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1. Let φ be the function defined on R by φ(s) =

{
1
2s

2 |s| < 1

|s| − 1/2 s ≥ 1 .
.

(a) Show that φ is convex and continuous, and is an Orlicz function.

(b) Compute φ∗ and φ∗∗, with the latter computation giving a direct verification of the Fenchel-

Moreau Theorem in this case.

(c) Let (Lφ, ‖ · ‖φ) be the associated Orlicz space for the measure space (R,B,dx), where dx

denotes Lebesgue measure. Consider the functions fβ = |x|−β, β ∈ (1/2, 1) Show that none of

these functions belong to Lp for any 1 ≤ p ≤ 2, but that each of them belongs to Lφ.

(d) Show moreover that if f ∈ Lφ there exist functions g ∈ L1 and h ∈ L2 such that f = g + h,

and show that L1 ⊂ Lφ and L2 ⊂ Lφ. What is the relation between Lφ and the Banach space

considered in Folland’s Exercise 4, chapter 6 for p = 1 and r = 2?

SOLUTION (a) The function φ is continuously differentiable with φ′(s) = s for |s| ≤!, φ′(s) = 1

for s ≥ 1 and φ′(s) = −1 for s < −1. Since the derivative is non-decreasing, φ is convex. It follows

that ∂φ(R) = [−1, 1], and that for each y ∈ [−1, 1], t ∈ ∂φ(t). Since φ′(1) = 1, {1} = ∂φ(1), and

evidently limt→∞ φ(t) =∞. Hence φ is an Orlicz function.

For (b), by the cases of equality in Young’s inequality, φ(s) + φ∗(t) = xy when s = t (so that

t ∈ ∂φ(s)). Hence for y ∈ [−1, 1], φ∗(t) = t2 − t2/2 = t2/2. For |t| > 1, φ∗(t) =∞. Thus,

φ∗(t) =

{
1
2 t

2 |t| ≤ 1

∞ |t| > 1 .
.

The same reasoning with cases of equality in Young’s inequality shows that φ∗∗(s) = φ(s), and

indeed, this is how one proves the Fenchel-Moreau Theorem.

For (c), no power of |x| is intolerable on (R,B, dx), so fβ /∈ Lp for any p. Now note that for

t > 0, ∫
R
φ

(
fβ(x)

t

)
dx ≤

∫
[−t,t]c

1

2

|x|−2β

t2
dx+

∫
[−t,t]

|x|−β

t
dx =

1

2β − 1
t−2β−1 +

2

1− β
t−β .

Evidently, when β ∈ (1/2, 1), this can be made smaller than φ(1) = 1/2 by choosing t large enough.
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For (d), recall that ∫
R
φ

(
|f(x)|
‖f‖φ

)
dx ≤ φ(1) =

1

2
.

Define A = {x : |f(x)| ≥ ‖f‖φ}. Then

1

2
≥

∫
A
φ

(
|f(x)|
‖f‖φ

)
dx+

∫
Ac

φ

(
|f(x)|
‖f‖φ

)
dx

≥
∫
A

|f(x)|
‖f‖φ

dx+

∫
Ac

1

2

(
|f(x)|
‖f‖φ

)2

dx

It is evident from this that if we define g := f1A and h := f1Ac that g ∈ L1, h ∈ L2 and g = g+ h.

Next, for f ∈ L1, t > 0, define B := {x : |f(x)| > t}.∫
R
φ

(
|f(x)|
t

)
dx ≤

∫
Bc

1

2

|f(x)|2

t2
dx+

∫
B

|f(x)|
t

dx ≤ 1

t
‖f‖1

since on Bc, |f |2/t2 ≤ |f |/t. Likewise, for f ∈ L2,∫
R
φ

(
|f(x)|
t

)
dx ≤

∫
Bc

1

2

|f(x)|2

t2
dx+

∫
B

|f(x)|
t

dx ≤ 1

t2
‖f‖22

since on B, |f |2/t2 ≥ |f |/t. altogether, we see that when for f ∈ L1, ‖f‖φ ≤ 2‖f‖1 and for f ∈ L2,

‖f‖φ ≤
√

2‖f‖2. This shows that the norm ‖ · ‖L1+L2 on L1 +L2 from Folland’s Exercise 4, chapter

6 satisfies ‖ · ‖φ ≤ 2‖ · ‖L1+L2 , and we have seen that the functions in Lφ are precisely the functions

in L1 + L2. Since L1 + L2 is complete in both of these norms, it is a consequence of the open

mapping theorem that the two norms are equivalent.

2. Let X be a non-reflexive Banach space. Let φ ∈ X∗∗ be such the φ is not in the image of X

under the canonical embedding of X into X∗∗. Let H := ker(φ), which is a closed subspace of X∗.

(a) Show that the function x 7→ |||x||| defined by

|||x||| = sup{|L(x)| : L ∈ H and ‖L‖ = 1}

is a norm on X such that for all x ∈ X, |||x||| ≤ ‖x‖.
(b) Show that (X, ||| · |||) is a Banach space.

(c) Show that H is a norming subspace of X∗, meaning that there exists a c ∈ (0, 1) such that for

all x ∈ X,

sup{|L(x)| : L ∈ H and ‖L‖ = 1} ≥ c‖x‖ .

SOLUTION We may assume that ‖φ‖∗∗ = 1. Since ||| · ||| is defined as the supremum of a family of

convex and homogeneous functions, it is evident that ||| · ||| is convex and homogeneous. It remains

to show that |||x||| > 0 for x 6= 0.

To show this, we begin with a general observation. Let (Y =, ‖ · ‖) be a Banach space. Let

L,M ∈ Y ∗ with {L,M} linearly independent. Then ker(L) 6⊂ ker(M) and ker(M) 6⊂ ker(L). To

prove this, it suffices by symmetry to show that ker(M) 6⊂ ker(L).
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Since L 6= 0, there is some y0 such that L(y0) = 1. Then for all y ∈ Y , y = (y−L(y)y0)+L(y)y0,

and (y − L(y)y0) ∈ ker(L). Then if ker(M) ⊂ ker(L), it follows that

M(y) = M(y − L(y)y0) +M(L(y)y0) = M(y0)L(y) .

Since y is arbitrary, this means that M = L(y0)L, and this contradicts the linear independence of

{L,M}. Hence ker(M) 6⊂ ker(L).

To apply this to the problem at hand, we take Y = X∗, and then for any x ∈ X, x 6= 0, consider

the set {φ, φx} in Y ∗ = X∗∗. For all α ∈ C, αφx = φαx, which is in the image of X under the

canonical embedding, and so by hypothesis φ 6= αφx for any x ∈ C. That is, {φ, φx} is linearly

independent. By the observation made above, there exists Lx ∈ ker(φ) such that Lx /∈ ker(φx), and

we may assume that ‖Lx‖∗ = 1. . Hence, by the definition of ||| · |||,

|||x||| ≥ |Lx(x)| > 0 .

For the rest of of this problem, we need to “upgrade” this qualitative result to a quantitative

result. Here is an additional pice of information that has not been used so far: The image V of

X under the canonical embedding in X∗∗ is a closed subspace of X∗∗, and hence for some r > 0,

BX∗∗(r, φ) ∩ V = ∅. That is, for all z ∈ X, ‖φ − φz‖∗∗ ≥ c. Fixing x 6= 0, and replacing z by αx,

so that φz = αφx, we have that infαC ‖φ− αφx‖ ≥ c, with c > 0 independent of x.

0.1 LEMMA. Let (Y, ‖ · ‖) be a Banach space. Let L,M ∈ Y ∗ with ‖M‖∗, ‖L‖∗ = 1, and suppose

that for some c > 0,

inf
α∈C
‖M − αL‖∗ ≥ c . (0.1)

Then

sup {|M(z)| : z ∈ ker(L) and ‖z‖ ≤ 1} ≥ c

2
. (0.2)

Proof. For any ε > 0, we may choose y0 ∈ Y such that ‖y0‖ ≤ 1 + ε and L(y0) = 1. Then for all

y ∈ Y ,

y = (y − L(y)y0) + L(y)y0 ,

and y − L(y)y0 ∈ ker(L). Then M(y) = M(y − L(y)y0) +M(y0)L(y), which yields

|M(y)−M(y0)L(y)| = |M(y − L(y)y0)| .

By (0.1), there is y ∈ Y , ‖y‖ = 1, such that |M(y) −M(y0)L(y)| ≥ c − ε. Therefore, |M(y −
L(y)y0)| ≥ c−ε, and ‖y−L(y)y0‖ ≤ 2+ε. It follows that if we define z = ‖y−L(y)y0‖−1(y−L(y)y0),

then ‖z‖ = 1, z ∈ ker(L), and M(z) ≥ (c− ε)/(2 + ε). Since ε > 0 is arbitrary, (0.2) is proved.

We now apply the problem at hand in the case Y = X∗, and we take φ ∈ X∗∗, ‖φ‖∗∗ = 1 that

is not in the range of the canonical injection of X into X∗∗, and we take x ∈ X, ‖x‖ = 1 so that

‖φx‖ = 1. Then as explained above, for some c > 0 independent of x,

inf{‖φ− αφx‖∗∗ ;α ∈ C} > c .

It follows from the lemma that there exists Mx ∈ X∗ such that ‖Mx‖ = 1, Mx ∈ ker(φx) and

|φ(Mx)| ≥ c/3.
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Now for any L ∈ X∗ with ‖L‖∗ = 1, write

L =

(
L− φ(L)

φ(Mx)
Mx

)
+

φ(L)

φ(Mx)
Mx .

Since Mx ∈ ker(φx), x ∈ ker(Mx), and hence

L(x) =

(
L− φ(L)

φ(Mx)
Mx

)
(x) .

However,

(
L− φ(L)

φ(Mx)
Mx

)
∈ ker(φ) and

∥∥∥∥L− φ(L)

φ(Mx)
Mx

∥∥∥∥ ≤ ‖L‖+
|φ(L)|
|φ(Mx)|

‖Mx‖ = 1 +
3

c
.

Therefore,

sup{|L(x)| : L ∈ X∗ , ‖L‖∗ = 1} ≤
(

1 +
2

c

)
sup{|L(x)| : L ∈ ker(φ) , ‖L‖∗ = 1} .

That is, for all x with ‖x‖ = 1,

|||x||| ≤ ‖x‖ ≤
(

1 +
3

c

)
|||x||| ,

and by homogeneity, this is true in general. The completeness of X in the norm ||| · ||| follows

immediately from the completeness of X in the norm ‖ · ‖.

3. Let X be a Banach space. Let Y be a closed subspace. and let K be a norm-compact subset of

X. Show that Y +K is closed.

SOLUTION Let z ∈ X, z /∈ Y + K. We must find an s > 0 such that B(s, z) ∩ {Y + K} = ∅.
This is the case if and only if for all w ∈ B(s, 0), y ∈ Y and x ∈ K, z + w 6= y + x, which is the

same as z − y 6= x− w. That is,

B(s, z) ∩ {Y +K} = ∅ ⇐⇒ {z + Y } ∩ {B(s, 0) +K} = ∅ .

Since Y is closed, z+Y is closed, and since z /∈ Y +K, {z+Y }∩K = ∅. Hence for each x ∈ K,

there exists rx > 0 such that {z + Y } ∩ B(2rx, x) = ∅. The totality of the sets B(rx, x), x ∈ K
is evidently an open cover of K. Since K is compact, there exists a finite set {x1, . . . , xn} ⊂ K

such that K ⊂ ∪nm=1B(rxm , xm). Now define s = min{rx1 , . . . , rxm}. Consider any xinK, Then for

some m, x ∈ B(rxm , xm), and hence

B(s, x) ⊂ B(rxm + s, xm) ⊂ B(2rxm , xm) ,

and {z + Y } ∩ B(2rxm , xm) = ∅. Hence {z + Y } ∩ B(s, x) = ∅, and since x ∈ K is arbitrary, the

proof is complete,.

4. Let (X, ‖ · ‖) be a uniformly convex and uniformly smooth Banach space. Let K be non-empty

norm-closed convex subset of X. Use the uniform convexity and smoothness to show that for all

x /∈ K, there exists L ∈ X∗ and a < b in R such that for all y ∈ K,

<(L(x)) = b > a ≥ <(L(y)) .

Hint: Consider Theorem 3.5.4 from the Hilbert space chapter in the text version of the notes.
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SOLUTION K−x is norm-closed convex subset of X that does not contain 0. By the Projection

Lemma for uniformly convex spaces, there exists a unique y0 ∈ K such that ‖x− y0‖ < ‖x− y‖ for

all y ∈ K, y 6= y0.

Let y ∈ X − x, t ∈ [0, 1]. Since K − x is convex, (1− t)y0 + ty ∈ K − x. Therefore,

‖x− y0 + t(y − y0)‖ ≥ ‖x− y0‖ (0.3)

for all t ∈ [0, 1]. Since X is uniformly smooth, the norm function ‖ · ‖ is Frechet differentiable

at all non-zero vectors, and hence at x − y0, and if Lx−y0 is the unit vector in X∗ such that

Lx−y0(x− y0) = ‖x− y0‖ (which is unique by the uniform convexity of X),

‖x− y0 + t(y − y0)‖ = ‖x− y0‖+ t<(Lx−y0(y − y0)) + o(t) . (0.4)

Combining this with (0.3), we have that t<(Lx−y0(y − y0))) + o(t) ≥ 0 for all t ∈ [0, 1]. (Note that

(0.4) is valid without restriction on the sign of t.) Dividing through by t > 0, and taking the limit

t→ 0, we obtain

<(Lx−y0(y − y0)) ≥ 0 .

Then since

<(Lx−y0(y − y0)) = <(Lx−y0((y − x) + (x− y0)) = <(Lx−y0(y))−<(Lx−y0(x)) + ‖x− y0‖ ,

if we define L = −Lx−y0 ,

<(L(y)) ≤ <(L(x))− ‖x− y0‖ ≥ 0 ,

which gives us what we seek.


