Homework Assignment 7, Math 502, Spring 2017

Eric A. $Carlen^1$

Rutgers University

April 17, 2017

1. Let t > 0, and let $d\nu_t = \gamma_t(x)dx$. Define the variance-t Hermite polynomials, $\{h_n^{(t)}\}_{n \ge 0}$ to be the orthonormal sequence one obtains by applying the Gram-Schmidt algorithm to the sequence $\{x^n\}_{n \ge 0}$. Find formulas for

$$\frac{\mathrm{d}}{\mathrm{d}x}h_n^{(t)}(x)$$
 and $xh_n^{(t)}(x)$

as linear combinations of the variance-t Hermite polynomials

2. Define $F := \{ f \in L^1 : \hat{f} \in L^1 \}.$

(a) Show that for all $p \in [1, \infty]$, $f \in L^p$ and $||f||_p \leq ||f||_1^{1/p} ||\widehat{f}||_1^{1-1/p}$, and that F is dense in L^p for all $p \in [1, \infty)$. *Hint: for* $f \in L^1 \cap L^2$, consider $\gamma_t * f$.

(b) For $f \in L^1$, define

$$\check{f}(x) := \int_{\mathbb{R}} e^{i2\pi kx} f(k) \mathrm{d}k$$
.

Show that for all $f \in F$, $\check{f}(x) = f(x)$.

3. Let $f \in L^2$. Let V denote the norm closure of the span of translates of f, i.e., the functions $\tau_a f$, $a \in \mathbb{R}$. Show that $V = L^2$ if and only the set $\{k \in \mathbb{R} : \widehat{f}(k) = 0\}$ is a set of measure zero.

4. Let A and B be be bounded, closed intervals in \mathbb{R} . Define a function K(x, y) on \mathbb{R}^2 by

$$K(x,y) = \int_{\mathbb{R}} e^{i2\pi k(y-x)} \mathbf{1}_B(k) \mathbf{1}_A(y) \mathrm{d}k \; .$$

(a) Show $f \mapsto \int_{\mathbb{R}} K(x, y) f(y) dy =: T_K f$ defines a Hilbert-Schmidt operator on $L^2(\mathbb{R})$.

(b) Use the result of part (a) to show that the only function $f \in L^2$ such that f has support in A and \hat{f} has support in B is the zero function.

 $^{^{1}}$ © 2017 by the author.