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1 Convex Functions

1.1 Continuity and lower-semicontinuity of convex functions

1.1 DEFINITION (Convex Function). A function φ on defined on a convex subset C of a real

vector space X with values in (−∞,∞] is convex in case for all x, y ∈ C and all λ ∈ (0, 1),

φ(λx+ (1− λ)y) ≤ λφ(x) + (1− λ)φ(y) , (1.1)

and φ is strictly convex in case this inequality is strict for all x 6= y and all λ ∈ (0, 1). A convex

function φ on X is proper in case φ(x) <∞ for at least one x ∈ X.

1 c© 2017 by the author. This article may be reproduced, in its entirety, for non-commercial purposes.
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1.2 DEFINITION (Epigraph). Let φ be a function from some set X to (−∞,∞]. The epigraph

of φ, Epi(φ), is the subset of X × R consisting of points (x, t) such that f(x) ≥ t. Note that

Epi(φ) = ∅ if and only if φ(x) =∞ for all x.

1.3 LEMMA. Let (X,O) be a topological vector space. Then a function φ on X with values in

(−∞,∞] is convex if and only if Epi(φ) is convex, and is lower-semicontinuous if and only if Epi(φ)

is closed in the product topology.

Proof. This is elementary and is left to the reader.

Let (X,O) be a topological vector space, and let φ be a convex function on X. Then Epi(φ)

is convex, and since the closure of a convex set is convex, Epi(φ) is closed and convex. Define a

convex function φ by

φ(x) =

{
∞ {x} × R ∩ Epi(φ) = ∅

inf{t : (x, t) ∈ x ∈ Epi(φ)} otherwise .

Then φ is a lower-semicontinuous convex function such that φ(x) ≤ φ(x) for all x. By construction

and by Lemma 1.3, φ is the largest (in the usual ordering) lower-semicontinuous convex function

that is dominated by φ pointwise. The function φ is called the lower-semicontinuous regularization

of φ.

1.4 EXAMPLE. Define φ : R→ (−∞,∞] by

φ(x) =


0 x ∈ (−1, 1)

1 x ∈ {−1, 1}
∞ x /∈ [−1, 1] .

Then φ(x) =

{
0 x ∈ [−1, 1]

∞ x /∈ [−1, 1] .

1.2 Convex functions on R

We first focus on the important special case in which the vector space X is simply R. In this case

the set C on which φ is finite is an interval. We may consider φ as defined on all of R by setting

φ(x) = ∞ for x /∈ C. In what follows, when we speak of a real-valued convex function on C ⊂ R,

we shall always assume that φ(x) =∞ for x /∈ C.

1.5 THEOREM. Let φ be a real valued convex function on an interval C ⊂ R. Then φ is

continuous on the interior of C. Moreover, for a, b, c, d ∈ C

b− a = d− c and a < c ⇒ φ(b)− φ(a) ≤ φ(d)− φ(c) . (1.2)

That is, the increment of φ over an interval increases as the interval is translated to the right.

If φ is strictly convex, the inequality in (1.2) is strict. Conversely, let φ be any function that is

continuous and finite on an open interval C, and is such that (1.2) is valid for all a, b, c, d ∈ C.

Then φ is convex.
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Proof. We first prove (1.2) Note that b, c ∈ [a, d], and hence for some λ, β ∈ (0, 1), b = λa+(1−λ)d

and c = βa+ (1− β)d. Solving for λ and β, we find

λ = 1− β =
d− b
d− a

.

Since λ = 1 − β, b = λa + (1 − λ)d and c = λd + (1 − λ)a. It now follows from the definition of

convexity that

φ(b) ≤ λφ(a) + (1− λ)φ(d) and φ(c) = λφ(d) + (1− λ)φ(a) .

Adding these two inequalities yields φ(b) + φ(c) ≤ φ(a) + φ(d), with strict inequality if φ is strictly

convex, and this proves the first assertion, and evidently if φ is strictly convex, all of the inequalities

are strict.

Fix any a in the interior of C; we shall show that φ is continuous at a. For any b ∈ C, b 6= a,

use a telescoping sum expansion to write

φ(b)− φ(a) =
n∑
j=1

[
φ

(
a+ (b− a)

j

n

)
− φ

(
a+ (b− a)

j − 1

n

)]
. (1.3)

Choose δ > 0 so that a ± δ ∈ C. By (1.2), for b = a + δ, the first term in the sum is the

least, and hence φ(a+ δ/n)− φ(a) ≤ φ(a+ δ)− φ(a)

n
Likewise, for b = a − δ, the same reasoning

yields
φ(a)− φ(a− δ)

n
≤ φ(a)− φ(a− δ/n). Again by (1.2), φ(a)− φ(a− δ) ≤ φ(a+ δ/n)− φ(a).

Altogether,

φ(a)− φ(a− δ)
n

≤ φ(a)− φ(a− δ/n) ≤ φ(a+ δ/n)− φ(a) ≤ φ(a+ δ)− φ(a)

n
. (1.4)

Taking n→∞, we conclude limn→∞ φ(a− δ/n) = φ(a) = limn→∞ φ(a+ δ/n).

We now claim that limx↓a φ(x) = φ(a). Suppose that lim supx↓a φ(x) > φ(a). Then for some

ε > 0, there is an infinite sequence {tm}m∈N contained in (a, a+ δ) such that limm→∞ tm = a and

φ(tm) ≥ φ(a)+ ε for all m ∈ N. Choose n so that φ(a+δ/n) ≤ φ(a)+ ε/2. Then there exists m ∈ N
such that tm ∈ (a, a+ δ/n) and thus λ ∈ (0, 1) such that tm = λa+ (1−λ)(a+ δ/n). Then φ(tm) ≤
λφ(a) + (1− λ)(φ(a) + ε/2) < φ(a) + ε/2. This contradiction shows that lim supx↓a φ(x) ≤ φ(a).

Next, suppose that lim infx↓a φ(x) < φ(a). Then for some ε > 0, there is an infinite sequence

{tm}m∈N contained in (a, a + δ) such that limm→∞ tm = a and φ(tm) ≤ φ(a) − ε for all m ∈ N.

Choose n so that φ(a + δ/n) ≥ φ(a) − ε/2. Choose n ∈ N so that φ(a + δ/n) ≥ φ(a) − ε/2, and

a+ δ/n < t1. Choose m so that tm < a+ δ/n. Then a+ δ/n ∈ (tm, t1) and there exists λ ∈ (0, 1)

such that a + δ/n = λtm + (1 − λ)t1. Then φ(a + δ/n) ≤ λφ(tm) + (1 − λ)(φ(tm) < φ(a) − ε/2.

This contradiction shows that lim infx↓a φ(x) ≥ φ(a).

Altogether, we have shown that φ is right continuous at a. We could repeat the same analysis

to show that φ is also left continuous at a, but observe that the function ψ(x) := φ(2a − x) is

convex and finite on an open interval about a. (Epi(ψ) is just the reflection of Epi(φ) about the

vertical line x = a). By what we have just proved, ψ is right continuous at a. But then since φ is

the reflection of φ about x = a, φ is left continuous at x = a. Altogether, the continuity of φ is

proved.
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For the converse, let x < y ∈ C and λ ∈ (0, 1). We must show that when (1.2) is valid for all

a, b, c, d ∈ C, then φ(λx + (1 − λ)y) ≤ λφ(x) + (1 − λ)φ(y). By the continuity of φ, it suffices to

do this when λ is a dyadic rational; i.e., λ = k/2n for some k, n ∈ N with k < 2n. For n = 1, note

define z = (x+ y)/2 and note that

1

2
φ(x) +

1

2
φ(y)− φ

(
x+ y

2

)
=

1

2
(φ(y)− φ(z))− 1

2
(φ(z)− φ(x)) > 0

because y − z = z − x. That is, when (1.2) is valid for all a, b, c, d ∈ C, then

φ(λx+ (1− λ)y) ≤ λφ(x) + (1− λ)φ(y) (1.5)

for all x, y ∈ C and λ = 1/2.

This is the first step of an inductive proof that the same is true whenever λ = j2−m, j,m ∈ N
and j < 2m. We suppose that this has been shown whenever m < n.

Now fix λ = j/2−n ∈ (0, 1). Let k, ` ∈ N such that k + ` = j and k, ` ≤ 2n−1. (If j is even take

k = ` = j/2, and if j is odd, take k to be the integer part of j/2.) Then for all x, y,

λx+ (1− λ)y =
jx+ (2n − j)y

2n
=

1

2

(
kx+ (2n−1 − k)y

2n−1

)
+

1

2

(
`x+ (2n−1 − `)y

2n−1

)
(1.6)

Since (1.5) is true for λ = 1/2,

φ(λx+ (1− λ)y) ≤ 1

2
φ

(
kx+ (2n−1 − k)y

2n−1

)
+

1

2
φ

(
`x+ (2n−1 − `)y

2n−1

)
.

By the inductive hypothesis,

φ

(
kx+ (2n−1 − k)y

2n−1

)
≤ k

2n−1
φ(x) +

2n−1 − k
2n−1

φ(y)

and likewise with ` in place of k. Using these inequalities in (1.6) shows that (1.5) is valid for

λ = j2−n, completing the inductive proof.

1.3 The subgradient of a convex function

1.6 THEOREM. Let φ be a real valued convex function on an interval C ⊂ R. For all a, b, c ∈ C,

a < b < c,
φ(c)− φ(a)

c− a
≥ φ(b)− φ(a)

b− a
, (1.7)

If φ is strictly convex, the inequality in (1.7) is strict.

Proof. Because φ is continuous, it suffices to consider rational values of b− a and c− a. Choosing

a common denominator n, we can write b− a =
k

n
and c− a =

m

n
with m > k. Define a sequence

{aj} by

aj = φ

(
a+

j

n

)
− φ

(
a+

j − 1

n

)
.
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By (1.2), this is an increasing sequence, and hence,

φ(b)− φ(a)

b− a
= n

φ(a+ k/n)− φ(a)

k
= n

1

k

k∑
j=1

aj

 .

Likewise,
φ(c)− φ(a)

c̃− a
= n

 1

m

m∑
j=1

aj

. Since aj increases with j,
1

k

k∑
j=1

aj ≤
1

m

m∑
j=1

aj for m ≥ k.

This proves (1.7). By theorem 1.5, if φ is strictly convex, then aj+1 > aj for all j, and then there

is strict inequality in (1.7).

Let φ be convex on R and finite on C, For each s ∈ C◦, define

σφ+(s) = lim
h→0+

φ(s+ h)− φ(s)

h
and σφ−(s) = lim

h→0+

φ(s)− φ(s− h)

h
. (1.8)

The limit defining σφ+ exists by (1.7), and then limit defining σφ− also exists by (1.7), but applied

to the convex functions φ(−s). We refer to σφ+(s) as the right derivative of φ at s, and to σφ−(s) as

the left derivative of φ at s. If is clear from Theorem 1.5 that in general, σφ+(s) ≥ σφ−(s). Evidently

φ is differentiable at s if and only if σφ+(s) = σφ−(s), so that in this case, φ′(s) = σφ+(s) = σφ−(s)

represents the slope of φ at s. Since the left derivative of φ at s is minus the right derivative of

t 7→ φ(−t) at t = −s, we may economize in the formulation of the following theorem by referring

only to right derivatives.

1.7 THEOREM (One-sided Derivatives). Let φ be a convex function on R that is finite on an

interval C. for all a, b ∈ C◦, a < b.

σφ+(a) ≤ σφ−(b) (1.9)

and for all s ∈ [σφ−(a), σφ+(a)],

φ(b) ≤ φ(a) + s(b− a) . (1.10)

Moreover, if φ is strictly convex, then both of these inequalities are strict. Finally, for all a ∈ C◦,

σφ+(a) = inf
b>a

σφ+(b) and σφ−(a) = sup
b<a

σφ+(b) . (1.11)

In other words, σφ+ is a right-continuous non-decreasing function, and σφ− is a left-continuous non-

decreasing function.

Proof. By Theorem 1.5, for all 0 < h < b − a, φ(b) − φ(b − h) ≤ φ(a + h) − φ(a). Dividing by h

and taking the limit h ↓ 0 yields (1.9).

Next, by the telescoping sum identity (1.3) and Theorem 1.5 to obtain, for b > a,

φ(b)− φ(a) ≥ n(φ(a+ (b− a)/n)− φ(a)) . (1.12)

Multiplying by 1 = (b− a)/(b− a), yields

φ(b) ≥ φ(a) + (b− a)

[
φ(a+ (b− a)/n)− φ(a)

(b− a)/n

]



EAC March 6, 2017 6

Taking the limit n→∞ yields φ(b) ≥ φ(a) + σφ+(a)(b− a).

For b < a, (1.3) and Theorem 1.5 yield

φ(a)− φ(b) ≤ n(φ(a)− φ(a− (a− b)/n)) . (1.13)

Multiplying and dividing by −1 = (b− a)/(a− b), yileds

φ(b) ≤ φ(a) + (b− a)

[
φ(a)− φ(a− (a− b)/n)

(a− b)/n

]
Taking the limit n → ∞ yields φ(b) ≥ φ(a) + σφ−(a)(b − a). Therefore, for any s ∈ [σφ−(a), σφ+(a)],

(1.10) is valid.

Next, for a ∈ C◦, choose ε > 0, and then h > 0 so that σφ+(a) + ε ≥ (φ(a + h) − φ(a))/h. By

the continuity of φ, there is a δ > 0 so that (φ(a+ h)− φ(a))/h+ ε ≥ (φ(a+ δ + h)− φ(a+ δ))/h.

Therefore,

σφ+(a) + 2ε ≥ (φ(a+ δ + h)− φ(a+ δ))/h ≥ σφ+(a+ δ)

The fact that for all δ > 0, σφ+(a) ≤ σφ+(aδ) is an immediate consequence of (1.9). This proves the

first identity in (1.11). The second is proved in the same manner.

Theorem 1.7 has the following interpretation: Let φ be convex and finite on an open interval

C ⊂ R. Then for all x0 ∈ C, and all s ∈ [σφ−(a), σφ+(a)], the affine function h(x) = s(x−x0) +φ(x0)

satisfies h(x) ≤ φ(x) for all x, with h(x0) = φ(x0): The graph of h, a line, lies below the graph of

φ but touches it at the point (x0, φ(x0)). Such a line is called a supporting line for the graph of φ.

It is evident that the maximum φ1 ∨ φ2(x) = max{φ1(x), φ2(x)} of two convex functions φ1, φ2

is convex, and more generally, if C is any set of convex functions, then∨
φ∈C

φ(x) = sup{φ(x) : φ ∈ C}

is convex.

Affine functions are evidently convex. For any function ψ on an open interval C, convex or

not, define Aψ to be the set of affine functions h such that h(x) ≤ ψ(x) for all x ∈ C. Define the

function

conv(ψ)(x) = sup{φ(x) : φ ∈ Aψ} .

By what has been explained just above, conv(ψ) is a convex function satisfying conv(ψ)(x) ≤ ψ(x)

for all x. It is the largest such function: If φ is a convex function such that φ(x) ≤ ψ(x), then at

every x0, there is a supporting line to the graph of φ at x0, and hence the linear function h whose

graph is this supporting line belongs to Aψ. This implies that φ(x0) ≤ conv(ψ)(x0). Moreover, the

supremum of any set of continuous functions is lower semi-continuous, so that conv(ψ)(x0) is also

lower-semicontinuous. The function conv(ψ) is called the convex envelope of ψ. Evidently every

proper, lower-semicontinuous convex function is its own convex envelope. This simple fact has an

important consequence.

1.8 THEOREM (Jensen’s Inequality). Let (Ω,M, µ) be a measure space with µ(Ω) = 1. Then

for all real valued convex functions φ on R, and all measurable function f , the negative part of

φ(|f |) is integrable, so that
∫

Ω φ(|f |)dµ is well defined, though it may be infinite. Moreover,

φ

(∫
Ω
|f |dµ

)
≤
∫

Ω
φ(|f |)dµ . (1.14)
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and if φ is strictly convex there is equality if and only if

|f(x)| =
∫

Ω
|f |dµ (1.15)

for almost every x.

Proof. Let a :=
∫

Ω |f |dµ. By (1.10), φ(|f(x)|) ≥ φ(a)+σφ+(a)(|f(x)|−a). Integrating this pointwise

inequality yields (1.14). If φ is strictly convex, this pointwise inequality is strict wherever |f(x)| 6= a,

and hence the inequality (1.14) is strict unless |f(x)| = a almost everywhere.

1.4 The Legendre Transform

Let φ be a convex function on a closed interval [a, b] where a = −∞ and b =∞ are allowed, and φ

is finite on (a, b). Define

c := lim
x↓a

σφ−(x) and d := lim
x↑b

σφ+(x) . (1.16)

By Theorem 1.7, both limits exist, though we may have c = −∞ or d = ∞ (or both). Fix y ∈ R
and consider the function x 7→ xy − φ(x).

Suppose that y ∈ (c, d). Define

x0(y) = sup{x : σφ−(x) < y} and x1(y) = inf{x : σφ+(x) > y} , (1.17)

and note that −∞ < x0(y) ≤ x1(y) <∞. By (1.11),

σφ−(x0(y)) ≤ y and σφ+(x1(y)) ≥ y . (1.18)

Thus, for all x > x1(y),

yx− φ(x) ≤ yx1(y) + y(x− x1(y))− φ(x1(y))− σφ+(x1(y))(x− x1(y))

= yx1(y)− φ(x1(y)) + [y − σφ+(x1(y))](x− x1(y)) .

By (1.18), [y − σφ+(x1(y))](x− x1(y)) ≤ 0, and therefore yx− φ(x) ≤ yx1(y)− φ(x1(y)).

Similar reasoning shows that for all x < x0(y), yx− φ(x) ≤ yx0(y)− φ(x0(y). Therefore,

sup
x∈R
{yx− φ(x)} = max

x∈[x0(y),x1(y)]
{yx− φ(x)} <∞ , (1.19)

using the fact that φ is continuous. Define a function φ∗ on R with values in (−∞,∞] by

φ∗(y) = sup
x∈R
{yx− φ(x)} . (1.20)

As a supremum of affine functions, φ∗ is convex and lower-semicontinuous, and by (1.19), φ∗

is finite on the interval (c, d). Now observe that if φ is finite only at a single point x0, and

supx∈R{yx− φ(x)} = yx0 − φ(x0) for all y ∈ R.

1.9 DEFINITION (Legendre Transform). Let φ be convex and finite on a non-empty interval

C. The Legendre transform φ∗ of φ is the function defined by (1.20), which is proper, convex and

lower-semicontinuous. A pair of proper lower-semicontinuous functions φ and ψ such that ψ = φ∗

and hence φ = ψ∗ is called a dual pair of convex functions. (Note that, by definition, if φ and ψ are a

dual pair of convex functions, they are not only convex, but also proper and lower-semicontinuous.)
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1.10 EXAMPLE. For 1 < p < ∞, define φp(x) := p−1|x|p. Note that φp is continu-

ously differentiable with φ′p(x) = |x|p−1sgn(x) which is strictly monotone increasing. Hence

limx↑∞ σ
φ
+(x) = limx↑∞ φ

′
p(x) = ∞, and limx↓−∞ σ

φ
−(x) = limx↓−∞ φ

′
p(x) = −∞. Thus, φp is

strictly convex, and φ∗p will be defined on all of R. To compute it, note that for all Then for all y ∈ R,

the function x 7→ xy−φ(x) is continuously differentiable, and its derivative is y−|x|p−1sgn(x), and

hence the unique maximum occurs where x has the same sign as y, and |x| = |y|1/(p−1). Evaluating

xy − φp(x) as this x, we find

φ∗p(y) = |y|1+1/(p−1) − 1

p
|y|p/(p−1) =

p− 1

p
|y|p/(p−1) .

Hence if we define q = p/(p− 1), we have that

1

p
+

1

q
= 1 and φ∗p = φq . (1.21)

Since the relation (1.21) is symmetric in p and q, (φ∗p)
∗ = φp. We shall soon see that this is no

coincidence.

1.11 EXAMPLE. Now consider the two limiting functions φ1(x) = limp↓1 φp(x) = |x|, and

φ∞(x) = limp↑1 φp(x), so that

φ∞(x) :=

{
0 x ∈ [−1, 1]

∞ x /∈ [−1, 1] .
(1.22)

Both φ1 and φ∞ are lower-semicontinuous convex functions. (In fact, φ1 is even continuous.) Fix

y ∈ R, and note that yx−φ(x) = (ysgn(x)−1)|x| ≤ (|y|−1)|x|, with equality when sgn(x) = sgn(y).

It follows that supx∈R{yx− φ1(x)} = φ∞(y) .

By the Fenchel-Moreau Theorem, it follows that φ∗∞ = φ1, but this is also easy to check from

the definition: Fix x ∈ R, and note that xy − φ∞(y) = xy for |y| ≤ 1 and xy − φ∞(y) = −∞ for

|y| > 1. Hence

φ∗∞(x) = sup{xy : |y| ≤ 1} = |x| .

1.12 DEFINITION (Subgradient). Let φ be a convex function on R that is finite on an interval

C. For x ∈ C, the subgradient of φ at x, ∂φ(x), is the set of numbers s such that

φ(y) ≥ φ(x) + s(y − x)

for all y ∈ R. In other words, s ∈ ∂φ(x) if and only if the line with slope s that passes through

(x, φ(x)) is a supporting line for φ. If φ(x) =∞, we define ∂φ(x) = ∅. For A ⊂ R, define

∂φ(A) =
⋃
x∈A

∂φ(x) . (1.23)

1.13 LEMMA. Let φ be a convex function on R that is finite on in a interval C. Then for all

x ∈ Co, ∂φ(x) = [σφ−(x), σφ+(x)]. In particular, for x ∈ Co, ∂φ(x) 6= ∅.

Proof. This follows immediately from (1.10).



EAC March 6, 2017 9

1.14 THEOREM (Young’s Inequality). Let φ be a proper convex function, and let φ∗ be the

Legendre transform of φ. Then for all x, y ∈ R,

xy ≤ φ(x) + φ∗(y) . (1.24)

Moreover, there is equality in (1.24) if and only if y ∈ ∂φ(x), and in this case, x ∈ ∂φ∗(y).

Proof. The inequality (1.24) is an immediate consequence of the definition (1.20). Suppose for

some x0, y0 ∈ R, x0y0 = φ(x0) + φ∗(y0), so that necessarily φ∗(y0) < ∞. Then by (1.24), for all

x ∈ R,

φ(x) + φ∗(y0)− xy0 ≥ φ(x0) + φ∗(y0)− x0y0 ,

Therefore, φ(x) ≥ φ(x0) + y0(x− x0), which shows that y0 ∈ ∂φ(x0). Conversely, if y0 ∈ ∂φ(x0),

then by definition, φ(x) ≥ φ(x0) + y0(x− x0) for all x, and hence

x0y0 ≥ φ(x0) + y0x− φ(x) .

Taking the supremum over x, we find x0y0 ≥ φ(x0) +φ∗(y0). Together with (1.24), this proves that

x0y0 = φ(x0) + φ∗(y0).

Likewise, when x0y0 = φ(x0) + φ∗(y0), for all y ∈ R,

φ(x0) + φ∗(y)− x0y ≥ φ(x0) + φ∗(y0)− x0y0 ,

and φ(x0) <∞, so that φ∗(y) ≥ φ∗(y0) + x0(y − y0). Therefore, x0 ∈ ∂φ∗(y0).

Suppose that φ and φ∗ are both continuously differentiable. For instance, this is the case when

φ(x) = p−1|x|p, p ∈ (1,∞), so that φ∗(y) = q−1|y|q, q = p/(p−1). Then for all x, y, ∂φ(x) = {φ′(x)}
and ∂φ∗(y) = {(φ∗)′(y)}. Then the statement about cases of equality in Young’s inequality says

that

[φ∗]′(φ′(x)) = x and φ′[(φ∗)′(y)] = y .

In other words, the functions φ′ and (φ∗)′ are inverse to one another. For the dual pair in Exam-

ple 1.10, this can be checked by simple computations..

1.15 THEOREM (Fenchel-Moreau Theorem). Let φ be a proper, lower-semicontinuous function

on R and let φ∗ be its Legendre transform. Let φ∗∗ be the Legendre transform of φ∗. Then

φ∗∗ = φ . (1.25)

Proof. Let (a, b) be the interior of the interval on which φ is finite. Let (c, d) be be given by (1.16).

Let x ∈ (a, b) and y ∈ ∂φ(x). Then φ(x)+φ∗(y) = xy, and x ∈ ∂φ∗(y). Then by Young’s inequality

applied to the pair φ∗ and φ∗∗, xy = φ∗(y) + φ∗∗(x), and

φ(x) + φ∗(y) = xy = φ∗(y) + φ∗∗(x) .

This proves that at all points of (a, b), φ(x) = φ∗(x). Since both functions are lower-semicontinuous,

they both agree on [a, b].
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2 Lp norms and their close relatives

2.1 The Lp norm and Hölder’s Inequality

2.1 DEFINITION (Lp(Ω,M, µ)). Let (Ω,M, µ) be a measure space. For 1 ≤ p < ∞,

Lp(Ω,M, µ) consists of the equivalence classes, identified under equivalence almost everywhere,

of measurable functions f such that |f |p is integrable. The Lp norm is the function f 7→ ‖f‖p
where

‖f‖p :=

(∫
Ω
|f |pdµ

)1/p

. (2.1)

As we have already observed, the function t 7→ tp is convex on [0,∞), and hence for f, g ∈
Lp(Ω,M, µ), x ∈ Ω, ∣∣∣∣ |f(x)|+ |g(x)|

2

∣∣∣∣p ≤ 1

2
|f(x)|p +

1

2
|g(x)|p .

This shows that |f + g|p is integrable whenever |f |p and |g|p are, and thus Lp(Ω,M, µ) is closed

under vector addition. It is also evidently closed under scalar multiplication, and thus is a vector

space over C. The next inequality will allow us to show that the Lp norm is, in fact, a norm on

this vector space.

2.2 THEOREM (Hölder’s Inequality). Let (Ω,M, µ) be a measure space. Let 1 < p, q <∞, with
1

p
+

1

q
= 1. Let f and g be functions on (Ω,M, µ) such that |f |q and |g|p are integrable. Then fg

is integrable, and ∫
Ω
|fg|dµ ≤ ‖f‖q‖g‖p . (2.2)

There is equality in (2.2) if and only if for almost every x,

‖g‖pp|f(x)|q = ‖f‖qq|g(x)|p . (2.3)

Proof. If either
∫

Ω |f |
qdµ = 0 or

∫
Ω |g|

pdµ = 0, then (2.2) is true for trivial reasons. Therefore,

suppose that both integrals are strictly positive.

Apply Young’s inequality with the dual pair φp and φq = φ∗p from Example 1.10. By (1.21), for

any a > 0, and all x ∈ Ω,

|f(x)||g(x)| = (a|f(x)|)
(

1

a
|g(x)|

)
≤ aq 1

q
|f(x)|q + a−p

1

p
|g(x)|p (2.4)

with equality only in case

a|f(x)| = φ′p(a
−1|g(x)|) = a1−p|g(x)|p−1 . (2.5)

Integrating both sides of (2.4),∫
Ω
|fg|dµ ≤ aq

(
1

q

∫
Ω
|f |qdµ

)
+ a−p

(
1

p

∫
Ω
|g|pdµ

)
= aq

1

q
‖f‖qq + a−p

1

p
‖g‖pp . (2.6)

We now choose the value of a so as to make the right hand side as small as possible. A simple

calculus exercise shows that the best choice is a = ‖f‖−1/p
q ‖g‖1/qp . With this choice of a, (2.6)

becomes (2.2), and (2.5) becomes ‖g‖p/qp |f(x)| = ‖f‖q|g(x)|p−1, and raising both sides to the qth

power, we obtain (2.3).
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Consider any non-zero f ∈ Lp(Ω,M, µ), 1 < p < ∞, and let q = p/(p − 1). By Hölder’s

inequality, for all h ∈ Lq(Ω,M, µ) with ‖h‖q = 1,

<
(∫

Ω
hfdµ

)
≤
∫

Ω
|h||f |dµ ≤ ‖f‖p ,

and there is equality in the second inequality if and only if ‖f‖pp|h(x)|q = ‖h‖qq|f(x)|p = |f(x)|p for

almost every x. In this case, |h(x)| = ‖f‖1−pp |f(x)|p−1. There will be equality in the first inequality

if and only if <(h(x)f(x)) = |h(x)||f(x)| almost everywhere. This forces that

g(x) := ‖f‖1−pp |f(x)|p−1sgn(f(x)) ,

almost everywhere. (The signum function, z 7→ sgn(z) on C is defined by z ∈ C, define sgn(z) =

z/|z| for z 6= 0, and sgn(0) = 0.)

2.3 DEFINITION. For 1 < p < ∞, q = p/(p − 1) define the function Dp mapping

Lp(Ω,M, µ)\{0} to the unit sphere in Lq(Ω,M, µ) by

Dp(f) = ‖f‖1−pp |f |p−1sgn(f) . (2.7)

f 7→ Dp(f) is called the gradient map for reasons that will become clear.

Altogether, we have proved:

2.4 THEOREM. Let 1 < p <∞, q = p/(p− 1). For all f ∈ Lp(Ω,M, µ),

‖f‖p = sup

{
<
(∫

Ω
hfdµ

)
: h ∈ Lp(Ω,M, µ), ‖h‖q = 1

}
(2.8)

Moreover, the supremum in (2.8) is a maximum, and when f 6= 0, the unique maximizer is h =

Dp(f).

2.5 THEOREM (Minkowski’s Inequality). Let 1 < p < ∞, q = p/(p − 1). For all f, g ∈
Lp(Ω,M, µ),

‖f + g‖p ≤ ‖f‖p + ‖g‖p (2.9)

and there is equality if and only if either f = 0, or else g is a non-negative multiple of f .

Proof. We may suppose that neither f = 0 nor g = 0. By Theorem 2.4,

‖f + g‖p =

∫
Ω
Dp(f + g)(f + g)dµ =

∫
Ω
Dp(f + g)fdµ+

∫
Ω
Dp(f + g)gdµ ≤ ‖f‖p + ‖g‖p .

There is equality if and only if Dp(f + g) = Dp(f) = Dp(g). The second equality forces sgn(f) =

sgn(g) and |f |p−1 = a|g|p−1 for some a > 0, and hence |f | = a1/(p−1)|g|.

It is easy to prove that for 1 < p < ∞, Lp(Ω,M, µ) is a complete metric space, and hence a

Banach space. In fact the proof is very much like the one we have already given for completeness

of L2(Ω,M, µ), and it extends to a much wider class of norms that we now introduce.
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2.2 Orlicz norms

Throughout this section, let (Ω,M, µ) be a given measure space, and define L0(Ω,M, µ) to be the

vector space of measurable complex valued functions f on Ω, identified under almost-everywhere

equivalence.

2.6 DEFINITION. An Orlicz function φ is a convex lower-semicontinuous function on R such

that is symmetric (φ(−x) = φ(x) for all x), with φ(0) = 0, φ(1) < ∞ with 1 ∈ ∂φ(1), and

limx↑∞ φ(x) =∞. For any Orlicz function φ, define

Bφ =

{
f ∈ L0(Ω,M, µ) :

∫
Ω
φ(|f |)dµ ≤ φ(1)

}
.

Define Lφ to be the subspace of L0(Ω,M, µ) spanned by Bφ.

Let φ be an Orlicz function. The φ is non-negative. Indeed since φ is convex and even,

φ(0) ≤ 1
2(φ(x) + φ(−x)) = φ(x), Hence 0 is a minimizer for any symmetric convex function, and

since φ is a Orlicz function, φ(0) = 0. Evidently the x-axis is a supporting line for the graph of φ,

and so 0 ∈ ∂φ(0).

Let φ∗ be the Legendre transform of φ. We claim that φ∗ is also an Orlicz function. First,

φ∗ is evidently proper, symmetric and lower semicontinuous. Since 0 ∈ ∂φ(0), the conditions for

equality in Young’s inequality give us 0 = φ(0) + φ∗(0), so that φ∗(0) = 0. Also, since 1 ∈ ∂φ(1),

the conditions for equality in Young’s inequality give 1 = φ(1) + φ∗(1), so that φ∗(1) is not only

finite, but φ∗(1) ∈ [0, 1], and 1 ∈ ∂φ∗(1). Finally, since 1 ∈ ∂φ∗(1), φ∗(y) ≥ φ∗(1) + (y − 1), and

hence limy↑∞ φ
∗(y) =∞. Summarizing, we have:

2.7 LEMMA. Let φ be an Orlicz function, and let φ∗ be its Legendre transform. Then φ∗ is also

an Orlicz function and

φ(1) + φ∗(1) = 1 . (2.10)

2.8 EXAMPLE. Let 1 ≤ p < ∞, and let φp(x) = p−1|x|p, which is easily seen to be an Orlicz

function since it is continuously differentiable at x = 1, and φ′p(1) = 1, showing that ∂φp(1) = {1}.
A measurable function f belongs to Bφp if and only if

1

p

∫
Ω
|f |pdµ ≤ 1

p
,

and hence f ∈ Bφp is and only if ‖f‖p ≤ 1. Thus, Bφp is precisely the closed unit ball in

Lp(Ω,M, µ). Therefore, Lφp = Lp(Ω,M, µ). As we have seen in Example 1.11, φ∗1 = φ∞ where

φ∞ is defined in (1.22). Then φ∞(1) = 0, and hence∫
Ω
φ∞(|f |)dµ ≤ φ∞(1)

if and only if φ∞(|f |) = 0 almost everywhere, and this is the case if an only if the essential supremum

‖f‖∞ of f belongs to [0, 1]. The subspace of L0(Ω,M, µ) of functions with ‖f‖∞ < ∞ defines the

space L∞(Ω,M, µ), and hence L∞(Ω,M, µ) = Lφ∞. In particular, each Lp space, 1 ≤ p ≤ ∞ is

an Orlicz space. We now introduce Orlicz norms which will turn out to be the Lp norms on the Lp

spaces.
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2.9 LEMMA. Let φ be any Orlicz function function. Then Bφ is a balanced convex subset of

L0(Ω,M, µ), and ∩r>0rBφ = {0}.

Since Bφ is absorbing in Lφ by definition, the function f 7→ ‖f‖φ in Lφ given by

‖f‖φ = inf {r > 0 : f ∈ rBφ } (2.11)

is a norm on Lφ called the Luxembourg norm on Lφ.

2.10 EXAMPLE. Continuing with Example 2.8, it is clear that ‖ · ‖φp = ‖ · ‖p.

2.11 LEMMA. Let φ be a Young’s function. For all f ∈ Lφ,∫
Ω
φ

(
f

‖f‖φ

)
dµ ≤ φ(1) . (2.12)

and for all non-negative measurable functions f and g,

f ≤ g ⇒ ‖f‖φ ≤ ‖g‖φ , (2.13)

Proof. The definition (2.11) is equivalent to

‖f‖φ = inf

{
t > 0 :

∫
Ω
φ

(
|f |
t

)
dµ ≤ φ(1)

}
. (2.14)

Hence for all n ∈ N,

∫
Ω
φ

(
|f |

‖f‖φ + 1/n

)
dµ ≤ φ(1), and then (2.12) follows from Fatou’s Lemma

and the lower-semicontinuity of φ.

Next, since φ is monotone on [0,∞), for all t > 0,

∫
Ω
φ

(
|f |
t

)
dµ ≤

∫
Ω
φ

(
|g|
t

)
dµ. From this

and (2.14), we obtain (2.13).

The next theorem shows that when φ is an Orlicz function, (Lφ, ‖ · ‖φ) is complete, and hence

is a Banach space. By what has been shown in the examples above, this extends the Riesz-Fischer

Theorem from L2 to Lp for all 1 ≤ p ≤ ∞.

2.12 THEOREM (Completeness of Orlicz spaces). Let φ be a Young’s function, and let (Ω,M, µ)

be a measures space, Let (Lφ, ‖ · ‖φ) be the Orlicz space associated to φ and (Ω,M, µ). Then

(Lφ, ‖ · ‖φ) is a Banach space, and from every Cauchy sequence {fn}n∈N in Lφ, one may extract a

subsequence that converges almost everywhere.

Proof. For each k, pick nk so that j, ` ≥ nk ⇒ ‖fj − f`‖φ ≤ 2−k. Without loss of generality, we

may suppose that nk+1 > nk for each k. For N ∈ N, define the function FN (x) by

FN (x) = |fn1(x)|+
N∑
k=1

|fnk+1
(x)− fnk(x)| .

By Minkowski’s inequality,

‖FN‖φ ≤ ‖fn1‖φ +

N∑
k=1

‖fnk+1
− fnk‖φ ≤ ‖fn1‖φ +

N∑
k=1

2−k ≤ ‖fn1‖φ + 1 .
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Let c = ‖fn1‖φ + 1. By (2.14),

∫
Ω
φ

(
FN (x)

c

)
dx ≤ φ(1). Define F (x) = limN→∞ FN (x). Since φ

is lower-semicontinuous, φ

(
F (x)

c

)
≤ lim inf

N→∞
φ

(
FN (x)

c

)
, and then by Fatou’s Lemma,

∫
Ω
φ

(
F (x)

c

)
dx ≤ lim inf

N→∞

∫
Ω
φ

(
FN (x)

c

)
dx ≤ φ(1) .

Hence ‖F‖φ ≤ c , and since limt↑∞ φ(t) =∞, F is finite almost everywhere.

Next define f by

f(x) := lim
k→∞

fnk = fn1 +
∞∑
k=1

(fnk+1
− fnk) ,

where the sum on the right converges absolutely wherever F is finite; that is, almost everywhere.

Since |f | ≤ F , f ∈ Lφ by Lemma 2.11.

By the definition of the subsequence {fnj}j∈N, for all k ∈ N,

∫
Ω
φ

(
|fn` − fnk |

2−k

)
dµ ≤ φ(1).

Again since φ is lower-semicontinuous, φ

(
|f − fnk |

2−k

)
≤ lim inf

`→∞
φ

(
|fn` − fnk |

2−k

)
, and by Fatou’s

Lemma once more, ‖f − fnk‖φ ≤ 2−k.

lim
k→∞

‖fnk − f‖φ = 0 .

Since the sequence is Cauchy, we have this convergence along the whole sequence as well.

2.3 Duality in Orlicz spaces

Let φ be an Orlicz function, and let φ∗ be its Legendre transform. Any such pair of Orlicz functions

is called a dual pair of Orlicz functions. Associated to such a pair of Orlicz functions is the pair of

normed spaces (Lφ, ‖ · ‖φ) and (Lφ∗ , ‖ · ‖φ∗).
What is the relation between L∗φ and Lφ∗? The first step towards answering this question

provided by the generalized Hölder inequality:

2.13 THEOREM (Generalized Hölder’s Inequality). Let φ, φ∗ be any dual pair of Orlicz functions.

Then for all functions f ∈ Lφ and g ∈ Lφ∗, fg is measurable and∫
Ω
|fg|dµ ≤ ‖f‖φ‖g‖φ∗ . (2.15)

There is equality in (2.15) if and only if∫
Ω
φ

(
|f |
‖f‖φ

)
dµ = φ(1) and

∫
Ω
φ∗
(
|g|
‖g‖φ∗

)
dµ = φ∗(1) , (2.16)

|g(x)|
‖g‖φ∗

∈ ∂φ
(
|f(x)|
‖f‖φ

)
(2.17)

for almost every x.

The following lemma will be useful here and elsewhere:



EAC March 6, 2017 15

2.14 LEMMA. Let φ be a Young’s function. Then for all a, b > 0, sis the function φa,b defined

by φa,b(s) = bφ(as). Then

φ∗a,b(t) = bφ∗
(
t

ab

)
.

Proof.

φ∗a,b(t) = sup
s≥0
{ts− bφ(as)} = sup

s≥0

{
b
t

ab
as− bφ(as)

}
= bφ∗

(
t

ab

)
.

Proof of Theorem 2.13. By Young’s inequality applied to φa,b with a, b > 0, we have from

Lemma 2.14 that

st ≤ bφ(as) + bφ∗
(
t

ab

)
for all s, t ≥ 0, and there is equality only if t ∈ ∂φa,b(s) Then for any f ∈ Lφ and g ∈ Lφ∗ ,∫

Ω
|fg|dµ ≤ b

∫
Ω
φ(|af |)dµ+ b

∫
Ω
φ∗
(
|g|
ab

)
dµ .

By Lemma 2.11,

∫
Ω
φ

(
|f |
‖f‖φ

)
dµ ≤ φ(1) and

∫
Ω
φ∗
(
|g|
‖g‖φ∗

)
dµ ≤ φ∗(1). Choosing a =

1

‖f‖φ
and

b = ‖f‖φ‖g‖φ∗ , we obtain∫
Ω
|fg|dµ ≤ ‖f‖φ‖g‖φ∗ (φ(1) + φ∗(1)) = ‖f‖φ‖g‖φ∗ ,

where we have used the fact that 1 = φ(1) + φ∗(1) since 1 ∈ ∂φ(1). There is equality if and only

if (2.16) is valid and equality holds in the application of Young’s inequality at almost every x,

which means that |g(x)| ∈ ∂φa,b(|f(x)|). Then since s ∈ ∂φa,b(t) if and only if
s

ab
∈ ∂φ(at), there

is equality in (2.15) if and only if (2.17) is valid.

Suppose that φ and φ∗ are a dual pair of Orlicz functions. For all g ∈ Lφ∗ , define the linear

functional Lg on Lφ by

Lg(f) =

∫
Ω
gfdµ , (2.18)

which is well-defined by Theorem 2.13, and in fact, by Theorem 2.13,

|Lg(f)| ≤ ‖f‖φ‖g‖φ∗ .

Therefore, Lg ∈ L∗φ, and

‖Lg‖L∗φ ≤ ‖g‖φ∗ .

Thus, the mapping g 7→ Lg is a linear contraction from Lφ∗ into L∗φ. It is not hard to show that

is is injective, at least when µ has the property that every measurable set with positive measure

contains a measurable set with finite positive measure. One might hope that this map would also

be surjective under these same mild conditions. In that case, by the Open Mapping Theorem, it

would be a Banach space isomorphism, and thus we would identify L∗φ with Lφ∗ . But then the

same argument would identify L∗φ∗ with Lφ∗∗ = Lφ, and we would have that the natural injection

of Lφ into L∗∗φ would be a Banach space isomorphism, i.e., that Lφ would be reflexive. This is not

true in general: It fails for φ1 and φ∞, but it is the case for φp, 1 < p < ∞. The key to this and

other issues lies in the notion of uniform convexity, to which we now turn.
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3 Uniform convexity and uniform smoothness

3.1 Uniform convexity

The unit ball of any normed vector space V is convex, though it need not be strictly convex, which

would mean that for all unit vectors u and v in V ,

‖u− v‖ > 0→ ‖(u+ v)/2‖ < 1 . (3.1)

Indeed, strict convexity fails for L1(M,M, µ) and L∞(M,M, µ), even for a two-point measure

space.

To see this in L1(M,M, µ), take any two non-negative unit vectors u(x) and v(x). Then of

course ∥∥∥∥u+ v

2

∥∥∥∥ =
1

2

∫
M

(u(x) + v(x))dµ =
1

2

∫
M
u(x)dµ+

1

2

∫
M
v(x)dµ = 1 .

To see this in L∞(M,M, µ), take any two u(x) and v(x) to be the indicator functions of two

measurable sets with different, non-zero measure. Then u(x) and v(x) are both unit vectors in

L∞(M,M, µ), as is their average, (u+ v)/2.

In some normed spaces however, a uniform version of strict convexity holds, and this has

significant consequences.

3.1 DEFINITION (Uniform convexity). Let V be a vector space with norm ‖ · ‖. The modulus

of convexity of V is the function δV defined by

δV (ε) = inf

{
1−

∥∥∥∥v + w

2

∥∥∥∥ : ‖v − w‖ < 2ε

}
(3.2)

for 0 ≤ ε ≤ 1. We say that V is uniformly convex in case δV (ε) > 0 for all 0 < ε < 1.

If there is no ambiguity as to which space V is under consideration, we just write δ(ε) in place

of δV (ε). Then, by definition, in case V is uniformly convex, for all 0 < ε < 1 there is a δ(ε) > 0 so

that for all unit vectors v,w,

‖v − w‖ > 2ε⇒
∥∥∥∥v + w

2

∥∥∥∥ < 1− δ(ε) , (3.3)

which is indeed a uniform version of (3.1). The logically equivalent implication∥∥∥∥v + w

2

∥∥∥∥ ≥ 1− δ(ε)⇒ ‖v − w‖ ≤ 2ε (3.4)

will be used frequently in what follows.

By what we have seen just above, neither L1(M,M, µ) nor L∞(M,M, µ) is uniformly convex.

It turns out, however, that for 1 < p <∞, Lp(M,M, µ) is uniformly convex. This is easy to show

for L2(M,M, µ), and we begin with that:

For any f and g in we have the parallelogram identity ‖f − g‖22 + ‖f + g‖22 = 2‖f‖22 + 2‖g‖22.

Take f and g to be unit vectors. Divide through by 4 to obtain∥∥∥∥f + g

2

∥∥∥∥2

2

+

∥∥∥∥f − g2

∥∥∥∥2

2

=
‖f‖22 + ‖g‖22

2
= 1 .
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Therefore,

∥∥∥∥f + g

2

∥∥∥∥
2

=

√
1−

∥∥∥∥f − g2

∥∥∥∥2

2

. For any number a with 0 < a < 1,
√

1− a < 1− a/2 , and

hence, ∥∥∥∥f + g

2

∥∥∥∥
2

≤ 1− 1

2

∥∥∥∥f − g2

∥∥∥∥2

2

.

Since f abd g are arbitrary unit vecotors, this gives us the exact modulus of convexity for

L2(M,M, µ), namely

δL2(ε) = 1−
√

1− ε2 ≥ 1

2
ε2 . (3.5)

3.2 First applications of uniform convexity

3.2 THEOREM (Convergence of norms plus weak convergence yields strong convergence). Let V

be a uniformly convex normed space. Let {fn} be a weakly convergent sequence in V with 1 < p <∞,

and let f be its limit. Then {fn} is strongly convergent if and only if ‖f‖ = limn→∞ ‖fn‖.

Proof. If {fn} is strongly convergent, it must converge strongly to f , and we have already observed

that it must be the case that ‖f‖ = limn→∞ ‖fn‖.
The converse is more subtle, and it is here that uniform convexity comes in. If f = 0, the strong

convergence is obvious, so we may suppose that this is not the case. Then, dividing through by

‖f‖, we may assume that ‖f‖ = 1. Since limn→∞ ‖fn‖ = ‖f‖ = 1, we may delete a finite number

of terms from the sequence to arrange that ‖fn‖ 6= 0 so any n.

Consider the sequence {gn} where

gn =
fn/‖fn‖+ f

2
.

Since limn→∞ ‖fn‖ = ‖f‖ = 1, {gn} also converges weakly to f . By the weak lower semicontinuity

of the norms,

lim inf
n→∞

‖gn‖ ≥ ‖f‖ = 1 . (3.6)

But by Minkowski’s inequality,

1 =
‖fn‖/‖fn‖+ ‖f‖

2
≥ ‖gn‖ , (3.7)

and then combining (3.6) and (3.7),

lim
n→∞

‖gn‖ = 1 . (3.8)

Now use the uniform convexity, and in particular (3.4):

‖gn‖ =

∥∥∥∥‖fn‖/‖fn‖+ ‖f‖
2

∥∥∥∥ ≥ 1− δV (ε)⇒ ‖fn/‖fn‖ − f‖ ≤ 2ε .

This together with (3.8) shows that

lim
n→∞

‖fn/‖fn‖ − f‖ = 0 .

But

‖fn − f‖ = ‖(fn − fn/‖fn‖) + (fn/‖fn‖ − f)‖ ≤ |‖fn‖ − 1|
‖fn‖

+ ‖fn/‖fn‖ − f‖ .

Hence it follows that limn→∞ ‖fn − f‖ = 0.
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Our next application is very important: It is the generalization of the Projection Lemma to

general uniformly convex spaces.

3.3 THEOREM (Projection Lemma for uniformly convex spaces). Let V be a uniformly convex

Banach space, and let K be a non-empty, closed convex set in V . Then there exists a unique

element of minimal norm in K. That is, there exists an element v ∈ K with

‖v‖ < ‖w‖

for all w ∈ K with w 6= v. Moreover, {vn}n∈N is any sequence in K such that limn→∞ ‖vn‖ = ‖v‖,
limn→∞ ‖vn − v‖ = 0.

Proof. Let D = inf{‖w‖ | w ∈ K}. Let {vn}n∈N be any sequence in K with limn→∞ ‖vn‖ = D. If

D = 0, limn→∞ vn = 0. Since K is closed, this means 0 ∈ K, and this is our unique element of

minimal norm. Therefore, assume that D > 0.

Normalize the vn to obtain unit vectors, as needed for the application of uniform convexity. Let

un = vn/‖vn‖. For large n, we have that un ≈ vn/D since limk→∞ ‖vk‖ = D. Indeed, adding and

subtracting,

un =
1

D
vn +

D − ‖vn‖
D‖vn‖

vn .

Therefore, for any m and n,

1

D

∥∥∥∥vn + vm
2

∥∥∥∥ =

∥∥∥∥un + um
2

− D − ‖vn‖
2D‖vn‖

vn −
D − ‖vm‖
2D‖vm‖

vm

∥∥∥∥
≤

∥∥∥∥un + um
2

∥∥∥∥+
(‖vn‖ −D) + (‖vm‖ −D)

2
.

Now by the convexity of K, (vn + vm)/2 ∈ K and hence ‖(vn + vm)/2‖ ≥ D. Therefore,∥∥∥∥un + um
2

∥∥∥∥ ≥ 1− (‖vn‖ −D) + (‖vm‖ −D)

2
.

Then by (3.4), for all ε > 0, (‖vn‖ −D) + (‖vm‖ −D) ≤ 2δ(ε)⇒ ‖un − um‖ ≤ 2ε. Therefore, since

limn→∞ ‖vn‖ = D, {un}n∈N is a Cauchy sequence. Since V is complete, {un}n∈N converges in norm

to u ∈ V , and this implies that {vn}n∈N converges in norm to v := Du. Since K is closed, Du ∈ K,

and since ‖u‖ = 1, ‖v‖ = ‖Du‖ = D. This proves the existence of an element v of K with minimal

norm, and that limn→∞ vn = v.

To prove the uniqueness, let ṽ also be in K with ‖ṽ‖ = D. Define vn = n for n even and vn = ṽ

for n odd. By what we proved above {vn}n∈N converges, and hence ṽ = v.

Recall that for any normed space V , and any v ∈ V , there exists an f ∈ V ∗ with ‖f‖∗ = 1 and

f(v) = ‖v‖. This is a consequence of the Hahn-Banach Theorem. However, given f ∈ V ∗, there

may or may not be any unit vector u in V such that f(u) = ‖f‖∗, as we have seen in the case of

V = C([0, 1]) with the uniform norm. If V is uniformly convex, things are much better.

3.4 THEOREM (Uniform Convexity and Unit Normal Vectors). Let V be a uniformly convex

Banach space, and let f be any non–zero linear functional in V ∗. Then there is a unique unit vector

vf ∈ V so that

f(vf ) = ‖f‖∗ .
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Moreover, the function f 7→ vf from V ∗ to V is continuous f 6= 0, and in fact, for all non zero

f, g ∈ V ∗,
‖f − g‖∗ ≤ 2‖f‖∗δV (ε) ⇒ ‖vf − vg‖ ≤ 2ε . (3.9)

The vector whose existence is asserted by the theorem is called the unit normal vector at f for

reasons that will soon be explained.

Proof. Let K be given by

K = { v ∈ V : f(v) = ‖f‖∗ } .

K is closed, convex and non–empty. By the projection lemma, K contains a unique element v of

minimal norm. Note that

‖f‖∗ = f(v) ≤ ‖f‖∗‖v‖

so ‖v‖ ≥ 1.

Now we prove an upper bound on ‖v‖. For any ε with 0 < ε < ‖f‖∗, there is a unit vector w

with |f(w)| ≥ ‖f‖∗ − ε. Multiplying w by a complex number of unit magnitude, we can assume

that f(w) = |f(w)|. Now define v =
‖f‖∗
f(w)

w. Then v ∈ K, and since w is a unit vector,

‖v‖ =
‖f‖∗
f(w)

≤ ‖f‖∗
‖f‖∗ − ε

.

Since v is the element of K with minimal norm, we have 1 ≤ ‖v‖ ≤ ‖f‖∗
‖f‖∗ − ε

for all ε with 0 < ε <

‖f‖∗. This means that ‖v‖ = 1, and vf = v is the vector we seek.

Since vf is uniquely determined, the function v 7→ vf is well defined. We now show that it is

continuous.

Let f and g in V ∗ be given, and let vf and vg be the corresponding unit vectors in V . Then

‖f + g‖∗‖vf + vg‖ ≥ R ((f + g)(vf + vg))

= R (f(vf ) + f(vg) + g(vf ) + g(vg))

= 2(‖f‖∗ + ‖g‖∗) +R (f(vg) + g(vf )− f(vf )− g(vg))

= 2(‖f‖∗ + ‖g‖∗)−R ((f − g)(vf − vg))
≥ 2‖f + g‖∗ − ‖f − g‖∗‖vf − vg‖ .

(3.10)

Dividing through by 2‖f + g‖∗ we get(
‖f − g‖∗
‖f + g‖∗

)∥∥∥∥vf − vg2

∥∥∥∥ ≥ 1−
∥∥∥∥vf + vg

2

∥∥∥∥ .

If ‖vf − vg‖ > 2ε, 1− ‖(vf + vg)/2‖ ≥ δ(ε), and since ‖(vf − vg)/2‖ ≤ 1 in any case,(
‖f − g‖∗

2‖f‖∗ − ‖f − g‖∗

)
≥ δ(ε) ,

or ‖f − g‖∗ ≥
δ(ε)

1 + δ(ε)
2‖f‖∗. Hence ‖f − g‖∗ <

δ(ε)

1 + δ(ε)
2‖f‖∗ ⇒ ‖vf − vg‖ < ε. Discarding the

δ(ε) in the denominator, we obtain (3.9), which quantifies the continuity of f 7→ vf at all f 6= 0.
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3.3 Uniform smoothness

Let V be a normed space with norm ‖ · ‖. The derivative gives the “best linear approximation”

to a function.We say that a functional F on V is Frechét differentiable at u ∈ V in case there is a

linear functional `F,u ∈ V ∗ so that

F (u+ v)− F (u) = `F,u(v) + o(‖v‖)

or, in other words, if

lim
v→0

|F (u+ v)− F (u)− `F,u(v)|
‖v‖

= 0 , (3.11)

where the limit is taken in the norm sense.

There is another notion of differentiability, corresponding to the usual directional derivative. A

functional F is said to be Gateaux differentiable at u ∈ V in case for there is a linear functional

`F,u ∈ V ∗ so that for each v ∈ V ,

F (u+ tv)− F (u) = t`F,u(v) + o(t)

or, in other words, if

lim
v→0

|F (u+ tv)− F (u)− t`F,u(v)|
t

= 0 . (3.12)

Clearly, if a functional F is Frechét differentiable, then it is Gateaux differentiable, and the

two derivatives coincide. However, there are functionals that are Gateaux differentiable, but not

Frechét differentiable.

To check differentiability from the definition, you have to know the derivative `F,u, which is

somewhat inconvenient. There is, however, a necessary condition for differentiability that can be

stated solely in terms of F itself. If F is Frechét differentiable at u, then for any v,

F (u+ v)− F (u) = `F,u(v) + o(‖v‖)

and

F (u− v)− F (u) = −`F,u(v) + o(‖v‖) .

Summing, the terms involving `F,u cancel, and we have

F (u+ v) + F (u− v)− 2F (u) = o(‖v‖) .

In particular, a necessary condition for Frechét differentiability the norm functional on a Banach

space is that ∥∥∥∥u+ v

2

∥∥∥∥+

∥∥∥∥u− v2

∥∥∥∥− ‖u‖ = o(‖v‖) .

This brings us to the following definition:

3.5 DEFINITION (Uniform Smoothness). Let V be a Banach space with norm ‖·‖. The modulus

of smoothness of V is the function ρV (τ) defined by

ρV (τ) = sup

{∥∥∥∥u+ τv

2

∥∥∥∥+

∥∥∥∥u− τv2

∥∥∥∥− 1 : ‖u‖ = ‖v‖ = 1

}
(3.13)
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for each τ ≥ 0. Then V is said to be uniformly smooth in case ρV (τ) = o(τ), i.e., if

lim
τ→0

ρV (τ)

τ
= 0 . (3.14)

When there is no ambiguity as to which space V is intended, we write ρ(τ) in place of ρV (τ).

It is easy to see that uniform smoothness fails for L1(M,M, µ) and L∞(M,Mµ), even for a

two-point measure space, while L2(M,M, µ) is uniformly smooth. This is left as an exercise. In

fact, it is a good exercise to compute the moduli of smoothness for these spaces. The results are:

(1) When V = L1(M,M, µ), δV (ε) = 0 and ρV (τ) = τ .

(2) When V = L2(M,M, µ), δV (ε) = 1−
√

1− ε2 and ρV (τ) =
√

1 + τ2 − 1.

(3) When V = L∞(M,M, µ), δV (ε) = 0 and ρV (τ) = τ .

The next theorem gives the relation between uniform convexity and uniform smoothness. Before

stating it, we introduce the notion of a dual pair of Banach spaces.

3.6 DEFINITION (Dual Pairs). A dual pair of Banach spaces is a pair of Banach spaces V and

W with norms ‖ · ‖V and ‖ · ‖W respectively, and a bilinear form 〈·, ·〉 on V ×W so that for all

v ∈ V ,

‖v‖V = sup{ |〈v, w〉| : ‖w‖W ≤ 1 } (3.15)

and

‖w‖W = sup{ |〈v, w〉| : ‖v‖V ≤ 1 } . (3.16)

The primary example is that in which W = V ∗, and

〈v, w〉 = w(v) .

Then (3.16) holds by the definition of the norm on V ∗, while (3.15) holds by the Hahn-Banach

Theorem, which asserts the existence of a w ∈ V ∗ with ‖w‖ = 1 and w(v) = ‖v‖.
When V and W are a dual pair, there is a map from V into W ∗ which assigns to v the linear

functional

fv(·) = 〈v, ·〉 .

By (3.16), and the definition of the dual norm ‖ · ‖∗,

‖fw‖∗ = ‖w‖W .

Hence the map w 7→ 〈·, w〉, which is clearly linear, is also an isometry.

However, it need not be the case that its image is all of V ∗. In summary,

• When V and W are a dual pair, W may be identified with a subset of V ∗ through the isometric

linear transformation

w 7→ 〈·, v〉 .

However, it is not necessarily the case that every f ∈ V ∗ is in the range of this transformation.

We now prove that when V and W are a dual pair the moduli of smoothness and convexity of

the one space can be determined from those of the other.
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3.7 THEOREM (Lindenstrauss–Day Theorem). Let V and W be a dual pair of Banach spaces.

Then W is uniformly smooth if and only if V is uniformly convex. Moreover,

ρW (τ) = sup
0≤ε≤1

{ ετ − δV (ε) } . (3.17)

Before giving the proof of Theorem 3.7, we give three simple but important applications.

3.8 THEOREM (Uniqueness and continuity of unit tangent functionals). If V is a uniformly

smooth Banach space, then for each non-zero v ∈ V , there exists a unique unit vector fv ∈ V ∗ such

that fv(v) = ‖v‖. Moreover, the map v 7→ fv is continuous in the norm topologies.

Proof. The Hahn-Banach Theorem tell us that the linear functional fv exists; the points to be

shown are the uniqueness and the continuity. By the Lindenstrauss-Day Theorem, V ∗ is uniformly

convex. If fv and gv were two distinct unit vectors in V ∗ such that fv(v) = gv(v) = ‖v‖, then
1
2(fv + gv)(v) = ‖v‖ but ‖fv + gv‖∗ < 1, which is impossible.

3.9 THEOREM (Differentiability of the Norm). Let V be a uniformly smooth Banach space.

Then the norm on V is continuously Frechét differentiable at all v 6= 0 in V , and the derivative is

given by R (fv), where fv is the unique unit vector in V ∗ with fv(v) = ‖v‖

Proof. Since V ∗ is uniformly convex, for each u ∈ V , there exists a unique unit vector fu ∈ V ∗ so

that fu(u) = ‖u‖. Hence,

‖v + w‖ = fv+w(v + w) ≤ R (fv+w(v)) +R (fv+w(w)) ≤ ‖v‖+R (fv+w(w)) .

On the other hand,

‖v + w‖ ≥ R (fv(v + w)) = R (fv(v)) +R (fv(w)) = ‖v‖+R (fv(w)) .

Altogether,

0 ≤ ‖v + w‖ − ‖v‖ −R (fv(w)) ≤ R (fv+w(w))−R (fv(w)) ≤ ‖fv+w − fv‖∗‖w‖ .

Hence |‖v + w‖ − ‖v‖ −R (fv(w))| ≤ ‖fv+w − fv‖∗‖w‖ = o(‖w‖) by Theorem 3.8.

Now let V be a Banach space, and let V ∗ be the dual space of linear functionals on V , and

let V ∗∗ be the dual space of continuous linear functionals on V ∗. We have seen that in case

V = L2(M,S, µ), V ∗ can be identified with V , and so V ∗∗ can as well.

This is a rather special circumstance. However, it is frequently the case that V ∗∗ = V . Let V

be a Banach space, and consider the isometric mapping v 7→ Lv ∈ V ∗∗, where

Lv(f) = f(v)

for all f ∈ V ∗. Recall that V is called reflexive in case the image of this mapping is all of V ∗∗,

which we express by writing V = V ∗∗.

3.10 THEOREM (Millman). A uniformly convex Banach space is reflexive.
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Proof. By the Lindenstrauss–Day Theorem, V ∗∗ is uniformly convex. For any unit vector L ∈ V ∗∗,
and any ε > 0, pick a unit vector f ∈ V ∗ so that L(f) > 1− ε which is possible by the definition

of the ‖ · ‖∗∗ norm. Since V is uniformly convex, there is a unit vector v ∈ V with f(v) = 1. Let

Lv be the corresponding element of V ∗∗, given by Lv(g) = g(v) for al g ∈ V ∗. We then have∥∥∥∥L+ Lv
2

∥∥∥∥
∗∗
≥ L(f) + Lv(f)

2
=

(
L+ Lv

2

)
(f) ≥ 1− ε

2
.

It follows that

∥∥∥∥L− Lv2

∥∥∥∥
∗∗
≤ sup

0≤s≤1
{s : δV ∗∗(s) < ε/2 }.

Proof of Theorem 3.7. We will use f and g to denote elements of W , and u and v to denote

elements of V . We will leave subscripts off the norms as this convention makes it clear which norm

is intended.

The first step of the proof is to show that

ρW (τ) + δV (ε) ≥ τε (3.18)

for all τ ≥ 0 and all 0 ≤ ε ≤ 1. To see this, fix any such τ and ε. Take any u and v in V with

‖u‖ = ‖v‖ = 1 and ‖u− v‖ ≥ 2ε.

Since V and W are a dual pair, for any η > 0, there are unit vectors f and g in W with

〈f, (u+ v)/2〉 ≥
∥∥∥∥u+ v

2

∥∥∥∥− η and 〈f, (u− v)/2〉 ≥
∥∥∥∥u− v2

∥∥∥∥− η .
Then

ρW (τ) ≥
∥∥∥∥f + τg

2

∥∥∥∥+

∥∥∥∥f − τg2

∥∥∥∥− 1

≥ 〈(f + τg)/2, v〉+ 〈(f − τg)/2, v〉 − 1

= 〈f, (u+ v)/2〉+ τ〈g, (u− v)/2〉 − 1

≥
∥∥∥∥u+ v

2

∥∥∥∥+ τ

∥∥∥∥u− v2

∥∥∥∥− 1− 2η ≥
∥∥∥∥u+ v

2

∥∥∥∥+ τε− 1− 2η

(3.19)

Hence ρW (τ) +

(
1−

∥∥∥∥u+ v

2

∥∥∥∥) ≥ τε− 2η By the definition of δV , and the fact that η > 0 is

arbitrary, this proves (3.21).

The second step is to prove an upper bound on ρW . To do this, fix any τ > 0 and any unit

vectors f and g in W . Fix any η > 0, and choose unit vectors uτ and vτ in V with

〈(f + τg), uτ 〉 ≥ ‖f + τg‖ − η and 〈(f − τg), vτ 〉 ≥ ‖f − τg‖ − η . (3.20)

Then∥∥∥∥f + τg

2

∥∥∥∥+

∥∥∥∥f − τg2

∥∥∥∥ ≤ 〈(f + τg), uτ 〉
2

+
〈(f − τg), vτ 〉

2
+ η

=
〈f, uτ + vτ 〉

2
+ τ
〈g, uτ − vτ 〉

2
+ η ≤

∥∥∥∥uτ + vτ
2

∥∥∥∥+ τ

∥∥∥∥uτ − vτ2

∥∥∥∥+ η
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Now define ετ :=

∥∥∥∥uτ − vτ2

∥∥∥∥ so that 0 ≤ ετ ≤ 1 and

∥∥∥∥uτ + vτ
2

∥∥∥∥ ≤ 1− δV (ετ ). Therefore,

(∥∥∥∥f + τg

2

∥∥∥∥+

∥∥∥∥f − τg2

∥∥∥∥− 1

)
≤ τετ − δV (ετ ) + η . (3.21)

By the definition of ρW , ρW (τ) ≤ τετ − δV (ετ ) + η ≤ sup
0≤ε≤1

{ ετ − δV (ε) }+ η. Since η > 0 is arbi-

trary, this proves that ρW (τ) ≤ sup0≤ε≤1{ ετ − δV (ε) }, and together with the lower bound (3.21),

this proves (3.17).

Now suppose that W is uniformly smooth, and consider ε ∈ (0, 1). By (??), or even (3.21),

δV (ε) ≥ sup
τ≥0
{ετ − ρW (τ) }. Since ρW (τ) = o(τ), there is a τε > 0 so that

ρW (τε)

τε
≤ ε

2
. Therefore,

δV (ε) ≥ ετε
2
> 0 ,

and since ε > 0 is arbitrary, V is uniformly convex.

Now suppose that V is uniformly convex. It follows from (3.17) that for any τ > 0

ρW (τ)

τ
≤ sup

0≤ε≤1

{
ε− δV (ε)

τ

}
.

Therefore, if we define ετ = inf{ε > 0 : δV (ε) > τ}, then ετ > 0, and for ετ < ε ≤ 1, ε−δV (ε)/τ ≤ 0,

and hence

sup
0≤ε≤1

{
ε− δV (ε)

τ

}
= sup

0≤ε≤ετ

{
ε− δV (ε)

τ

}
≤ ετ .

Since limτ↓0 ε− τ = 0, W is uniformly smooth.

4 Uniform convexity and smoothness in Lp spaces

In any Hilbert space, in particular L2(Ω,M, µ), we have the parallelogram identity:∥∥∥∥f + g

2

∥∥∥∥2

2

+

∥∥∥∥f − g2

∥∥∥∥2

2

=
‖f‖22 + ‖g‖22

2
.

If f and g are unit vectors, this yields∥∥∥∥f + g

2

∥∥∥∥
2

≤

(
1−

∥∥∥∥f − g2

∥∥∥∥2

2

)1/2

≤ 1− 1

2

∥∥∥∥f − g2

∥∥∥∥2

2

,

and hence δL2(ε) ≥ 1

2
ε2.

There is a close analog of the paralleleogram law in Lp(Ω,M, µ), p > 2: Recall that for counting

measure, ‖f‖p ≥ ‖f‖q for p < q, while for any probability measure, ‖f‖p ≤ ‖f‖q for p < q.

Therefore, for all a, b > 0,

(∣∣∣∣a+ b

2

∣∣∣∣p +

∣∣∣∣a− b2

∣∣∣∣p)1/p

≤

(∣∣∣∣a+ b

2

∣∣∣∣2 +

∣∣∣∣a− b2

∣∣∣∣2
)1/2

=

(
a2 + b2

2

)1/2

≤
(
ap + bp

2

)1/p

.
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Next, for all z, w ∈ C, and all p ≥ 2,

|z + w|p + |z − w|p ≤ ||z|+ |w||p + ||z| − |w||p .

Combining, we obtain,

∣∣∣∣f(x) + g(x)

2

∣∣∣∣p +

∣∣∣∣f(x)− g(x)

2

∣∣∣∣p ≤ |f(x)|p + |g(x)|p

2
. Integrating in x

yields Clarkson’s inequality: ∥∥∥∥f + g

2

∥∥∥∥p
p

+

∥∥∥∥f − g2

∥∥∥∥p
p

≤ ‖f‖
p
p + ‖g‖pp

2
.

If f and g are unit vectors, this becomes∥∥∥∥f + g

2

∥∥∥∥
p

≤

(
1−

∥∥∥∥f − g2

∥∥∥∥p
p

)1/p

≤ 1− 1

p

∥∥∥∥f − g2

∥∥∥∥p
p

.

Thus we see that

δLp(ε) ≥
1

p
εp .

Uniform convexity for 1 < p < 2 is more subtle, and the result is somewhat surprising: It turns

out that for 1 < p ≤ 2,

δLp(ε) ≥
p− 1

2
ε2 .

Notice that the exponent is 2, as in the Hilbert space case. However, as p decreases towards 1, the

constant (p − 1)/2 decreases to zero. Both the exponent 2, and the constant (p − 1)/2 are best

possible, and both have significant implications. The result is can be obtained from a result of

Hanner, who exactly computed δLp(ε) for all 1 < p <∞. The final remark in his 1955 paper is (in

slightly different notation) that

δLp(ε) =
p− 1

2
ε2 +O(ε3) , (4.1)

which certinaly shows that δLp(ε) is bounded below by some multiple of ε2. The fact that the

remainder term is positive and may be droped, yielding the asserted lower bound, may be folklore,

but appears in work by Ball and Pisier in the 1990’s. They used Hanner’s exact computationof δLp

and controlled the sign of the remainder term in (4.1). However, the sharp bound may be proved

directly, as we now explain.

Let f and g be simple functions of the form

f(x) =

n∑
j=1

zj1Aj (x) and g(x) =

n∑
j=1

wj1Aj (x) ,

where for each j, zjw
∗
j is not real. This guarantees that zj + twj 6= 0 for any real t, and thus for all

x ∈ ∪nj=1Aj , and all t ∈ R, f(x) + tg(x) 6= 0. Define

Y (t) = ‖f + tg‖pp and q =
p

2
,
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so that ‖f + tg‖2p = Y 1/q(t). Differentiating twice,

d2

dt2
‖f + tg‖2p =

1

q

(
1

q
− 1

)
Y 1/q−2(Y ′)2 +

1

q
Y 1/q−1Y ′′

≥ 1

q
Y 1/q−1Y ′′

A simple calculation yields Y ′′(t) ≥ p(p− 1)

∫
|f + tg|2q−2|g|2dµ. To this we apply the reverse

Hölder inequality, which says that for 0 < r < 1 and s = r/(r−1), whenever aj ≥ 0 for j = 1, . . . , n,

and bj > 0 for j = 1, . . . , n,

n∑
j=1

ajbj ≥

 n∑
j=1

arj

1/r n∑
j=1

bsj

1/s

.

The result is that, for all t,
d2

dt2
‖f + tg‖2p ≥ 2(p− 1)‖g‖2p. Let ψ′′(t) ≥ 2c for all t, and define

ϕ(t) := ψ(t) + ct(1− t) .

Then ϕ is convex, and thus

ϕ(1/2) ≤ ϕ(0) + ϕ(1)

2
, that is, ψ(1/2) +

c

4
≤ ψ(0) + ψ(1)

2
.

We conclude that with f and g as above,

‖f + g/2‖2p +
p− 1

4
‖g‖2p ≤

‖f‖2p + ‖f + g‖2p
2

.

The simple function approximation is now easily removed.

Now let u and v be vectors in Lp space, 1 < p ≤ 2, and let f = u and g = v − u. Then∥∥∥∥u+ v

2

∥∥∥∥2

p

+ (p− 1)

∥∥∥∥u− v2

∥∥∥∥2

p

≤
‖u‖2p + ‖v‖2p

2
.

If u and v are unit vectors, the right hand side is 1, and this implies∥∥∥∥u+ v

2

∥∥∥∥
p

≤ 1− p− 1

2

∥∥∥∥u− v2

∥∥∥∥2

p

,

which proves that

δLp(ε) ≥
p− 1

2
ε2 .

We now have the following result:

4.1 THEOREM (Uniform convexity of Lp, 1 < p < ∞). For any measure space (M,M, µ) and

any Lp(M,M, µ) is uniformly convex. For 1 < p < 2, one has the bound

δLp(ε) ≥
p− 1

2
ε2 (4.2)

while for 2 < p <∞, one has the bound

δLp(ε) ≥
1

p
εp (4.3)
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Proof. In the discussion just above, we have proved the bounds on uniform convexity, and the left

halves of (4.2) and (4.3).

We are now give two proofs of the Riesz Representation Theorem for Lp, 1 < p <∞.

4.2 THEOREM (Riesz Representation Theorem for Lp, 1 < p < ∞). Let (M,M, µ) be any

measure space. Let 1 ≤ p ≤ ∞, and let q = p/(1− p). Then the map from Lq into (Lp)∗ given by

g 7→ ϕg where

ϕg(f) =

∫
M
fgdµ , f ∈ Lp ,

is an isometry from Lq into (Lp)∗.

Before giveing our two proofs, let us take stock of what has been dealt with, and what remains

to be dealt with. We have already seen, as a consequence of Hölder’s inequality, that for every

g ∈ Lq, ‖ϕg‖(Lp)∗ = ‖g‖q, and hence g 7→ ϕg is an isometric map into (Lp)∗. It remains to be

shown that this map is onto (Lp)∗. We now give two proofs of this.

First Proof of Theorem 4.2. Let 1 < p <∞. Let V be the range of the mapping g 7→ ϕg in (Lp)∗.

Since the map is an isometry, and since Lq is complete, V is a closed subspace of (Lp)∗. If V is

a proper subspace of (Lp)∗, there exists a non-zero ϕ ∈ (Lp)∗\V and then by the Hahn-Banach

Theorem, there is an L ∈ (Lp)∗∗ such that

L(ϕ) = ‖ϕ‖(Lp)∗ 6= 0 , (4.4)

and L(ϕg) = 0 for all g ∈ Lq.
However, by Millman’s Theorem, since Lp is uniformly convex, it is reflexive, and so there exists

an f ∈ Lp so that

L(ψ) = ψ(f) for all ψ ∈ (Lp)∗ .

Therefore, for all g ∈ Lq, since ϕg ∈ V ,

0 = L(ϕg) = ϕg(f) =

∫
M
gfdµ .

But since

‖f‖p = sup

{ ∫
M
gfdµ : ‖g‖q = 1

}
,

it would follow that ‖f‖p = 0, and hence L = 0. This is contradicts (4.4), and hence V is not a

proper subspace of (Lp)∗.

Second Proof of Theorem 4.2. Let 1 < p < ∞. Since Lp is uniformly convex, for each ϕ ∈ (Lp)∗,

there exists a unique fϕ ∈ Lp with fϕ ∈ Lp and ϕ(fϕ) = ‖ϕ‖(Lp)∗ . Then, for any g ∈ Lp, the

function t 7→ ϕ

(
fϕ + tg

‖fϕ + tg‖p

)
has a maximum at t = 0.

If we assume for the moment that t 7→ ‖fϕ + tg‖p is differentiable at t = 0, then

0 =
d

dt
ϕ

(
fϕ + tg

‖fϕ + tg‖p

) ∣∣∣∣
t=0

= Rϕ(g)− ‖ϕ‖(Lp)∗
d

dt
‖fϕ + tg‖p

∣∣∣∣
t=0

.
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By the convexity of x 7→ |x|p, for all 0 < t < 1 and all x ∈M ,

|fϕ(x)|p − |fϕ(x)− g(x)|p ≤ |fϕ(x) + tg(x)|p − |fϕ(x)|p

t
≤ |fϕ(x) + g(x)|p − |fϕ(x)|p .

Then, since |fϕ − g|p, |fϕ − g|p and |fϕ|p are all integrable, The Dominated Convergence Theorem

yields us

lim
t→0

∫
M

|fϕ(x) + tg(x)|p − |fϕ(x)|p

t
dµ =

∫
M

lim
t→0

|fϕ(x) + tg(x)|p − |fϕ(x)|p

t
dµ .

Now one easily computes that for all x,

lim
t→0

|fϕ(x) + tg(x)|p − |fϕ(x)|p

t
= R|fϕ|p−2fϕ(x)g(x) .

Thus, for all g ∈ Lq, we have

Rϕ(g) = ‖ϕ‖(Lp)∗

∫
M
R|fϕ|p−2fϕ(x)g(x)dµ .

Substituting g by ig, we obtain the same result for the imaginary part, and hence

ϕ(g) = ‖ϕ‖(Lp)∗

∫
M
|fϕ|p−2fϕ(x)g(x)dµ .

It is now easily checked that |fϕ|p−2fϕ is a unit vector in Lq, and hence ϕ is in the range of our

isometry into (Lp)∗. But since ϕ is an arbitrary element of (Lp)∗, we see that our isometry is onto

(Lp)∗.

Next, as a consequence of Theorem 4.1 the Lindenstrauss-Day Theorem ,we obtain the following

result:

4.3 THEOREM (Uniform smoothness of Lp, 1 < p <∞). For any measure space (M,M, µ) and

any Lp(M,M, µ) is uniformly smooth. For 1 < p < 2,one has the bound

ρLp(τ) ≤ 1

2(p− 1)
τ2 , (4.5)

while for 2 < p <∞ and q = p/(p− 1), one has the bound

ρLp(τ) ≤ 1

q
τ2 . (4.6)

Proof. The uniform smoothness follows directly from Theorems 3.7 and 4.1. To obtain (4.5) use

(3.17) to deduce

ρLp(τ) ≤ sup
0≤ε≤1

{ετ − δLq(ε) } .

Then by (4.2) and a simple calculation, one obtains and (4.5). The proof of (4.6) is similar.


