Homework Assignment 6, Math 502, Spring 2017

Eric A. Carlen?
Rutgers University

April 9, 2017

352 |s| <1

Is|—1/2 s>1.

(a) Show that ¢ is convex and continuous, and is an Orlicz function.

1. Let ¢ be the function defined on R by ¢(s) = {

(b) Compute ¢* and ¢**, with the latter computation giving a direct verification of the Fenchel-
Moreau Theorem in this case.

(c) Let (Lg,|| - |l¢) be the associated Orlicz space for the measure space (R,B,dxz), where dx
denotes Lebesgue measure. Consider the functions fg = lz|=#, B € (1/2,1) Show that none of
these functions belong to LP for any 1 < p < 2, but that each of them belongs to L.
(d) Show moreover that if f € L, there exist functions g € L' and h € L? such that f = g + h,
and show that L' C Ly and L? C Ly. What is the relation between L? and the Banach space
considered in Folland’s Exercise 4, chapter 6 for p =1 and r = 27
SOLUTION (a) The function ¢ is continuously differentiable with ¢'(s) = s for |s| <!, ¢/(s) =1
for s > 1 and ¢/(s) = —1 for s < —1. Since the derivative is non-decreasing, ¢ is convex. It follows
that 0¢(R) = [—1,1], and that for each y € [—1,1], t € d¢(t). Since ¢'(1) = 1, {1} = d¢p(1), and
evidently lim;_,o ¢(t) = co. Hence ¢ is an Orlicz function.

For (b), by the cases of equality in Young’s inequality, ¢(s) + ¢*(t) = xy when s =t (so that
t € O¢(s)). Hence for y € [—1,1], ¢*(t) = t? — t2/2 = t2/2. For |t| > 1, ¢*(t) = co. Thus,

142
¢*(t) =4 :
oo t|>1.

The same reasoning with cases of equality in Young’s inequality shows that ¢**(s) = ¢(s), and
indeed, this is how one proves the Fenchel-Moreau Theorem.
For (c), no power of |z| is intolerable on (R, B,dz), so fz ¢ L? for any p. Now note that for

t>0,
f5(x) 1|x|=% Bl I _9p1 2 3
<b< dacg/ = d:):+/ dz = t + ——t".
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Evidently, when 8 € (1/2,1), this can be made smaller than ¢(1) = 1/2 by choosing ¢ large enough.
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For (d), recall that

[o(fi)orzer-3

Define A = {z : |f(z)| > ||fll4}. Then

; 2 /¢<||f|!¢) [ o () o
sy, [ (U )

1
~ Ja ”fH¢ c2
It is evident from this that if we define g :== f14 and h := fle that g € L', h € L? and g = g + h.
Next, for f € L', t > 0, define B := {z : |f(z)| > t}.

fo(Ll)ars [ WO, [ UGy, < 2y,

since on B¢, |f|?/t* < |f|/t. Likewise, for f € L?,

fo(Ll)qr< [ SO G [ M0lay < Ly

since on B, |f|?/t? > |f|/t. altogether, we see that when for f € L', ||f|ls < 2| f|1 and for f € L2,
| fll¢ < V2| f|l2. This shows that the norm ||+||z1, 72 on L' + L? from Folland’s Exercise 4, chapter
6 satisfies || - || < 2| -|/z14 12, and we have seen that the functions in L are precisely the functions

in L' + L%, Since L' + L? is complete in both of these norms, it is a consequence of the open
mapping theorem that the two norms are equivalent.

2. Let X be a non-reflexive Banach space. Let ¢ € X** be such the ¢ is not in the image of X
under the canonical embedding of X into X**. Let H := ker(¢), which is a closed subspace of X*.

(a) Show that the function z +— ||z defined by
lzll = sup{|L(z)] : L e H and [L|=1}

is a norm on X such that for all z € X, ||z| < ||z]|.
(b) Show that (X, || - ||) is a Banach space.

(c) Show that H is a norming subspace of X*, meaning that there exists a ¢ € (0,1) such that for
all z € X,
sup{|L(z)| : Le H and |L|=1} >c|z| .

SOLUTION We may assume that ||¢[|«« = 1. Since | - || is defined as the supremum of a family of

convex and homogeneous functions, it is evident that || - || is convex and homogeneous. It remains
to show that ||z| > 0 for z # 0.
To show this, we begin with a general observation. Let (Y =,|| - ||) be a Banach space. Let

L,M € Y* with {L, M} linearly independent. Then ker(L) ¢ ker(M) and ker(M) ¢ ker(L). To
prove this, it suffices by symmetry to show that ker(M) ¢ ker(L).



Since L # 0, there is some yg such that L(yp) = 1. Thenforally € Y, y = (y—L(y)yo) + L(y)vo,
and (y — L(y)yo) € ker(L). Then if ker(M) C ker(L), it follows that

M(y) = M(y — L(y)yo) + M(L(y)yo) = M(yo)L(y) -

Since y is arbitrary, this means that M = L(yp)L, and this contradicts the linear independence of
{L,M?}. Hence ker(M) ¢ ker(L).

To apply this to the problem at hand, we take Y = X*, and then for any x € X, x # 0, consider
the set {¢,¢,} in Y* = X**. For all @ € C, apy = Paz, which is in the image of X under the
canonical embedding, and so by hypothesis ¢ # a¢, for any z € C. That is, {¢, ¢} is linearly
independent. By the observation made above, there exists L, € ker(¢) such that L, ¢ ker(¢,), and
we may assume that ||L;|[« = 1. . Hence, by the definition of || - ||,

lzll = [ La ()] > 0.

For the rest of of this problem, we need to “upgrade” this qualitative result to a quantitative
result. Here is an additional pice of information that has not been used so far: The image V of
X under the canonical embedding in X** is a closed subspace of X**, and hence for some r > 0,
Bx«+(r,¢) NV = (). That is, for all z € X, ||¢ — ¢.|[«x > ¢. Fixing x # 0, and replacing z by a,
so that ¢, = a¢,, we have that inf,¢ ||¢ — agy| > ¢, with ¢ > 0 independent of z.

0.1 LEMMA. Let (Y,||-||) be a Banach space. Let L, M € Y* with ||M||., || L|l« = 1, and suppose
that for some ¢ > 0,
inf ||[M — oLl >c. (0.1)
aeC

Then

sup{|M(z)| :z€ker(L) and |z <1} > . (0.2)

N o

Proof. For any € > 0, we may choose yo € Y such that ||yo|| < 1+ € and L(yo) = 1. Then for all
yey,

y = (y = L(y)yo) + L(y)wo ,
and y — L(y)yo € ker(L). Then M(y) = M(y — L(y)yo) + M (yo)L(y), which yields

|M(y) — M(yo)L(y)| = [M(y — L(y)yo)| -

By (0.1), there is y € Y, ||y|| = 1, such that |M(y) — M(yo)L(y)| > ¢ — €. Therefore, |M(y —
L(y)yo)| > c—¢, and |ly—L(y)yo|| < 2+e€. It follows that if we define z = ||y—L(y)oll ~* (y— L(¥)vo),
then ||z|| =1, z € ker(L), and M(z) > (¢ —€)/(2+¢€). Since € > 0 is arbitrary, (0.2) is proved. O

We now apply the problem at hand in the case Y = X* and we take ¢ € X**, ||§||«x = 1 that
is not in the range of the canonical injection of X into X**, and we take z € X, ||| = 1 so that
||| = 1. Then as explained above, for some ¢ > 0 independent of z,

inf{|l¢p — agy|lx ;0 €C} >c.

It follows from the lemma that there exists M, € X* such that |M,|| = 1, M, € ker(¢,) and
|[p(Mz)| > ¢/3.



Now for any L € X* with ||L||. = 1, write

_(, o) #(L)
b= <L ¢<MI>M"”> o) M

Since M, € ker(¢,), x € ker(M,), and hence

= (1= o) o
_ 9(L) o an _ 9(L) [¢(L)] .3
However, (L ¢(MI)M$) € ker(¢) and HL ¢(Mx)Mm g][LH—i—|¢(Mx)|HMx\| L=

Therefore,
. 2
supllL@)] L e X", 2l =1} < (142 sup{lLo)] : L e ker(o) , L. =1}
That is, for all  with ||z| =1,

3
fol < el < (1+2) ol

and by homogeneity, this is true in general. The completeness of X in the norm | - || follows
immediately from the completeness of X in the norm || - ||.

3. Let X be a Banach space. Let Y be a closed subspace. and let K be a norm-compact subset of
X. Show that Y + K is closed.

SOLUTION Let z € X, 2 ¢ Y + K. We must find an s > 0 such that B(s,z) N{Y + K} = 0.
This is the case if and only if for all w € B(s,0), y € Y and x € K, z + w # y + x, which is the
same as z — y # x — w. That is,

B(s,z)N{Y +K} =0 <<= {z4+Y}N{B(s,00+K}=0.

Since Y is closed, z+Y is closed, and since z ¢ Y+ K, {z+ Y} N K = (). Hence for each z € K,
there exists r, > 0 such that {z + Y} N B(2r,,xz) = (. The totality of the sets B(r;,z), z € K
is evidently an open cover of K. Since K is compact, there exists a finite set {z1,...,2,} C K
such that K C U, B(rs,,, m). Now define s = min{ry,,...,rz,, }. Consider any zinK, Then for
some m, x € B(rg,,,*m), and hence

B(s,z) C B(ry,, + $,xm) C B(2ry,, , Tm) ,

and {z +Y} N B(2ry,,,Tm) = 0. Hence {z +Y} N B(s,z) = 0, and since x € K is arbitrary, the
proof is complete,.

4. Let (X, -]|) be a uniformly convex and uniformly smooth Banach space. Let K be non-empty
norm-closed convex subset of X. Use the uniform convexity and smoothness to show that for all
x ¢ K, there exists L € X* and a < b in R such that for all y € K,

R(L(z) = b>a>R(L(y)) -

Hint: Consider Theorem 3.5.4 from the Hilbert space chapter in the text version of the notes.



SOLUTION K — z is norm-closed convex subset of X that does not contain 0. By the Projection
Lemma for uniformly convex spaces, there exists a unique yp € K such that ||z —yo|| < ||z — y|| for

ally € K, y # yo.
Let y € X —x, t € [0,1]. Since K — z is convex, (1 — t)yo + ty € K — z. Therefore,

lz —yo +tly — o)l > ||z — ol (0.3)

for all ¢ € [0,1]. Since X is uniformly smooth, the norm function || - || is Frechet differentiable
at all non-zero vectors, and hence at = — yo, and if L,_,, is the unit vector in X* such that
Ly—yo(x —y0) = ||z — yo|| (which is unique by the uniform convexity of X),

|z —yo +t(y — vo)ll = llz — yoll + tR(La—yo (¥ — o)) + o(t) . (0.4)

Combining this with (0.3), we have that tR(L,—y,(y — yo))) + o(t) > 0 for all t € [0,1]. (Note that
(0.4) is valid without restriction on the sign of ¢.) Dividing through by ¢ > 0, and taking the limit
t — 0, we obtain

R(Lo—yo(y = v0)) 2 0 .

Then since
R(Lz—yo (Y = Y0)) = R(La—yo ((y — @) + (z — 10)) = R(La—y () — R(La—y, () + |z — w0l ,

if we define L = —L,_,,
R(L(y)) < R(L(z)) = [lz — 5ol = 0,

which gives us what we seek.



