑n
j=1 αjuj

}
n∈N

is Cauchy and therefore this sequence has a unique limit g ∈ H so that

∞∑
j=1

αjuj = g . (4.7)

Moreover, this sum converges to the same vector no matter how the terms are ordered.

Proof. For each n ∈ N define fn =
n∑
j=1

αjuj . Then for n > m,

‖fn − fm‖2 =

∥∥∥∥∥∥
n∑

j=m+1

αjuj

∥∥∥∥∥∥
2

=
n∑

j=m+1

|αj |2 ≤
∞∑

j=m+1

|αj |2 . (4.8)

Since lim
m→∞

∞∑
j=m+1

|αj |2 = 0, {fn}n∈N is a Cauchy sequence, and then since H is complete, there

exists a unique g ∈ H such that limn→∞ ‖fn − g‖ = 0. This proves (4.7). Since the condition
∞∑
j=1

|αj |2 <∞ holds independent of how the terms in the sum are ordered, the convergence of the

infinite sum in (4.7) holds independent of how the terms in the sum are ordered. For all ε > 0, let

J and K be finite subsets of N such that∑
j /∈J

|αj |2 < ε2/9 and
∑
j /∈K

|αj |2 < ε2/9 . (4.9)

Then

∥∥∥∥∥∥
∑
j∈J

αjuj −
∑

j∈J∪K
αjuj

∥∥∥∥∥∥ ≤ 1

3
ε, and

∥∥∥∥∥∥
∑
j∈K

αjuj −
∑

j∈J∪K
αjuj

∥∥∥∥∥∥ ≤ 1

3
ε. Then by Minkowski’s

inequality,

∥∥∥∥∥∥
∑
j∈J

αjuj −
∑
j∈K

αjuj

∥∥∥∥∥∥ < 2

3
ε. Let J = {1, . . . , n} for n sufficently large that (4.9) is
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valid. By (4.8),

∥∥∥∥∥∥g −
∑
j∈J

αjuj

∥∥∥∥∥∥ < 1

3
ε, and then

∥∥∥∥∥∥g −
∑
j∈K

αjuj

∥∥∥∥∥∥ < ε. This shows that the sequence

of partial sums tends to g no matter how the terms are ordered.

Let {uj}j∈J be an orthonormal set in H and let f ∈ H. By Theorem 4.2,
∑
j∈J

|〈uj , f〉|2 <∞,

and then by Lemma 4.3,

g :=
∑
j∈J

〈uj , f〉uj (4.10)

is a well-defined element ofH. Notice that for each j ∈J , 〈uj , g〉 = 〈uj , f〉 and hence 〈f−g, uj〉 = 0

for all j ∈J . This brings us to the following definition:

4.4 DEFINITION (Complete orthonormal set). Let H be a Hilbert space and let {uj}j∈J be an

orthonormal set in H. Then {uj}j∈J is a complete orthonormal set in H in case the only vector

f ∈ H such that 〈uj , f〉 = 0 for all j is f = 0. A complete orthonormal set in H is also called an

orthonormal basis for H.

We have shown just above that if {uj}j∈J is any orthonormal set in H and f is any vector in

H, g :=
∑

j∈J 〈uj , f〉uj is a well-defined vector in H such that 〈f − g, uj〉 = 0 for all j ∈ J . If

{uj}j∈J is complete, this means that f − g = 0, and hence for all f ∈ H.

f =
∑
j∈J

〈uj , f〉uj . (4.11)

4.5 THEOREM (Parseval’s Theorem). Let {uj}j∈J be a complete orthonormal set in a Hilbert

space H. Then for all f ∈ H, (4.11) is valid, and

‖f‖2 =
∑
j∈J

|〈uj , f〉|2 . (4.12)

Proof. It remains only to prove (4.12). Note that∥∥∥∥∥∥
∑
j∈J

〈uj , f〉uj

∥∥∥∥∥∥
2

=
∑
j∈J

|〈uj , f〉|2 ,

so if
∑
j∈J

|〈uj , f〉|2 6= ‖f‖2, then (4.11) cannot be valid, and this is a contradiction.

4.3 Separability

A metric space is separable in case it contains a countable dense set. Hilbert spaces are, in particular,

metric spaces and hence a separable Hilbert space H is one that contains a dense sequence {fn}n∈N

of vectors. To avoid trivialities, suppose that H is infinite dimensional as well as separable. Let

{fn}n∈N be any dense sequence in H. Discard the vector fn in case fn ∈ span({f1, . . . , fn−1}).
Let gk denote the kth retained vector. Then {gk}k∈N is linearly independent and span ({gk}k∈N) is

dense in H.
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Applying Theorem 2.8 to {gk}k∈N we obtain an orthonormal sequence {uk}k∈N such that

span ({uk}k∈N) = span ({gk}k∈N), and hence such that span ({uk}k∈N) is dense. This shows that

every separable Hilbert space H contains an orthonormal sequence {uk}k∈N whose span is dense in

H.

Such an orthonormal sequence is necessarily complete, as we show next:

4.6 LEMMA. Let H be a Silbert sapce and let {un}n∈N be an orthonormal sequence in H such

that span({un}n∈N) is dense in H. Then {un}n∈N is complete.

Proof. Suppose f ∈ H and 〈uk, f〉 = 0 for all k ∈ N. Since span ({uk}k∈N) is dense in H, for all

ε > 0, there exists for n ∈ N and coefficients α1, . . . , αn such that ε ≥

∥∥∥∥∥∥f −
n∑
j=1

αjuj

∥∥∥∥∥∥. Then using

(??) and the orthogonality hypothesis,

ε ≥

∥∥∥∥∥∥f −
n∑
j=1

αjuj

∥∥∥∥∥∥ ≥
∥∥∥∥∥∥f −

n∑
j=1

〈f, uj〉uj

∥∥∥∥∥∥ = ‖f‖ .

Since ε > 0 is arbitrary, ‖f‖ = 0.

4.7 THEOREM. A Hilbert space H is separable if and only if exists there exists a sequence

{uk}k∈N that is orthonormal and complete.

Proof. We have already proved that if H is separable, then H contains a sequence {uk}k∈N that

is orthonormal and complete. Therefore, suppose that H contains a sequence {uk}k∈N that is

orthonormal and complete. Then for all f ∈ H, f =
∞∑
k=1

〈uk, f〉uk and

∥∥∥∥∥f −
∞∑
k=1

αkuk

∥∥∥∥∥
2

=
∞∑
k=1

|〈uk, f〉 − αk|2 .

For any ε > 0, we may choose an n ∈ N and α1, . . . αn, each of whose real and imaginary parts are

rational, such that

n∑
k=1

|〈uk, f〉 − αk|2 <
1

2
ε and

∞∑
k=n+1

|〈uk, f〉|2 <
1

2
ε .

It follows that with g =

n∑
k=1

αkuk, ‖f − g‖ < ε. Thus, the set of finite linear combinations of the

vectors in {uk}k∈N with coefficients whose real and imaginary parts are rational is dense in H.

Evidently this set is countable, and hence H is separable.

Notice that if H is any separable Hilbert space, and {uj}j∈N is any orthonormal basis in H,

then the transformation that sends f ∈ H to the sequence whose jth term is 〈uj , f〉 is a linear

isometry of H onto `2. That is, every separable Hilbert space can be mapped onto `2 by a linear

isometry.
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4.8 EXAMPLE (Fourier series). Let H = L2(S1,BS1 ,m) be the Hilbert space of Borel func-

tions f(θ) on the unit circle that are square integrable with respect to Lebesgue measure m on S1

normalized so that µ(S1) = 1.

It is then readily checked that with uj defined by un(θ) = einθ, {un}n∈Z is orthonormal. By the

Stone-Wierstrass Theorem, every continuous function on S1 can be approximated arbitrarily well

in the uniform metric by a finite linear combination of the vectors in our orthonormal set. Since

for continuous functions f, g on S1,(∫
S1

|f − g|2dµ

)1/2

≤ max
θ
{|f(θ)− g(θ)|} ,

the span of {un}n∈Z is dense in the set continous function on S1 equipped with the norm metric

inherited from H.

Since the continuous functions are dense in H, and for any f ∈ H and any ε > 0, we can find

a continuous function g such that ‖f − g‖ < ε, and then a function p in the span of {un}n∈Z such

that ‖g − p‖ < ε/2. Then ‖f − p‖ < ε, and hence the span of {un}n∈Z is dense in H. Then by

Lemma 4.6, {un}n∈Z is complete: Thus, {un}n∈Z is orthonormal basis for H, called the Fourier

basis. It follows that for each f ∈ H,

f = lim
n→∞

n∑
j=−n

〈uj , f〉uj .

The sequence {〈uj , f〉}j∈Z is called the sequence of Fourier coefficients of f . By Parseval’s identiy,

‖f‖2 =
∑
n∈Z

|〈un, f〉|2 .

The map sending f into the (doubly) infnite sequence {〈un, f〉}n∈Z is then a a linear isometry from

H into the Hilbert space of square summable sequences indexed by Z, which we can identify with

`2 using any bijection between N and Z. In fact this isometry is a bijection: As we have seen, if

{αn}n∈Z is any sqaure summable sequence, then g =
∑

n∈Z αnuu is a well defined element of H,

and for each n ∈ Z, 〈un, g〉 = αn. This isometric linear bijection between H onto `2 is the Fourier

transform.

4.9 EXAMPLE (Orthogonal polynomials). For a, b ∈ R, a < b, let B the Borel σ-algebra on [a, b],

and let µ be any finite Borel measure on [a, b]. Let H = L1([a, b],B, µ). Continuous functions are

dense in H, and by the Stone-Wierstrass Theorem, for every continuous function f on [a, b] and

every ε > 0, there is a polynomial p(x) such that max{|f(x) = p(x)| : x ∈ [a, b]} < ε, and then

by the Cauchy-Schwarz inequality, ‖f − p‖ ≤
√
εµ([a, b]). Without loss of generality, we may take

the coefficients of p to have rational real and imaginary parts and the set of such polynomials is

countable. Therefore H is separable.

Moreover, this proves that the sequence of monomials {xn−1}n∈N has a dense span in H, and

therefore, the orthonormal sequence {un}n∈N that is obtained from {xn−1}n∈N via the Gram-Schmidt

Theorem is an orthonormal basis for H such that each un is a polynomial of degree n − 1. The

elements of this basis are uniquely determined up to a multiple by a unit complex number, and

conventionally one chooses the multiple so that the leading coefficient; i.e., the multiple of xn−1, is

positive. This is the canonical orthonormal polynomial basis for H.
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5 The weak topology on a Hilbert space

5.1 Definition of the weak topology

We have seen that the closed unit ball in an infinite dimensional Hilbert space is never compact

in the norm topology. There is however, a natural weaker topology – called the weak topology –

in which the closed unit ball will be compact. The price to pay for this compactness is that the

weaker the topology, the fewer continuous functions there will be. In particular, as we shall see,

the norm function f 7→ ‖f‖ will not be continuous in the weak topology on an infinite dimensional

Hilbert space. However, something almost as useful will be turn out to be true: The norm function

is lower semicontinuous on bounded subsets of H in the relative weak topology.

5.1 DEFINITION (The weak topology in a Hilbert space). The weak topology on a Hilbert

space H is the weakest topology for which all of the functions f 7→ 〈g, f〉, g ∈ H, are continuous.

Let F = {f1, . . . , fn} be a finite subset of H, and let ε > 0. Define the set VF ,ε by

VF ,ε = {g ∈ H : |Lfg| < ε for all f ∈ F} (5.1)

where, as usual, Lfg = 〈f, g〉. Note that the sets V{f},ε, f ∈ H, ε > 0, must be open in any

topology in which Lf is continuous, since if B(ε, z0) denote the open disk of radius ε about 0 in C,

V{f},ε = L−1
f (B(ε, 0)). Moreover,

g0 + V{f},ε = {g ∈ H |Lf (g − g0)| < ε} = L−1
f (B(ε, Lg0)) ,

and hence all transalte of the sets V{f},ε are open in any topology in in which Lf is continuous.

Moreover, VF ,ε =
⋂
f∈F
{g ∈ H |〈f, g〉| < ε}, displays VF ,ε as a a finite intersection of sets that are

open in any topology making Lf continuous for each f ∈ F .

Now define V to be the set of all VF ,ε where F is a finite subset of H, and ε > 0, define the

family O of subsets of H

O := ∅
⋃
{U ⊂ H : for all g ∈ U , there exits Vg ∈ V such that g + Vg ⊂ U} . (5.2)

Evidently, O is closed under arbitrary unions, and H ∈ O. O is also closed under finite

intersections: Let {U1, . . . , Un} ⊂ O, and suppose that g0 ∈ ∩nj=1Uj . For each j, there is a finite

set Fj ⊂ H and and εj > 0 so that g0 + VFj ,εj ⊂ Uj , Let

F =
n⋃
j=1

Fj and ε = min{ε1, . . . , εn} .

Then g0 + VF ,ε ⊂ g0 + VFjεj ⊂ Uj for each j . This shows that ∩nj=1Uj ∈ O, and hence O is a

topology on H.

Moreover, this topology is Hausdorff: Let g0, g1 ∈ H, g 6= g0. Let f = ‖g1 − g0‖−1(g1 − g0) and

let ε = 2
3‖g1 − g0‖. Then |〈f, g1 − g0〉| = ‖g1 − g0‖ = 3

2ε, so that g1 − g2 /∈ V{f},ε). We now claim

that (g1 + V{f},ε/3) ∩ (g1 + V{f},ε/3) = ∅.
To see this, suppose on the contrary that (g1 + V{f},ε/3) ∩ (g1 + V{f},ε/3) 6= ∅. Then there exist

h1, h2 ∈ V{f},ε/3 such that g1 +h1 = g2 +h2, and then g1−g2 = h2−h1 ∈ V{f},ε. This contradiction

proves the claim.
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Therefore, g1 − g0 /∈ V{f},ε and g0 − g1 /∈ V{f},ε. Therefore,

g0 /∈ g1 + V{f},ε and g1 /∈ g0 + V{f},ε .

Evidently, O is the weakest topology containing all of the transaltes of sets in V , and hence is a

topology on H under which ieach Lg is continuous. But since every translate of every V ∈ V must

be open in any topology making each Lg conitnuous, O it is weaker than any other such topology.

This gives us a concrete description of the open sets in the weak topology, and we have proved:

5.2 THEOREM (Open sets in the weak topology on H). A non-empty set U ⊂ H is open in the

weak topology on H if and only if for every g0 ∈ U , there is some ε > 0 and finite F ⊂ H such that

g0 + VF ,ε ⊂ U , and the weak topology is Hausdorff.

Every weakly open set U in an infinite dimensional Hilbert space that contains 0 also contains

a non-zero subspace since if F is a finite subset of H, and K = F⊥, then K is a non-zero subspace

contained in VF ,ε for each ε > 0. If follows immediate that the function f 7→ ‖f‖ is not weakly

continuous, and is not even upper or lower semicontinuous: For a > 0, neither the set ‖·‖−1((a,∞))

nor the set ‖ · ‖−1((−∞, a)) contains a non-zero subspace. In particular, if B(r, f) denote the open

ball of radius r about f , B(r, 0) is open in the strong (i.e., norm) topology, but since it contains

no non-zero subsapce, it is not open in the weak topology. Since each of the functions f 7→ 〈g, f〉
is strongly continuous, the strong topology is at least as strong as the weak topology, and by what

we have just observed, it is strictly stronger when H is infinite dimensional.

5.3 THEOREM. Let H be a Hilbert space. A sequence {fn}n∈N in H has the limit f ∈ H under

the weak topology if and only if for all g ∈ H,

〈g, f〉 = lim
n→∞

〈g, fn〉. (5.3)

Every weakly convergence sequence {fn}n∈N is bounded: supn∈N{‖fn‖} <∞.

Proof. Note that (5.3) is valid if and only if for all ε > 0, |〈g, fn〉 − 〈g, f〉| = |〈g, fn − f〉| < ε for all

but finitely many n, and this is the same as fn ∈ f + V{g},ε for all but finitely many n.

If {fn}n∈N has the weak limit f , then every weakly open set U in H that contains f also contains

fn for all but finitely many n. Since f + V{g},ε is open and contains f for all ε > 0 when {fn}n∈N

has the weak limit f , (5.3) is valid.

On the other hand, suppose that (5.3) is valid for all g ∈ H. Let U be a weak neighborhood of

f . Then there is some finite set F = {g1, . . . , gm} ⊂ H and some ε > 0 such that f + VF ,ε ⊂ U . By

the above, for each j = 1, . . . ,m, f + V{gj},ε contains fn for all but finitely many n. But then

m⋂
j=1

{
f + V{gj},ε

}
= f + VF ,ε ⊂ U

contains fn for all but finitely many n.

Then since convergent sequences in R are bounded, when {fn}n∈N has a weak limit f , for all

g ∈ H, {|〈g, fn〉|}n∈N is a bounded sequence. That is, supn∈N}|Lfn(g)|} < ∞. By the Uniform

Boundedness Principle, supn∈N{‖Lfn‖} <∞, but ‖Lfn‖ = ‖fn‖.
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5.2 Alaoglu’s Theorem for Hilbert Space

5.4 THEOREM (Alaoglu’s Theorem for Hilbert Space). Let H be a Hilbert space and let B =

{f ∈ H : ‖f‖ ≤ 1}. Then B is compact in the weak topology on H.

Proof. For each g ∈ H, let Dg = {z ∈ C |z| ≤ ‖g‖}, which is a closed, bounded set in C and

therefore compact. Let D denote the Cartesian product D :=
∏
g∈H

Dg. equipped with the product

topology. By Tychonoff’s Theorem, D is compact.

By the definition of the Cartesian product, the elements of D are the functions φ on H such

that φ(g) ∈ Dg for each g ∈ H. Let u ∈ B. Let L ⊂ D be the set of functional in D that are

linear; i.e., the functions φ ∈ D such that for all α1, α2 ∈ C and all f1, f2 ∈ H, φ(α1f1 + α2f2) =

α1φ(f1) + α2φ(f2).

The set L is closed in D . To see this, suppose that ψ ∈ D lies in the closure of L . The product

topology, by definition, is the weakest topology making the functions φ 7→ φ(g) continuous for all

g ∈ H. Fix f1, f2 ∈ H and α1, α2 ∈ C. Define g1 = f1, g2 = f2 and g3 = α1f1 + α2f2. Then if

ψ ∈ L and ε > 0, there is a φ ∈ L such that |ψ(gj) − φ(gj)| < ε for j = 1, 2, 3. Then by the

linearity of φ, φ(g3)− α1φ(g1)− α2φ(g2) = 0, and hence

|ψ(α1f1 + α2f2)− α1ψ(f1)− α2ψ(f2)| = |[ψ(g3)− φ(g3)] + α1[φ(g1)− ψ(g1)] + α2[φ(g2)− ψ(f2)]|
≤ (1 + |α1|+ |α2|)ε .

Since ε > 0 is arbitrary, ψ(α1f1 +α2f2)−α1ψ(f1)−α2ψ(f2) = 0, and hence ψ is linear. Therefore,

L is a closed subset of a compact set, and hence is compact.

Now notice that if φ ∈ L , then for all g ∈ H, |φ(g)| ≤ ‖g‖, and hence ‖φ‖∗ ≤ 1. Conversely, if

L ∈ H∗, and ‖L‖∗ ≤ 1, then L is a linear function on H and L(g) ∈ Dg for all g ∈ H. Therefore,

L ∈ L . That is, as a set, L = {L ∈ H∗ : ‖L‖∗ ≤ 1}. By the Reisz Representation Theorem, this

is the same as

L = {Lf : f ∈ B}

and thus the map g 7→ Lg is a one-to-one map from B onto L . The product topology on D is the

weakest topology making all of the maps φ 7→ φ(g) continuous, and so the topology induced on

B is the weakest topology making all of the maps f 7→ 〈f, g〉 continuous, but this is precisely the

weak topology. Hence B is compact in the weak topology.

There is a price to pay for having weakened the topology on H enough to make B compact.

5.3 Non-metrizability and metrizability

5.5 THEOREM (Non-metrizability of the weak topology). Let H be an infinite dimensional

Hilbert space. There is no metric ρ on H such that the metric topology on H coincides with the

weak topology on H.

Proof. Let ρ be a metric on H. For r > 0, define Bρ(r, 0) := {f ∈ H : ρ(f, 0) < r}. Suppose

that the weak topology is at least as strong as the corresponding metric topology. Then for

each n ∈ N Bρ(1/n, 0) is weakly open set, and hence for some finite set Fn and some εn > 0,

VFn,εn ⊂ Bρ(1/n, 0). Let Kn = span(Fn). Then K⊥n is a non-zero subspace contained in VFn,εn and
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hence in Bρ(1/n, 0). Therefore, we can select xn ∈ Bρ(1/n, 0) with ‖xn‖ = n. Then ρ(xn, 0) ≤ 1/n

so that limn→∞ ρ(xn, 0) = 0. However, the sequence {xn} cannot have a weak limit since it is

unbounded. Hence the topology induced by ρ must be strictly weaker than the weak topology.

The situation is better in separable Hilbert spaces. A subset S of H is bounded in case for some

R <∞, ‖f‖ ≤ R for all f ∈ S. The key to the proof of Theorem 5.5 is that every weakly open set

that contains 0 in an infinite dimensional Hilbert space also contains a non-zero subspace. Bounded

subsets of H, and hence relatively weakly open sets in them cannot contain a non-zero subspace,

but to take full advantage of this, we also require that H be separable.

5.6 THEOREM. Let H be a separable Hilbert space. The relative weak topology on bounded

subsets of H is metrizable.

The proof will be based on a sequence of lemmas.

5.7 LEMMA. Suppose that {fn}n∈N is a dense sequence in a Hilbert space H. Define the function

φ : [0,∞)→ [0, 1) by φ(t) = t/(1 + t) Define a function ρ on H×H by

ρ(f, g) =
∞∑
j=1

2−nφ(|〈fn, f − g〉|) ,

noting that the sum is convergent, and, in fact, that ρ(f, g) < 1 for all f, g ∈ H. Then ρ is a metric

on H.

Proof. It is evident that for all f, g ∈ H, ρ(f, g) = ρ(g, f) and that ρ(f, g) ≥ 0 with equality if and

only if 〈fn, f − g〉 = 0, and since {fn}n∈N is dense, this is the case if and only if f = g. It remains

to prove that ρ satisfies the triangle inequality.

Note that φ′(t) = (1 + t)−2 > 0, so that φ is (strictly) monotone increasing. For s, t ≥ 0,

φ(s+ t) =
s+ t

1 + s+ t
=

s

1 + s+ t
+

t

1 + s+ t
≤ φ(s) + φ(t) . (5.4)

For all n ∈ N and all f, g, h ∈ H, by the triangle inequality in C,

|〈fn, (f − h)〉| ≤ |〈fn, (f − g)〉|+ |〈fn, (g − h)〉| .

Then by (5.4),

φ(|〈fn, (f − h)〉|) ≤ φ(|〈fn, (f − g)〉|) + φ(|〈fn, (g − h)〉|) .

It follows immediately that ρ(f, h) ≤ ρ(f, g) + ρ(g, h).

5.8 LEMMA. Suppose that {fn}n∈N is a dense sequence in a Hilbert space H. Let ρ be the metric

constructed in Lemma 5.7. Let Õ denote the weakest topology on H under which all of the functions

g 7→ 〈fn, g〉 are continuous for all n ∈ N. Then the topology defined by the metric ρ is Õ.

Proof. To see that each of the functions g 7→ 〈fn, g〉 is continuous in the metric topology, note that

for all g, h ∈ H, and all n ∈ N,

|〈fn, g〉 − 〈fn, h〉| = |〈fn, g − h〉 ≤ 2nρ(g, h) .
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Thus, for all ε > 0, ρ(g, h) < 2−nε→ |〈fn, g〉−〈fn, g〉−〈fn, h〉| < ε. Hence g 7→ 〈fn, g〉 is continuous

in the metric topology, which is therefore at least as strong as Õ.

To show that the metric topology is no stronger, it suffices to show that for each r > 0 and

each f0 ∈ H, B(r, f0) contains a set V ∈ Õ with 0 ∈ V . For each n ∈ N, define Fn to be the finite

set {f1, . . . , fn}. By the discussion at the beginning of this section, for each n ∈ N and each ε > 0,

the set VFn,ε, defined as in (5.1), belongs to Õ. Fix r > 0, and choose n so that 2−n < r/2. Then

since φ(t) ≤ t,
n∑
j=1

2−nφ(|〈fj , f〉|) ≤
n∑
j=1

2−n|〈fj , f〉| ,

So that if f ∈ VFn,r/2, |〈fj , f〉| ≤ r/2 for all j = 1, . . . , n.
n∑
j=1

2−nφ(|〈fj , f〉|) ≤ r/2, and hence

ρ(f, 0) < r. That is, for this choice of n, VFn,r/2 ⊂ B(r, 0).

It is evident that the topology Õ is at least as weak as the weak topology. By Theorem 5.5 and

Lemma 5.8, it is strictly weaker.

5.9 LEMMA. Suppose that {fn}n∈N is a dense sequence in a Hilbert space H. Let Õ be the

topology introduced in Lemma (5.8). Then on bounded subsets S of H the relative Õ topology

coincides with the relative weak topology.

Proof. As we have remarked just above, Õ is strictly weaker than the weak topology on all of H.

Let S be a bounded subset of H. Then evidently the relative topology on a S induced by Õ is no

stronger than the relative weak topology on S.

It suffices to show that every relatively weakly open set in S is open in the relative Õ topology.

For this, it suffices to show that for any finite subset F = {g1, . . . , gn} of H and any ε > 0, There

is a subset F̃ = {fn1 , . . . , fnk
} of {fn}n∈N such that

VF̃ ,ε/2 ⊂ VF ,ε . (5.5)

Let C denote the finite constant such that ‖h‖ ≤ C for all h ∈ S. Then, for all h ∈ S, and

j = 1, . . . .n, there exists hj ∈ N such that ‖fnj − gj‖ < ε/(2C). But then for all h ∈ S,

|〈gj , h〉 − 〈fnj , h〉| ≤ ‖gj − fnj‖‖h‖ < ε/2 .

Therefore, |〈fnj , h〉| < ε/2 → |〈gj , h〉| < ε. That is, for each j, Vfnj ,ε/2
⊂ Vgj ,ε. Taking the

intersection over j = 1, . . . , n, we obtain (5.5).

Proof of Theorem 5.6. This is a direct consequence of the last three lemmas.

5.10 COROLLARY (Corollary of Theorem 5.6). Let S be a weakly closed, bounded subset of a

separable Hilbert space H. Then from every infinite sequence {fn}n∈N in H, it is possible to extract

a subsequence {fnk
}n∈N that converges weakly to some f ∈ S.

Proof. By Theorem 5.6, the relative weak topology on S is metrizable, and by Alaoglu’s Theo-

rem, S is compact in the relative weak topology. In metric space, compactness implies sequential

compactness.
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Corollary 5.10 will be useful one we have useful methods for identifying weakly closed subsets

of H. We already know, from Alaoglu’s Theorem, that norm closed unit ball B is weakly compact,

and therefore weakly closed. In the next section we shall prove a significant generalization of this:

Every norm closed convex set is weakly closed.

6 From weak convergence to norm convergence

6.1 Separation theorems

6.1 THEOREM. Let K be a non-empty, closed convex set in a Hilbert space H, and let f ∈ H
with f /∈ K. Then there exists ε > 0 and g0 ∈ H such that

<(〈g0, h〉) ≥ ε+ <(〈g0, f〉) for all h ∈ K . (6.1)

Proof. Let Kf = K − f = {h − f : h ∈ K}. Since Kf is a non-empty closed convex set, the

Projection Lemma provides the existence of a unique element g0 ∈ Kf of minimal norm, and since

f /∈ K, g0 6= 0. Hence for all h ∈ K and t > 0,

‖t(h− f) + (1− t)g0‖2 ≥ ‖g0‖2

The left hand side equals ‖g0 + t(h− f − g0)‖2 = ‖g0‖2 + 2t<(〈g0, h− f − g0〉) + t2‖h− f − g0‖2.

Therefore,

<(〈g0, h− f − g0〉) +
t

2
‖h− f − g0‖2 ≥ 0

for all t ∈ (0, 1), and hence <(〈g0, h − f − g0〉) ≥ 0. This is the same as <(〈g0, h − f〉) ≥ ‖g0‖2,

which, for ε = ‖g0‖2 > 0, yields (6.1).

For g ∈ H and λ ∈ R, define the half-space

Hg,λ = {h ∈ H : <(〈g, h〉) ≥ λ} . (6.2)

since the function h 7→ <(〈g, h〉) is weakly continuous, Hg,λ is weakly closed. Theorem 6.1 says

that if K be a non-empty, closed convex set in a Hilbert space H, and f ∈ H but f /∈ K, there is

a closed half space Hg,λ such that K ⊂ Hg,λ but f /∈ Hg,λ. Therefore,

K =
⋂
{Hg,λ : K ⊂ Hg,λ} .

This displays K as the intersection of weakly closed sets, and we have proved:

6.2 THEOREM. Let H be a Hilbert space. Every norm closed convex set K ⊂ H is weakly closed.

6.2 A condition under which weakly convergence implies norm convergence

Combining corollary 5.10 and Theorem 6.2, we conclude that in a closed, bounded convex subset

K of a separable Hilbert space H, one can extract a weakly convergent subsequence {fnk
}k∈N from

any infinite sequence {gn}n∈N in K.

It is useful to know when such a sequence also converges in the norm topology. The next

theorem, provides a useful criterion.
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6.3 THEOREM. Let H be a Hilbert space, and let {fn}n∈N be a weakly convergent sequence in

H with limit f . Then

‖f‖ ≤ lim inf
n→∞

‖fn‖ , (6.3)

and if ‖f‖ = limn→∞ ‖fn‖, then limn→∞ ‖f − fn‖ = 0. That is, weak convergence, together with

convergence of the norms, implies norm convergence.

Proof. Suppose on the contrary that ‖f‖ > lim infn→∞ ‖fn‖. Then for some ε > 0, there is a

subsequence {fnk
}k∈N such that ‖fnk

‖ ≤ ‖f‖ − ε for all k ∈ N. But since the subsequence also

converges weakly to f ,

‖f‖2 = <(〈f, f〉) = lim
k→∞

<(〈f, fnk
〉) ≤ ‖f‖‖fnk

‖ ≤ ‖f‖(‖f‖ − ε) ,

which is impossible. This proves (6.3).

Now suppose that ‖f‖ = limn→∞ ‖fn‖. Since

‖f − fn‖2 = ‖f‖2 + ‖fn‖2 − 2<(〈f, fn〉) ,

lim
n→∞

‖f − fn‖2 = ‖f‖2 + lim
n→∞

‖fn‖2 − 2 lim
n→∞

2<(〈f, fn〉) = 0 .

7 Excercises

1. Let H be a separable, infinite dimensional Hilbert space, and let {un}n∈N be an orthonormal

basis for H. Let {cj}∈N be a given sequence of non-negative numbers, and define

Let C ⊂ H be defined by

C = {f ∈ H : ‖f‖ ≤ 1 and |〈uj , f〉| ≤ cj for all j} .

Show that C is always closed and bounded, but is compact if and only if
∑∞

j=1 c
2
j <∞. Taking

each cj = 1, C becomes the unit ball in H, and thus the unit ball is not compact.

2. For real valued square integrable functions f on [−1, 1], compute

max{
∫

[−1,1]
x3f(x)dm :

∫
[−1,1]

xjf(x)dm = 0 for j = 0, 1, 2 and

∫
[−1,1]

f2(x)dm = 1}

3. Show that if E is any Borel set in (0, 2π] then

lim
j→∞

∫
E

cos(jx)dm = lim
j→∞

∫
E

sin(jx)dm = 0 .

Next, consider any increasing sequence {nk} of the natural numbers. Define E to be the set of

all x for which

lim
k→∞

sin(nkx) exists .

Show that m(E) = 0. (The identity 2 sin2 x = 1− cos(2x) and the first part may prove useful.)

4. Prove the polarization identity (1.7).
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