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1. Let H = L2([0, 2π],B, µ) where µ is normalized Lebesgue measure. Let T be the linear map on

H defined by

Tf(x) =
i

2

(∫ x

0
f(t)dµ(t)−

∫ 2π

x
f(t)dµ(t)

)
.

(a) Show that T is a Hilbert-Schmidt operator (and therefore compact), and that T is self adjoint.

(b) Show that if f is an eigenfunction of T , then f is continuously differentiable on (0, 2π), and

use this to find all of the eigenvalues and eigenfunctions of T .

(c) The eigenfunctions will be closely related to (but not the same as) the orthonormal sequence

{un}n∈Z where un(x) = einx. Use the result of (b) to give another proof of the completeness of

{un}n∈Z.

SOLUTION Define K(x, t) =


i/2 t < x

0 x = t

−i/2 t > x

. Then Tf(x) =
∫ 2π

0 K(x, t)f(t)dt, and then T is

Hilbert-Schmidt since
∫ 2π

0

∫ 2π
0 |K(x, t)|2dxdt = 1

4 < ∞. Also notie that K(t, x) = K(x, t). There-

fore, for all f, g ∈ H,

〈f, Tg〉 =

∫ 2π

0

∫ 2π

0
f(x)K(x, t)g(t)dxdt =

∫ 2π

0

∫ 2π

0
K(t, x)f(x)g(t)dxdt = 〈Tf, g〉 .

Thus, T = T ∗. For (b), note that for all f ∈ H, and all x < y ∈ [0, 2π],

|Tf(x)− Tf(y)| ≤
∫ y

x
|f(t)|dt ≤

√
|y − x|‖f‖

Therefore, every function in the range of f is continuous, and is even Hölder continuous of order

1/2. Since all eigenfunctions of T are in the range of T , if f is an eigenfunction of T , with

Tf = λf , f is continuous, and by the Fundamental Theorem of Calculus, Tf is differentiable with

λf ′(x) = (Tf)′(x) = if(x). This shows that if Tf = λf , and λ = 0, then f = 0. Hence 0 is not an

eigenvalue of T . Hence if f is an eigenfunction, f ′(x) = (i/λ)f(x), and hence f(x) is a multiple of

eix/λ.
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By what we have proved above, every function in the range of T is continuous, and so for all

f ∈ H, Tf(0) and Tf(2π) are well defined. From the formula defining f , Tf(0) = −Tf(2π). Hence

if f is an eigenfunction of T with eigenvalue λ, f(0) = −f(2π). Therefore e2π/λ = −1, and so

1/λ = 1/2 + k, k ∈ Z.

Therefore, for j, k ∈ Z, define vk(x) = ei(1/2+k)x. It is easy to check that vk is indeed an

eigenvector with eigenvalue λk = 2/(1 + 2k). Hence the eigenvalues of T are the numbers λk :=

2/(1 + 2k), k ∈ Z, and the eigenfunctions are the non-zero multiples of the functions vk, k ∈ Z.

For (c), note that we have shown ker(T ) = {0}, and by the Hilbert-Schmidt Theorem, there

is an orthonormal basis of ker(T )⊥ = H consisting of eigenfunctions of T . Since eigenvectors

corresponding to distinct eigenvalues of a self adjoint operator are orthogonal, {vk}k∈Z is a complete

orthonormal set in H.

Now note that for all k ∈ Z, uk(x) = e−ix/2vk(x) for all x. For f ∈ H, define Uf(x) = e−ix/2f(x)

then clearly U is unitary, and so {Uvj}k∈Z is a complete orthonormal set in H.

2. Let H be an infinite dimensional Hilbert space. Let W be the weakly open sets in H, and let

O be the norm-open sets in H. A linear transformation T from H to H is weak-weak continuous

in case for all W ∈ W , T−1(W ) ∈ W . A linear transformation T from H to H is strong-weak

continuous in case for all W ∈ W , T−1(W ) ∈ O. A linear transformation T from H to H is

weak-strong continuous in case for all U ∈ O, T−1(U) ∈ W . A linear transformation T from H to

H is strong-strong continuous in case for all U ∈ O, T−1(U) ∈ O.

Show that a linear transformation T on H is weak-weak continuous if and only if it is strong-

strong continuous if and only if it is strong-weak continuous if and only if it is weak -weak continuous

In other words, show that an operator has any of these types of continuity if and only if it is bounded,

so these are not really three different types of continuity. Show that a linear transformation T on

H is weak-strong continuous if and only if it is finite rank.

SOLUTION We know that a linear transformation T on H is strong-strong continuous if and

only if T is bounded. Therefore we must show that the following are equivalent:

(1) T is bounded.

(2) T is weak-weak continuous.

(3) T is strong-weak continuous.

Suppose that T is bounded. Then so is T ∗. For all f, g ∈ H, 〈f, Tg〉 = 〈T ∗f, g〉. Let F :=

{f1, . . . , fn} be any finite subset of H, and let ε > 0. Then

Tg ∈ VF ,ε ⇐⇒ |〈T ∗fj , g〉| < ε for j = 1, . . . , n .

Tg ∈ VF ,ε ⇐⇒ g ∈ VG,ε, where G = {T ∗f1, . . . , T
∗fn}. Thus, when T is bounded T−1(VF ,ε) = VG,ε,

and hence T is weak-weak continuous because it pulls back sets in a neighborhood base at 0 into

sets in this neighborhood base.

This shows that (1) implies (2), and since the strong topology is stronger than the weak topology,

if T is weak-weak continuous, it is also strong-weak continuous, and hence (2) implies (3).

We now show that (3 ) implies (1 ) Suppose that T is not bounded. Then there is a sequence

{un}n∈N of unit vectors such that ‖Tun‖ ≥ n2 for all n. Evidently, limn→∞
∥∥ 1
nun

∥∥ = 0 , and hence

if T is strong-weak continuous, {T (n−1un)}n∈N converges weakly to zero. But weakly convergent
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sequences are bounded, so that {‖T (n−1un)‖}n∈N must be bounded. But ‖T (n−1un)‖ ≥ n, so this

is impossible. Hence is T is not bounded, T is not strong-weak continuous, and (3) implies (1).

If T is weak-strong continuous, then for some ε > 0 and some F := {f1, . . . , fn},

VF ,ε ⊂ T−1(B(1, 0)) .

We may suppose without loss of generality, applying the Gram-Schmidt algorithm, and adjusting ε

as needed, that F is orthonormal. If x ∈ F⊥, tx ∈ VF ,ε for all t, and hence ‖T (tx)‖ = |t|‖Tx‖ < 1

for all t. It follows that Tx = 0. Let P be the orthogonal projection onto the span of F . Then for

all x, Tx = TPx. Since F is orthonormal, Px =
∑n

j=1〈fj , x〉fj , and hence for all x ∈ H,

Tx =

n∑
j=1

〈fj , x〉Tfj =

 n∑
j=1

|Tfj〉〈fj |

x .

Hence T is finite rank.

3. (a) Let H be a Hilbert space. Let T ∈ B(H), and suppose that K is a closed subspace of H in

the range of T . Let P be the orthogonal projection onto K. Show that (PT )|ker(PT )⊥ is an injective

bounded linear transformation from ker(PT )⊥ onto K with a bounded inverse.

(b) Show that if T ∈ B(H) is such that its range contains a closed infinite dimensional subspace,

then T is not compact.

SOLUTION since K is contained in the range of T , for all y ∈ K, there is some x ∈ H such that

Tx = y, and then of course y = PTx. Let Q be the orthogonal projection onto ker(PT )⊥. Then

for all x ∈ H, x = Qx + Q⊥x and so PTx = PTQx + PTQ⊥x = PTQx. Hence the range of

PT , namely K, is the same as the range of PT restricted to ker(PT )⊥. Since PI is injective on

ker(PT )⊥, PT us a continuous linear isomorphism from ker(PT )⊥ to K. By the Open Mapping

Theorem it has a bounded inverse.

Suppose that K is an infinite dimensional subspace in the range of T ∈ B(H). Let {un}n∈N

be an orthonormal sequence in K. Define vn = (PT )−1un. Then by the first part, {vn}n∈N

is a bounded sequence. Since H is weakly sequentially compact, there is a weakly convergent

subsequence {vnk
}k∈N. But {Tvnk

}k∈N is orthonormal, and hence cannot be norm convergent.

Hence T is not compact.

4. Let ε ∈ (0, 1). A sequence {un}n∈N of unit vectors in a Hilbert space H is ε-almost orthonormal

in case ∑
m6=n
|〈um, un〉|2 ≤ ε2 .

(a) Suppose that {un}n∈N is ε-almost orthonormal. Show that for all {αn}n∈N ∈ `2,

(1− ε)

( ∞∑
n=1

|αn|2
)1/2

≤

∥∥∥∥∥
∞∑
n=1

αnun

∥∥∥∥∥ ≤ (1 + ε)

( ∞∑
n=1

|αn|2
)1/2

.

(b) Part (a) shows that {un}n∈N is linearly independent. Let {vn}n∈N be the orthonormal sequence

produced from {un}n∈N by the Gram-Schmidt algorithm. Show that limn→∞ ‖un − vn‖ = 0.
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(c) Show that if {un}n∈N is any sequence of unit vectors in H that converges weakly to zero, then

for all ε ∈ (0, 1) there is a subsequence {unk
}k∈N that is ε-almost orthonormal.

(d) Show that T ∈ B(H) is compact if and only if for each orthonormal sequence {un}n∈N in H,

limn→∞ ‖Tun‖ = 0.

(e) Show that T ∈ B(H) is compact if and only if every closed subspace in the range of T is finite

dimensional.

SOLUTION We compute∥∥∥∥∥
∞∑
n=1

αnun

∥∥∥∥∥
2

=

∞∑
m,n=1

αmαn〈um, un〉 =

∞∑
n=1

|αn|2 +

∞∑
m 6=n

αmαn〈um, un〉 .

Therefore, using the Cauchy-Schwarz inequality on the double sum,∣∣∣∣∣∣
∥∥∥∥∥
∞∑
n=1

αnun

∥∥∥∥∥
2

−
∞∑
n=1

|αn|2
∣∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑
m6=n

αmαn〈um, un〉

∣∣∣∣∣∣
≤

 ∞∑
m,n=1

|αm|2|αn|2
1/2 ∞∑

m6=n
|〈um, un〉|2

1/2

≤ ε
∞∑
n=1

|αn|2 .

This shows that

(1− ε)
∞∑
n=1

|αn|2 ≤

∥∥∥∥∥
∞∑
n=1

αnun

∥∥∥∥∥
2

≤ (1 + ε)|αn|2 .

Now use the facts that 1+ ε ≤ (1+ ε)2 since ε > 0, and 1− ε > 1−2ε+ ε2 = (1− ε)2 since ε ∈ (0, 1).

For (b), let Pn be the orthogonal projection onto the span of {u1, . . . , un}, which is the same

as the span of {v1, . . . , vn}. By definition, vn := ‖P⊥n−1un‖−1P⊥n−1un so that P⊥n−1un = ‖P⊥n−1un‖vn
and

‖un − vn‖ ≤ ‖un − P⊥n−1un‖+
∥∥∥‖P⊥n−1un‖vn − vn

∥∥∥ = ‖Pn−1un‖+ |‖P⊥n−1un‖ − 1| .

By the Pythagorean Theorem, ‖P⊥n−1un‖ =
√

1− ‖Pn−1un‖2. Altogether,

‖un − vn‖ ≤ ‖Pn−1un‖+ 1−
√

1− ‖Pn−1un‖2 .

Hence to show that limn→∞ ‖un − vn‖ = 0, it suffices to show that limn→∞ ‖Pn−1un‖ = 0.

Since Pn−1un is in the span of {u1, . . . , un−1}, there are numbers α1, . . . , αn−1 such that

Pn−1un =
∑n−1

j=1 uj and hence

n−1∑
j=1

|αj |2 ≤ (1− ε)−2‖Pn−1un‖2 ≤ (1− ε)−2 . (0.1)
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But

‖Pn−1un‖2 = 〈Pn−1un, Pn−1un〉 = 〈Pn−1un, un〉

=

n−1∑
j=1

αj〈uj , un〉 ≤

n−1∑
=1

|αj |2
1/2n−1∑

=1

|〈uj , un〉|2
1/2

≤ ‖Pn−1un‖
1− ε

n−1∑
j=1

|〈uj , un〉|2
1/2

where we used (0.1) in the last line. It follows that ‖Pn−1un‖ ≤
1

1− ε

∑
j 6=n
|〈uj , un〉|2

1/2

. Since

∑∞
n=1

(∑
j 6=n |〈uj , un〉|2

)
= ε2 <∞, lim

n→∞

∑
j 6=n
|〈uj , un〉|2

 = 0, and hence limn→∞ ‖Pn−1un‖ = 0.

For (c), let {un}n∈N be a sequence of unit vectors that converges weakly to zero. For each m,

let Pm be the orthogonal projection onto the span of {u1, . . . , um}. Then each Pm is finite rank, and

hence compact. Therefore, limn→∞ ‖Pmun‖ = 0 for each m. Fix ε > 0, and choose a subsequence

{unk
}n∈N recursively as follows. Take un1 = u1. Then with {un1 , . . . , unm−1} selected, choose unm

so that ‖Pnm−1unm‖2 ≤ 2−m−1ε2/m for all n ≥ nm. Passing to this subsequence, and dropping the

subscripts, we have that ∑
m6=n
|〈um, un〉|2 = 2

∞∑
n=2

n−1∑
m=1

|〈um, un〉|2 .

For m < n, |〈um, un〉|2 ≤ ‖Pn−1un‖2 < 2−n−1ε2/n, so that

∑
m6=n
|〈um, un〉|2 ≤

∞∑
n=1

2−mε2 = ε2 .

For (d), If T is compact then for any orthonormal sequence {un}n∈N, limn→∞ ‖Tun‖ = 0 since

{un}n∈N converges weakly to zero.

On the other hand, suppose that limn→∞ ‖Twn‖ = 0 whenever {wn}n∈N is orthonormal. If T is

not compact, then there is some sequence {fn}n∈N that converges weakly to some f , but {Tfn}n∈N

does not converge strongly to Tf . Then {fn−f}n∈N converges weakly to zero, but {T (fn−f)}n∈N

does not converge strongly to zero. Hence for some ε > 0, ‖T (fn − f)‖ ≥ ε for infinitely many n.

Passing to a subsequence, we may suppose that ‖T (fn − f)‖ ≥ ε for all n, while {fn − f}n∈N still

converges weakly to zero. Since weakly convergent sequences are bounded in norm, for some finite

C, ‖fn − f‖ ≤ C for all n. Also, ε ≤ ‖T (fn − f)‖ ≤ ‖T‖‖fn − f‖, and so

ε

‖T‖
≤ ‖fn − f‖ ≤ C

for all n. Thus, if we define un = ‖fn − f‖−1(fn − f), {un}n∈N is a sequence of unit vectors that

converse weakly to zero, and such that ‖Tun‖ ≥ ε/C for all n. By part (c), passing to a further

subsequence, we may assume that {un}n∈N is δ-almost orthonormal, and then by part (b), there

is an orthonormal sequence {vn}n∈N such that limn→∞ ‖un − vn‖ = 0.
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Then ‖Tun‖ ≤ ‖T (un − vn)‖ + ‖Tvn‖ ≤ ‖T‖‖un − vn‖ + ‖Tvn‖. The second term on the

right approaches 0 as n increases by the assumption on T since {vn}n∈N is orthonormal. Therefore,

limn→∞ ‖Tun‖ = 0. this contradiction shows that when f is such that limn→∞ ‖Twn‖ = 0 whenever

{wn}n∈N is orthonormal, there is no sequence {fn}n∈N that converges weakly to f , but such that

{Tfn}n∈N does not converge strongly to f .

For (e), we have already seen that if T is compact, every closed subspace in the range of T is

finite dimensional. Now suppose that T is not compact. We shall show that there is an infinite

dimensional closed subspace in the range of T .

Since T is not compact, there is some orthonormal sequence {un}n∈N such that {Tun}n∈N

does not converge strongly to zero. Hence there is some δ > 0 so that ‖Tun‖ > δ for infinitely

many n. Passing to a subsequence, we may suppose that is is true for all n. Summarizing so

far, if T is not compact, there is an orthonormal sequence {un}n∈N, and a number δ > 0 so that

limn→∞ ‖Tun‖ = a and

δ ≤ ‖Tun‖ ≤ ‖T‖ (0.2)

for all n.

For any orthonormal sequence {vn}n∈N, and any S ∈ B(H), and any f ∈ H,

∞∑
n=1

|〈Svn, f〉|2 =
∞∑
n=1

|〈vn, S∗f〉|2 ≤ ‖S∗f‖2

by Bessel’s inequality. Hence limn→∞〈Svn, f〉 = 0 for all f ∈ H so that {Svn}n∈N converges weakly

to zero. Thus, in the problem at hand, {Tun}n∈N converges weakly to zero.

Since δ ≤ ‖Tun‖ ≤ ‖T‖ for all n, if we define wn = ‖Tun‖−1Tun for each n, then {wn}n∈N

converges weakly to zero, and consists of unit vectors. Hence, we may select a subsequence that

is 1
2 -almost orthonormal. Passing to such a subsidence, we may suppose that {wn}n∈N is 1

2 -almost

orthonormal.

Now let H0 be the closed span of {un}n∈N in H, so that {un}n∈N is an orthonormal basis for

H0. for all x =
∑∞

n=1 αnun ∈ H0,

Tx =

∞∑
n=1

αnun =
∞∑
n=1

αn‖Tun‖wn ,

and since {wn}n∈N is ε almost orthonormal, (using only the lower bound that comes along with

this)

δ

2
‖x‖ =

δ

2

( ∞∑
n=1

|αn|2
)1/2

≤ 1

2

( ∞∑
n=1

|αn|2‖Tun‖2
)1/2

≤ ‖Tx‖ .

In particular, if {Txn} is Cauchy in H, {xn} is Cauchy in H0, so there is an x ∈ H0 such that

limn→∞ xn = x, and then limn→∞ Txn = Tx. In particular, the range of T |H0 is closed in H, and

is an infinite dimensional subspace (containing the linearly independent set {wn}n∈N) in the range

of H.


