Solutions for Homework Assignment 2, Math 502, Spring 2017

Eric A. Carlen ${ }^{1}$
Rutgers University

February 20, 2017

1: Show that a linear functional L on a normed space X is bounded if and only if its nullspace is closed.
SOLUTION: Let $V=\{x: L(x)=0\}=L^{-1}\{0\}$. If L is bounded, and hence continuous, then V is closed since $\{0\}$ is closed.

For the converse, we may assume that L is not identically zero, or else the claim is trivial. In this case, there is some $x_{0} \in X$ such that $L\left(x_{0}\right)=1$. Since $x_{0} \notin V$, if V is closed, there exists an $r>0$ such that $B\left(r, x_{0}\right) \cap V=\emptyset$. Suppose that there exists $y \in B(1,0)$ such that $|L(y)|>1 / r$. Replacing y by $z:=e^{i \theta} y$ for some $\theta \in[0,2 \pi)$, we obtain a vector $z \in B(1,0)$ such that $L(z)=|L(y)|>1 / r$. But then for all $t \in[-r, r], x_{0}+t z \in B\left(r, x_{0}\right)$, and $L\left(x_{0}+t z\right)=1+t|L(y)|$ which is zero for $t=-1 /|L(y)| \in(-r, r)$. This contradiction shows that there cannot exist any $y \in B(1,0)$ such that $|L(y)|>1 / r$. Therefore, $\|L\|<1 / r$.
2: Let $(X,\|\cdot\|)$ be a normed vector space, and let Y be a proper, closed subspace of X. Show that for all $\alpha \in(0,1)$, there exists $u \in X,\|u\|=1$, such that $\alpha \leq \inf \{\|u-y\|: y \in Y\}$.
SOLUTION: Since Y is proper, there exists some $x_{0} \notin Y$, and then since Y is closed, there exists some $r>0$ such that $B\left(r, x_{0}\right) \cap Y=\emptyset$. Therefore, $d:=\inf \{\|u-y\|: y \in Y\} \geq r>0$. By the definition of d, for all $\alpha \in(0,1)$, there exists $y_{0} \in Y$ such that $\left\|x_{0}-y_{0}\right\|<d / \alpha$. Then, by the definition of d,

$$
\alpha\left\|x_{0}-y_{0}\right\| \leq d \leq\left\|x_{0}-y_{0}-y\right\| \quad \text { for all } \quad y \in Y .
$$

That is, $\alpha \leq\left\|\frac{x_{0}-y_{0}}{\left\|x_{0}-y_{0}\right\|}-\frac{y}{\left\|x_{0}-y_{0}\right\|}\right\| \quad$ for all $\quad y \in Y$. Let $u=\left\|x_{0}-y_{0}\right\|^{-1}\left(x_{0}-y_{0}\right) . \mathrm{N}$
3: Let $(X,\|\cdot\|)$ be an infinite dimensional normed vector space. Show that X contains an infinite sequence $\left\{u_{j}\right\}_{j \in \mathbb{N}}$ such that $\left\|u_{j}\right\|=1$ for all j and $\left\|u_{j}-u_{k}\right\| \geq 1 / 2$ for all $j \neq k$, and hence that X is not locally compact.

SOLUTION: The sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ is constructed inductively as follows: Pick some $u_{1} \in X$ with $\left\|u_{1}\right\|=1$. For the induction, suppose that we have found vectors $\left\{u_{1}, \ldots, u_{n}\right\}$ such that $\left\|u_{j}\right\|=1$ for each j and if $j \neq k$, then $\left\|u_{j}-u_{k}\right\| \geq 1 / 2$. Let $V_{n}:=\operatorname{span}\left(\left\{u_{1}, \ldots, u_{n}\right\}\right)$ which is is closed since it is finite dimensional proper since X is infinite dimensional. By Riesz's Lemma, we may choose u_{n+1} with $\left\|u_{n+1}\right\|=1$ snd $\left\|u_{n+1}-y\right\| \geq 1 / 2$ for all $y \in Y$. In particular we have $\left\|u_{j}-u_{j}\right\| \geq 1 / 2$ for all $1 \leq j<k \leq n+1$. No subsequence of $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ can be a Cauchy sequences, and hence no subsequence can converge.

In a metric space compactness and sequential compactness are the same thing, and so the closed unit ball in X is not compact because one cannot extract a convergence sequence from every infinite sequence.

[^0]All balls in X are homeomorphic, and so none are compact. Since every neighborhood of every point in X contains a closed ball, X is not locally compact.

4: Prove the polarization identity, and show that if \mathcal{H}_{1} and \mathcal{H}_{2} are two Hilbert spaces and $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is a surjective linear isometry, then T is unitary.
SOLUTION: For all $f, g \in \mathcal{H}$, we compute

$$
\begin{aligned}
\|f+g\|^{2} & =\langle f+g, f+g\rangle=\|f\|^{2}+\|g\|^{2}+2 \Re\langle f, g\rangle \\
-\|f-g\|^{2} & =\langle f+g, f+g\rangle=-\|f\|^{2}-\|g\|^{2}+2 \Re\langle f, g\rangle \\
-i\|f+i g\|^{2} & =i\langle f+i g, f+i g\rangle=-i\|f\|^{2}-i\|g\|^{2}+i 2 \Im\langle f, g\rangle \\
i\|f-i g\|^{2} & =i\langle f+i g, f+i g\rangle=i\|f\|^{2}+i\|g\|^{2}+i 2 \Im\langle f, g\rangle
\end{aligned}
$$

(Here we use the convention that \langle,$\rangle is conjugate linear on the left.) Summing on both sides and dividing$ by 4 we obtain

$$
\langle f, g\rangle=\frac{1}{4}\left(\|f+g\|^{2}-\|f-g\|^{2}-i\|f+i g\|^{2}+i\|f-i g\|^{2}\right) .
$$

Next, any linear isometry is injective, and so T is invertible. Since T is a linear isometry, none of the terms on the right in the polarization identity are changes when f and g are replaced by $T f$ and $T g$ respectively. Hence $\langle T f, T g\rangle=\langle f, g\rangle$ for all $f, g \in \mathcal{H}_{1}$ Thus, T is unitary.

5: Let \mathcal{H} be an infinite dimensional Hilbert space. Show that every orthonormal sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ in \mathcal{H} converges weakly to zero, and that the unit sphere in \mathcal{H} is weakly dense in the unit ball in \mathcal{H}.
SOLUTION: For all $f \in \mathcal{H}, \sum_{n=1}^{\infty}\left|\left\langle f, u_{n}\right\rangle\right|^{2} \leq\|f\|^{2}$ by Bessel's inequality, and hence $\lim _{n \rightarrow \infty}\left\langle f, u_{n}\right\rangle=0$. Since f is arbitrary, this shows that $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ converges weakly to zero.

Next, let $g \in \mathcal{H}, 0 \leq\|g\| \leq 1$. Let $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ be any orthonormal sequence such that u_{1} is a multiple of g. Such a sequence is obtained by the Gram-Schmidt procedure starting form g. Now define

$$
f_{n}=g+\left(1-\|g\|^{2}\right)^{1 / 2} u_{n+1}
$$

for all $n \in \mathbb{N}$. Evidently $\left\|f_{n}\right\|^{2}=\|g\|^{2}+\left(1-\|g\|^{2}\right)=1$ for all n, and by the first part, for all $f \in H$, $\lim _{n \rightarrow \infty}\left\langle f, f_{n}\right\rangle=\langle f, g\rangle$ which shows that $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ converges weakly to g.

[^0]: ${ }^{1}$ (C) 2017 by the author. This article may be reproduced, in its entirety, for non-commercial purposes.

