Solutions for Homework Assignment 1, Math 502, Spring 2017

Eric A. $Carlen^1$

Rutgers University

February 9, 2017

1: Let $Y = L^1(\mu)$ where μ is counting measure on \mathbb{N} . Let X be the subspace $X = \{f \in Y : \sum_{n \in \mathbb{N}} n | f(n) | < \infty\}$, equipped with the norm inherited from Y.

(a) Show that X is a proper dense subspace of Y, and hence is not complete.

(b) Define $T: X \to Y$ by Tf(n) = nf(n). Show that T is closed but not bounded.

(c) Let $S = T^{-1}$. Show that S is bounded and surjective but not open.

SOLUTION: (a) A sequence f belongs to X if and only if $f \in L^1(\nu)$, where ν is the weighted counting measure on \mathbb{N} given by $\nu(A) = \sum_{n \in A} n$, in which case it also belongs to Y since $\mu \leq \nu$. Hence Y is a subspace of X. (L^1 is always a vector space.) Moreover, let f_0 be the sequence given by $f_0(n) = n^{-2}$. Then $f \in L^1(\mu)$ but $f \notin L^1(\nu)$ so X is a proper subspace of Y.

The set of sequences that have only finitely many many non-zero terms is dense in Y and is included in X. Hence X is dense in Y. This is because if $f \in Y$, $\lim_{N\to\infty} \sum_{n\geq N} |f(n)| = 0$, and therefore defining

$$f_N(n) = \begin{cases} f(n) & n < N \\ 0 & n \ge N \end{cases}$$

each $f_N \in X$ and $\lim_{N\to\infty} ||f - f_N||_Y = 0$.

(b) For $N \in \mathbb{N}$, define g_N by

$$g_N(n) = \begin{cases} 1 & n = N \\ 0 & n \neq N \end{cases}.$$

$$(0.1)$$

Then $||g_N||_Y = 1$ and $||Tg_N||_Y = n$, so there is no finite constant C such that $||Tf||_Y \leq C||f||_Y$ for all $f \in Y$. Hence T is unbounded. To see that T is closed, let $\{f_n\}$ be a convergent sequence in Y, and suppose that $\lim_{n\to\infty} f_n = f$ in Y and that $\lim_{n\to\infty} Tf_n = g$ in Y. Since for all $f \in Y$, and all $n \in \mathbb{N}$, $|f(n)| \leq ||f||_Y$, convergence in Y implies point-wise convergence. Therefore, for all $m \in N$,

$$g(m) = \lim_{n \to \infty} Tf_n(m) = \lim_{n \to \infty} mf_n(m) = m\left(\lim_{n \to \infty} f_n(m)\right) = mf(m) = Tf(m) .$$
(0.2)

Thus, Tf = g, and the graph of T is closed.

(c) Note that S is given by $Sf(n) = n^{-1}f(n)$, and so $||Sf||_Y \le ||f||_Y$ showing that $||S|| \le 1$. (In fact, considering g_1 defined as in (0.1), $Sg_1 = g_1$, and hence $||S|| \ge 1$. Altogether, we obtain ||S|| = 1.) If $f \in X$, $Tf \in Y$, and thus f = S(Tf) which shows that S maps Y onto X, and it is clearly one-to-one since Sf = 0 implies f = 0. If S were open, $T = S^{-1}$ would be continuous, and therefore bounded, but by part (b), it is not.

 $^{^{1}}$ © 2017 by the author. This article may be reproduced, in its entirety, for non-commercial purposes.

2: Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two norms on a vector space X such that $\|\cdot\|_1 \leq \|\cdot\|_2$. Show that if X is complete with respect to both norms, then the norms are equivalent.

SOLUTION: (Note: This statement is weaker than the Theorem of Tao that was proved in class. The solution below is a simplification of the proof given of Tao's Theorem.) It suffices to show that for some finite constant C, $\|\cdot\|_2 \leq C\|\cdot\|_1$. Let $T: (X, \|\cdot\|_1) \to (X, \|\cdot\|_2)$ be the identity map Tx = x, and let $\{x_n\}$ be a sequence in X such that $\lim_{n\to\infty} x_n = x$ in $(X, \|\cdot\|_1)$ and $\lim_{n\to\infty} Tx_n = y$ in $(X, \|\cdot\|_2)$. Since T is the identity, and since $\|\cdot\|_1 \leq \|\cdot\|_2$,

$$0 = \lim_{n \to \infty} \|x_n - y\|_2 \ge \lim_{n \to \infty} \|x_n - y\|_1 .$$

Hence, in $(X, \|\cdot\|_1)$, $x = \lim_{n\to\infty} x_n = y$, showing that the graph of T is closed. By the Closed Graph Theorem, it is bounded, and hence there is a finite constant C such that for all $x \in T$, $\|x\|_2 = \|Tx\|_2 \leq C\|x\|_1$, as was to be shown.

3: Let X and Y be Banach spaces. Let $T: X \to Y$ be a linear map such that $f \circ T \in X^*$ for all $f \in Y^*$. Show that T is bounded.

FIRST SOLUTION: By the Closed Graph Theorem, it suffice to show that the graph of T is closed. Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence n X such that $\lim_{n\to\infty} x_n = x$ in X and $\lim_{n\to\infty} Tx_n = y$ in Y. Then since (by definition) each $f \in X^*$ is continuous on Y, $\lim_{n\to\infty} Tx_n = f(y)$, and since by hypothesis $f \circ T$ is continuous on X, $\lim_{n\to\infty} f(Tx_n) = f(Tx)$. Since Y^* separates points y = Tx, and hence the graph of Tis closed as was to be shown.

SECOND SOLUTION: By definition, $||f(T(x))| \leq ||f||_{Y^*} ||T(x)||_Y < \infty$ for all $x \in X$, and all $f \in Y^*$. Therefore, define $\mathcal{A} = \{f \circ T : f \in Y^*, \|f\|_{Y^*} = 1\}$, which, by hypothesis, is set of continuous linear transformations form X to \mathbb{C} , which are both Banach space, and by the above, we have

$$\sup_{f \circ T \in \mathcal{A}} \{ |f(T(x))| \} \le ||T(x)||_Y \} < \infty .$$

By the Uniform Boundedness Principle,

$$\sup_{f\circ T\in\mathcal{A}}\{\|f\circ T\|_{Y^*}\}<\infty.$$

this means that there is a finite constant C such that for all x with $||x||_X \leq 1$, and all $y \in Y^*$ with $||y||_{Y^*} \leq 1$, $f(T(x))| \leq C$. Since for all $y \in Y$, $||y||_Y = \sup\{|f(y)| : f \in Y^*, \|f\|_{Y^*} = 1\}$, this means that $||T(x)||_Y \leq C$ for all x with $||x||_X \leq 1$, and this means that $||T|| \leq C$.

4: Let X and T be Banach spaces, and let $\{T_n\}_{n\in\mathbb{N}}$ be a sequence of bounded linear transformations from X to Y such that for each $x \in X$. $\{Tx_n\}_{n\in\mathbb{N}}$ is a convergent sequence in Y. For all $x \in X$, define $Tx \lim_{n\to\infty} T_n x$. Show that T is a bonded linear transformation form X to Y.

SOLUTION: Point-wise limits of linear transformations are linear, so T is linear. Nest, since the norm function is continuous, for each $x \in X$, $\lim_{n\to\infty} ||T_n x||_Y = ||Tx||_Y < \infty$. Since convergent sequences in \mathbb{R} are bounded, for each $x \in X$, $\sup_{n \in \mathbb{N}} ||T_n(x)||_Y < \infty$. Then by the Uniform Boundedness Principle,

$$C:=\sup_{n\in\mathbb{N}}\|T_n\|_Y<\infty.$$

Then for any $x \in X$, and any $n \in \mathbb{N}$, $||T_n x||_Y \leq C ||x||_X$. Again by continuity of the norm function,

$$||T(x)||_{Y} = \lim_{n \to \infty} ||T_{n}(x)||_{Y} \le C ||x||$$

showing that $||T|| \leq C$.