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1: Let Y = L1(µ) where µ is counting measure on N. Let X be the subspace X = {f ∈ Y :∑
n∈N n|f(n)| <∞}, equipped with the norm inherited from Y .

(a) Show that X is a proper dense subspace of Y , and hence is not complete.

(b) Define T : X → Y by Tf(n) = nf(n). Show that T is closed but not bounded.

(c) Let S = T−1. Show that S is bounded and surjective but not open.

SOLUTION: (a) A sequence f belongs to X if and only if f ∈ L1(ν), where ν is the weighted counting

measure on N given by ν(A) =
∑

n∈A n, in which case it also belongs to Y since µ ≤ ν. Hence Y is a

subspace of X. (L1 is always a vector space.) Moreover, let f0 be the sequence given by f0(n) = n−2.

Then f ∈ L1(µ) but f /∈ L1(ν) so X is a proper subspace of Y .

The set of sequences that have only finitely many many non-zero terms is dense in Y and is included

in X. Hence X is dense in Y . This is because if f ∈ Y , limN→∞
∑

n≥N |f(n)| = 0, and therefore defining

fN (n) =

{
f(n) n < N

0 n ≥ N ,

each fN ∈ X and limN→∞ ‖f − fN‖Y = 0.

(b) For N ∈ N, define gN by

gN (n) =

{
1 n = N

0 n 6= N .
(0.1)

Then ‖gN‖Y = 1 and ‖TgN‖Y = n, so there is no finite constant C such that ‖Tf‖Y ≤ C‖f‖Y for all

f ∈ Y . Hence T is unbounded. To see that T is closed, let {fn} be a convergent sequence in Y , and

suppose that limn→∞ fn = f in Y and that limn→∞ Tfn = g in Y . Since for all f ∈ Y , and all n ∈ N,

|f(n)| ≤ ‖f‖Y , convergence in Y implies point-wise convergence. Therefore, for all m ∈ N ,

g(m) = lim
n→∞

Tfn(m) = lim
n→∞

mfn(m) = m
(

lim
n→∞

fn(m)
)

= mf(m) = Tf(m) . (0.2)

Thus, Tf = g, and the graph of T is closed.

(c) Note that S is given by Sf(n) = n−1f(n), and so ‖Sf‖Y ≤ ‖f‖Y showing that ‖S‖ ≤ 1. (In fact,

considering g1 defined as in (0.1), Sg1 = g1, and hence ‖S‖ ≥ 1. Altogether, we obtain ‖S‖ = 1.) If

f ∈ X, Tf ∈ Y , and thus f = S(Tf) which shows that S maps Y onto X, and it is clearly one-to-one

since Sf = 0 implies f = 0. If S were open, T = S−1 would be continuous, and therefore bounded, but

by part (b), it is not.
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2: Let ‖ · ‖1 and ‖ · ‖2 be two norms on a vector space X such that ‖ · ‖1 ≤ ‖ · ‖2. Show that if X is

complete with respect to both norms, then the norms are equivalent.

SOLUTION: (Note: This statement is weaker than the Theorem of Tao that was proved in class. The

solution below is a simplification of the proof given of Tao’s Theorem.) It suffices to show that for some

finite constant C, ‖ · ‖2 ≤ C‖ · ‖1. Let T : (X, ‖ · ‖1) → (X, ‖ · ‖2) be the identity map Tx = x, and let

{xn} be a sequence in X such that limn→∞ xn = x in (X, ‖ · ‖1) and limn→∞ Txn = y in (X, ‖ · ‖2). Since

T is the identity, and since ‖ · ‖1 ≤ ‖ · ‖2,

0 = lim
n→∞

‖xn − y‖2 ≥ lim
n→∞

‖xn − y‖1 .

Hence, in (X, ‖ · ‖1), x = limn→∞ xn = y, showing that the graph of T is closed. By the Closed Graph

Theorem, it is bounded, and hence there is a finite constant C such that for all x ∈ T , ‖x‖2 = ‖Tx‖2 ≤
C‖x‖1, as was to be shown.

3: Let X and Y be Banach spaces. Let T : X → Y be a linear map such that f ◦ T ∈ X∗ for all f ∈ Y ∗.
Show that T is bounded.

FIRST SOLUTION: By the Closed Graph Theorem, it suffice to show that the graph of T is closed.

Let {xn}n∈N be a sequence n X such that limn→∞ xn = x in X and limn→∞ Txn = y in Y . Then since

(by definition) each f ∈ X∗ is continuous on Y , limn→∞ Txn = f(y), and since by hypothesis f ◦ T is

continuous on X, limn→∞ f(Txn) = f(Tx). Since Y ∗ separates points y = Tx, and hence the graph of T

is closed as was to be shown.

SECOND SOLUTION: By definition, ‖f(T (x))| ≤ ‖f‖Y ∗‖T (x)‖Y <∞ for all x ∈ X, and all f ∈ Y ∗.
Therefore, define A = {f ◦ T : f ∈ Y ∗ , ‖f‖Y ∗ = 1}, which, by hypothesis, is set of continuous linear

transformations form X to C, which are both Banach space, and by the above, we have

sup
f◦T∈A

{|f(T (x))|} ≤ ‖T (x)‖Y } <∞ .

By the Uniform Boundedness Principle,

sup
f◦T∈A

{‖f ◦ T‖Y ∗} <∞ .

this means that there is a finite constant C such that for all x with ‖x‖X ≤ 1, and all y ∈ Y ∗ with

‖y‖Y ∗ ≤ 1, f(T (x))| ≤ C. Since for all y ∈ Y , ‖y‖Y = sup{|f(y)| : f ∈ Y ∗ , ‖f‖Y ∗ = 1}, this means

that ‖T (x)‖Y ≤ C for all x with ‖x‖X ≤ 1, and this means that ‖T‖ ≤ C.

4: Let X and T be Banach spaces, and let {Tn}n∈N be a sequence of bounded linear transformations

from X to Y such that for each x ∈ X. {Txn}n∈N is a convergent sequence in Y . For all x ∈ X, define

Tx limn→∞ Tnx. Show that T is a bonded linear transformation form X to Y .

SOLUTION: Point-wise limits of linear transformations are linear, so T is linear. Nest, since the norm

function is continuous, for each x ∈ X, limn→∞ ‖Tnx‖Y = ‖Tx‖Y <∞. Since convergent sequences in R
are bounded, for each x ∈ X, supn∈N ‖Tn(x)‖Y <∞. Then by the Uniform Boundedness Principle,

C := sup
n∈N
‖Tn‖Y <∞ .

Then for any x ∈ X, and any n ∈ N, ‖Tnx‖Y ≤ C‖x‖X . Again by continuity of the norm function,

‖T (x)‖Y = lim
n→∞

‖Tn(x)‖Y ≤ C‖x‖

showing that ‖T‖ ≤ C.


