Homework Assignment 6, Math 502, Spring 2017

Eric A. Carlen ${ }^{1}$
Rutgers University

April 9, 2017

1. Let ϕ be the function defined on \mathbb{R} by $\phi(s)=\left\{\begin{array}{ll}\frac{1}{2} s^{2} & |s|<1 \\ |s|-1 / 2 & s \geq 1 .\end{array}\right.$.
(a) Show that ϕ is convex and continuous, and is an Orlicz function.
(b) Compute ϕ^{*} and $\phi^{* *}$, with the latter computation giving a direct verification of the FenchelMoreau Theorem in this case.
(c) Let $\left(L_{\phi},\|\cdot\|_{\phi}\right)$ be the associated Orlicz space for the measure space $(\mathbb{R}, \mathcal{B}, \mathrm{d} x)$, where $\mathrm{d} x$ denotes Lebesgue measure. Consider the functions $f_{\beta}=|x|^{-\beta}, \beta \in(1 / 2,1)$ Show that none of these functions belong to L^{p} for any $1 \leq p \leq 2$, but that each of them belongs to L_{ϕ}.
(d) Show moreover that if $f \in L_{\phi}$ there exist functions $g \in L^{1}$ and $h \in L^{2}$ such that $f=g+h$, and show that $L^{1} \subset L_{\phi}$ and $L^{2} \subset L_{\phi}$. What is the relation between L^{ϕ} and the Banach space considered in Folland's Exercise 4, chapter 6 for $p=1$ and $r=2$?
SOLUTION (a) The function ϕ is continuously differentiable with $\phi^{\prime}(s)=s$ for $|s| \leq!, \phi^{\prime}(s)=1$ for $s \geq 1$ and $\phi^{\prime}(s)=-1$ for $s<-1$. Since the derivative is non-decreasing, ϕ is convex. It follows that $\partial \phi(\mathbb{R})=[-1,1]$, and that for each $y \in[-1,1], t \in \partial \phi(t)$. Since $\phi^{\prime}(1)=1,\{1\}=\partial \phi(1)$, and evidently $\lim _{t \rightarrow \infty} \phi(t)=\infty$. Hence ϕ is an Orlicz function.

For (b), by the cases of equality in Young's inequality, $\phi(s)+\phi^{*}(t)=x y$ when $s=t$ (so that $t \in \partial \phi(s))$. Hence for $y \in[-1,1], \phi^{*}(t)=t^{2}-t^{2} / 2=t^{2} / 2$. For $|t|>1, \phi^{*}(t)=\infty$. Thus,

$$
\phi^{*}(t)= \begin{cases}\frac{1}{2} t^{2} & |t| \leq 1 \\ \infty & |t|>1 .\end{cases}
$$

The same reasoning with cases of equality in Young's inequality shows that $\phi^{* *}(s)=\phi(s)$, and indeed, this is how one proves the Fenchel-Moreau Theorem.

For (c), no power of $|x|$ is intolerable on $(\mathbb{R}, \mathcal{B}, \mathrm{d} x)$, so $f_{\beta} \notin L^{p}$ for any p. Now note that for $t>0$,

$$
\int_{\mathbb{R}} \phi\left(\frac{f_{\beta}(x)}{t}\right) \mathrm{d} x \leq \int_{[-t, t] c} \frac{1}{2} \frac{|x|^{-2 \beta}}{t^{2}} \mathrm{~d} x+\int_{[-t, t]} \frac{|x|^{-\beta}}{t} \mathrm{~d} x=\frac{1}{2 \beta-1} t^{-2 \beta-1}+\frac{2}{1-\beta} t^{-\beta}
$$

Evidently, when $\beta \in(1 / 2,1)$, this can be made smaller than $\phi(1)=1 / 2$ by choosing t large enough.

[^0]For (d), recall that

$$
\int_{\mathbb{R}} \phi\left(\frac{|f(x)|}{\|f\|_{\phi}}\right) \mathrm{d} x \leq \phi(1)=\frac{1}{2} .
$$

Define $A=\left\{x:|f(x)| \geq\|f\|_{\phi}\right\}$. Then

$$
\begin{aligned}
\frac{1}{2} & \geq \int_{A} \phi\left(\frac{|f(x)|}{\|f\|_{\phi}}\right) \mathrm{d} x+\int_{A^{c}} \phi\left(\frac{|f(x)|}{\|f\|_{\phi}}\right) \mathrm{d} x \\
& \geq \int_{A} \frac{|f(x)|}{\|f\|_{\phi}} \mathrm{d} x+\int_{A^{c}} \frac{1}{2}\left(\frac{|f(x)|}{\|f\|_{\phi}}\right)^{2} \mathrm{~d} x
\end{aligned}
$$

It is evident from this that if we define $g:=f 1_{A}$ and $h:=f 1_{A^{c}}$ that $g \in L^{1}, h \in L^{2}$ and $g=g+h$.
Next, for $f \in L^{1}, t>0$, define $B:=\{x:|f(x)|>t\}$.

$$
\int_{\mathbb{R}} \phi\left(\frac{|f(x)|}{t}\right) \mathrm{d} x \leq \int_{B^{c}} \frac{1}{2} \frac{|f(x)|^{2}}{t^{2}} \mathrm{~d} x+\int_{B} \frac{|f(x)|}{t} \mathrm{~d} x \leq \frac{1}{t}\|f\|_{1}
$$

since on $B^{c},|f|^{2} / t^{2} \leq|f| / t$. Likewise, for $f \in L^{2}$,

$$
\int_{\mathbb{R}} \phi\left(\frac{|f(x)|}{t}\right) \mathrm{d} x \leq \int_{B^{c}} \frac{1}{2} \frac{|f(x)|^{2}}{t^{2}} \mathrm{~d} x+\int_{B} \frac{|f(x)|}{t} \mathrm{~d} x \leq \frac{1}{t^{2}}\|f\|_{2}^{2}
$$

since on $B,|f|^{2} / t^{2} \geq|f| / t$. altogether, we see that when for $f \in L^{1},\|f\|_{\phi} \leq 2\|f\|_{1}$ and for $f \in L^{2}$, $\|f\|_{\phi} \leq \sqrt{2}\|f\|_{2}$. This shows that the norm $\|\cdot\|_{L^{1}+L^{2}}$ on $L^{1}+L^{2}$ from Folland's Exercise 4 , chapter 6 satisfies $\|\cdot\|_{\phi} \leq 2\|\cdot\|_{L^{1}+L^{2}}$, and we have seen that the functions in L_{ϕ} are precisely the functions in $L^{1}+L^{2}$. Since $L^{1}+L^{2}$ is complete in both of these norms, it is a consequence of the open mapping theorem that the two norms are equivalent.
2. Let X be a non-reflexive Banach space. Let $\phi \in X^{* *}$ be such the ϕ is not in the image of X under the canonical embedding of X into $X^{* *}$. Let $H:=\operatorname{ker}(\phi)$, which is a closed subspace of X^{*}.
(a) Show that the function $x \mapsto\|x\|$ defined by

$$
\|x\|=\sup \{|L(x)|: L \in H \quad \text { and } \quad\|L\|=1\}
$$

is a norm on X such that for all $x \in X,\|x\| \leq\|x\|$.
(b) Show that $(X,\|\cdot\|)$ is a Banach space.
(c) Show that H is a norming subspace of X^{*}, meaning that there exists a $c \in(0,1)$ such that for all $x \in X$,

$$
\sup \{|L(x)|: L \in H \quad \text { and } \quad\|L\|=1\} \geq c\|x\|
$$

SOLUTION We may assume that $\|\phi\|_{* *}=1$. Since $\|\cdot\| \|$ is defined as the supremum of a family of convex and homogeneous functions, it is evident that $\|\cdot\| \|$ is convex and homogeneous. It remains to show that $\|x\|>0$ for $x \neq 0$.

To show this, we begin with a general observation. Let $(Y=,\|\cdot\|)$ be a Banach space. Let $L, M \in Y^{*}$ with $\{L, M\}$ linearly independent. Then $\operatorname{ker}(L) \not \subset \operatorname{ker}(M)$ and $\operatorname{ker}(M) \not \subset \operatorname{ker}(L)$. To prove this, it suffices by symmetry to show that $\operatorname{ker}(M) \not \subset \operatorname{ker}(L)$.

Since $L \neq 0$, there is some y_{0} such that $L\left(y_{0}\right)=1$. Then for all $y \in Y, y=\left(y-L(y) y_{0}\right)+L(y) y_{0}$, and $\left(y-L(y) y_{0}\right) \in \operatorname{ker}(L)$. Then if $\operatorname{ker}(M) \subset \operatorname{ker}(L)$, it follows that

$$
M(y)=M\left(y-L(y) y_{0}\right)+M\left(L(y) y_{0}\right)=M\left(y_{0}\right) L(y) .
$$

Since y is arbitrary, this means that $M=L\left(y_{0}\right) L$, and this contradicts the linear independence of $\{L, M\}$. Hence $\operatorname{ker}(M) \not \subset \operatorname{ker}(L)$.

To apply this to the problem at hand, we take $Y=X^{*}$, and then for any $x \in X, x \neq 0$, consider the set $\left\{\phi, \phi_{x}\right\}$ in $Y^{*}=X^{* *}$. For all $\alpha \in \mathbb{C}, \alpha \phi_{x}=\phi_{\alpha x}$, which is in the image of X under the canonical embedding, and so by hypothesis $\phi \neq \alpha \phi_{x}$ for any $x \in C$. That is, $\left\{\phi, \phi_{x}\right\}$ is linearly independent. By the observation made above, there exists $L_{x} \in \operatorname{ker}(\phi)$ such that $L_{x} \notin \operatorname{ker}\left(\phi_{x}\right)$, and we may assume that $\left\|L_{x}\right\|_{*}=1$. Hence, by the definition of $\|\cdot\|$,

$$
\|x\| \geq\left|L_{x}(x)\right|>0 .
$$

For the rest of of this problem, we need to "upgrade" this qualitative result to a quantitative result. Here is an additional pice of information that has not been used so far: The image V of X under the canonical embedding in $X^{* *}$ is a closed subspace of $X^{* *}$, and hence for some $r>0$, $B_{X^{* *}}(r, \phi) \cap V=\emptyset$. That is, for all $z \in X,\left\|\phi-\phi_{z}\right\|_{* *} \geq c$. Fixing $x \neq 0$, and replacing z by αx, so that $\phi_{z}=\alpha \phi_{x}$, we have that $\inf _{\alpha_{\mathbb{C}}}\left\|\phi-\alpha \phi_{x}\right\| \geq c$, with $c>0$ independent of x.
0.1 LEMMA. Let $(Y,\|\cdot\|)$ be a Banach space. Let $L, M \in Y^{*}$ with $\|M\|_{*},\|L\|_{*}=1$, and suppose that for some $c>0$,

$$
\begin{equation*}
\inf _{\alpha \in \mathbb{C}}\|M-\alpha L\|_{*} \geq c \tag{0.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sup \{|M(z)|: z \in \operatorname{ker}(L) \quad \text { and } \quad\|z\| \leq 1\} \geq \frac{c}{2} . \tag{0.2}
\end{equation*}
$$

Proof. For any $\epsilon>0$, we may choose $y_{0} \in Y$ such that $\left\|y_{0}\right\| \leq 1+\epsilon$ and $L\left(y_{0}\right)=1$. Then for all $y \in Y$,

$$
y=\left(y-L(y) y_{0}\right)+L(y) y_{0},
$$

and $y-L(y) y_{0} \in \operatorname{ker}(L)$. Then $M(y)=M\left(y-L(y) y_{0}\right)+M\left(y_{0}\right) L(y)$, which yields

$$
\left|M(y)-M\left(y_{0}\right) L(y)\right|=\left|M\left(y-L(y) y_{0}\right)\right| .
$$

By (0.1), there is $y \in Y,\|y\|=1$, such that $\left|M(y)-M\left(y_{0}\right) L(y)\right| \geq c-\epsilon$. Therefore, $\mid M(y-$ $\left.L(y) y_{0}\right) \mid \geq c-\epsilon$, and $\left\|y-L(y) y_{0}\right\| \leq 2+\epsilon$. It follows that if we define $z=\left\|y-L(y) y_{0}\right\|^{-1}\left(y-L(y) y_{0}\right)$, then $\|z\|=1, z \in \operatorname{ker}(L)$, and $M(z) \geq(c-\epsilon) /(2+\epsilon)$. Since $\epsilon>0$ is arbitrary, (0.2) is proved.

We now apply the problem at hand in the case $Y=X^{*}$, and we take $\phi \in X^{* *},\|\phi\|_{* *}=1$ that is not in the range of the canonical injection of X into $X^{* *}$, and we take $x \in X,\|x\|=1$ so that $\left\|\phi_{x}\right\|=1$. Then as explained above, for some $c>0$ independent of x,

$$
\inf \left\{\left\|\phi-\alpha \phi_{x}\right\|_{* *} ; \alpha \in \mathbb{C}\right\}>c
$$

It follows from the lemma that there exists $M_{x} \in X^{*}$ such that $\left\|M_{x}\right\|=1, M_{x} \in \operatorname{ker}\left(\phi_{x}\right)$ and $\left|\phi\left(M_{x}\right)\right| \geq c / 3$.

Now for any $L \in X^{*}$ with $\|L\|_{*}=1$, write

$$
L=\left(L-\frac{\phi(L)}{\phi\left(M_{x}\right)} M_{x}\right)+\frac{\phi(L)}{\phi\left(M_{x}\right)} M_{x} .
$$

Since $M_{x} \in \operatorname{ker}\left(\phi_{x}\right), x \in \operatorname{ker}\left(M_{x}\right)$, and hence

$$
L(x)=\left(L-\frac{\phi(L)}{\phi\left(M_{x}\right)} M_{x}\right)(x) .
$$

However, $\quad\left(L-\frac{\phi(L)}{\phi\left(M_{x}\right)} M_{x}\right) \in \operatorname{ker}(\phi) \quad$ and $\quad\left\|L-\frac{\phi(L)}{\phi\left(M_{x}\right)} M_{x}\right\| \leq\|L\|+\frac{|\phi(L)|}{\left|\phi\left(M_{x}\right)\right|}\left\|M_{x}\right\|=1+\frac{3}{c}$.
Therefore,

$$
\sup \left\{|L(x)|: L \in X^{*},\|L\|_{*}=1\right\} \leq\left(1+\frac{2}{c}\right) \sup \left\{|L(x)|: L \in \operatorname{ker}(\phi),\|L\|_{*}=1\right\}
$$

That is, for all x with $\|x\|=1$,

$$
\|x\| \leq\|x\| \leq\left(1+\frac{3}{c}\right)\|x\|,
$$

and by homogeneity, this is true in general. The completeness of X in the norm $\|\cdot\|$ follows immediately from the completeness of X in the norm $\|\cdot\|$.
3. Let X be a Banach space. Let Y be a closed subspace. and let K be a norm-compact subset of X. Show that $Y+K$ is closed.
SOLUTION Let $z \in X, z \notin Y+K$. We must find an $s>0$ such that $B(s, z) \cap\{Y+K\}=\emptyset$. This is the case if and only if for all $w \in B(s, 0), y \in Y$ and $x \in K, z+w \neq y+x$, which is the same as $z-y \neq x-w$. That is,

$$
B(s, z) \cap\{Y+K\}=\emptyset \quad \Longleftrightarrow \quad\{z+Y\} \cap\{B(s, 0)+K\}=\emptyset .
$$

Since Y is closed, $z+Y$ is closed, and since $z \notin Y+K,\{z+Y\} \cap K=\emptyset$. Hence for each $x \in K$, there exists $r_{x}>0$ such that $\{z+Y\} \cap B\left(2 r_{x}, x\right)=\emptyset$. The totality of the sets $B\left(r_{x}, x\right), x \in K$ is evidently an open cover of K. Since K is compact, there exists a finite set $\left\{x_{1}, \ldots, x_{n}\right\} \subset K$ such that $K \subset \cup_{m=1}^{n} B\left(r_{x_{m}}, x_{m}\right)$. Now define $s=\min \left\{r_{x_{1}}, \ldots, r_{x_{m}}\right\}$. Consider any $\operatorname{xin} K$, Then for some $m, x \in B\left(r_{x_{m}}, x_{m}\right)$, and hence

$$
B(s, x) \subset B\left(r_{x_{m}}+s, x_{m}\right) \subset B\left(2 r_{x_{m}}, x_{m}\right),
$$

and $\{z+Y\} \cap B\left(2 r_{x_{m}}, x_{m}\right)=\emptyset$. Hence $\{z+Y\} \cap B(s, x)=\emptyset$, and since $x \in K$ is arbitrary, the proof is complete,.
4. Let $(X,\|\cdot\|)$ be a uniformly convex and uniformly smooth Banach space. Let K be non-empty norm-closed convex subset of X. Use the uniform convexity and smoothness to show that for all $x \notin K$, there exists $L \in X^{*}$ and $a<b$ in \mathbb{R} such that for all $y \in K$,

$$
\Re(L(x))=b>a \geq \Re(L(y)) .
$$

Hint: Consider Theorem 3.5.4 from the Hilbert space chapter in the text version of the notes.

SOLUTION $K-x$ is norm-closed convex subset of X that does not contain 0. By the Projection Lemma for uniformly convex spaces, there exists a unique $y_{0} \in K$ such that $\left\|x-y_{0}\right\|<\|x-y\|$ for all $y \in K, y \neq y_{0}$.

Let $y \in X-x, t \in[0,1]$. Since $K-x$ is convex, $(1-t) y_{0}+t y \in K-x$. Therefore,

$$
\begin{equation*}
\left\|x-y_{0}+t\left(y-y_{0}\right)\right\| \geq\left\|x-y_{0}\right\| \tag{0.3}
\end{equation*}
$$

for all $t \in[0,1]$. Since X is uniformly smooth, the norm function $\|\cdot\|$ is Frechet differentiable at all non-zero vectors, and hence at $x-y_{0}$, and if $L_{x-y_{0}}$ is the unit vector in X^{*} such that $L_{x-y_{0}}\left(x-y_{0}\right)=\left\|x-y_{0}\right\|$ (which is unique by the uniform convexity of X),

$$
\begin{equation*}
\left\|x-y_{0}+t\left(y-y_{0}\right)\right\|=\left\|x-y_{0}\right\|+t \Re\left(L_{x-y_{0}}\left(y-y_{0}\right)\right)+o(t) . \tag{0.4}
\end{equation*}
$$

Combining this with (0.3), we have that $\left.t \Re\left(L_{x-y_{0}}\left(y-y_{0}\right)\right)\right)+o(t) \geq 0$ for all $t \in[0,1]$. (Note that (0.4) is valid without restriction on the sign of t.) Dividing through by $t>0$, and taking the limit $t \rightarrow 0$, we obtain

$$
\Re\left(L_{x-y_{0}}\left(y-y_{0}\right)\right) \geq 0 .
$$

Then since

$$
\Re\left(L_{x-y_{0}}\left(y-y_{0}\right)\right)=\Re\left(L_{x-y_{0}}\left((y-x)+\left(x-y_{0}\right)\right)=\Re\left(L_{x-y_{0}}(y)\right)-\Re\left(L_{x-y_{0}}(x)\right)+\left\|x-y_{0}\right\|\right.
$$

if we define $L=-L_{x-y_{0}}$,

$$
\Re(L(y)) \leq \Re(L(x))-\left\|x-y_{0}\right\| \geq 0
$$

which gives us what we seek.

[^0]: ${ }^{1}$ 2017 by the author.

