Homework Assignment 6, Math 502, Spring 2017

Eric A. Carlen¹ Rutgers University

April 6, 2017

1. Let ϕ be the function defined on \mathbb{R} by $\phi(s) = \begin{cases} \frac{1}{2}s^2 & |s| < 1\\ |s| - 1/2 & s \ge 1 \end{cases}$.

(a) Show that ϕ is convex and continuous, and is an Orlicz function.

(b) Compute ϕ^* and ϕ^{**} , with the latter computation giving a direct verification of the Fenchel-Moreau Theorem in this case.

(c) Let $(L_{\phi}, \|\cdot\|_{\phi})$ be the associated Orlicz space for the measure space $(\mathbb{R}, \mathcal{B}, dx)$, where dx denotes Lebesgue measure. Consider the functions $f_{\beta} = |x|^{-\beta}$, $\beta \in (1/2, 1)$ Show that none of these functions belong to L^p for any $1 \le p \le 2$, but that each of them belongs to L_{ϕ} .

(d) Show moreover that if $f \in L_{\phi}$ there exist functions $g \in L^1$ and $h \in L^2$ such that f = g + h, and show that $L^1 \subset L_{\phi}$ and $L^2 \subset L_{\phi}$. What is the relation between L^{ϕ} and the Banach space considered in Folland's Exercise 4, chapter 6 for p = 1 and r = 2?

2. Let X be a non-reflexive Banach space. Let φ ∈ X^{**} be such the φ is not in the image of X under the canonical embedding of X into X^{**}. Let H := ker(φ), which is a closed subspace of X^{*}.
(a) Show that the function x → ||x|| defined by

$$||x|| = \sup\{|L(x)| : L \in H \quad and \quad ||L|| = 1\}$$

is a norm on X such that for all $x \in X$, $||x||| \le ||x||$.

(b) Show that $(X, \|\cdot\|)$ is a Banach space.

(c) Show that H is a norming subspace of X^* , meaning that there exists a $c \in (0, 1)$ such that for all $x \in X$,

$$\sup\{|L(x)| : L \in H \text{ and } ||L|| = 1\} \ge c||x||.$$

3. Let X be a Banach space. Let Y be a closed subspace. and let K be a norm-compact subset of X. Show that Y + K is closed.

4. Let $(X, \|\cdot\|)$ be a uniformly convex and uniformly smooth Banach space. Let K be non-empty norm-closed convex subset of X. Use the uniform convexity and smoothness to show that for all $x \notin K$, there exists $L \in X^*$ and a < b in \mathbb{R} such that for all $y \in K$,

$$\Re(L(x)) = b > a \ge \Re(L(y)) .$$

Hint: Consider Theorem 3.5.4 from the Hilbert space chapter in the text version of the notes.

 $^{^{1}}$ © 2017 by the author.