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0.1 Norms of self-adjoint operators on Hilbert space

Let T ∈ B(H),H a Hilbert space. Since for all f ∈ H, there is a unit vector v such that 〈v, f〉 = ‖f‖,
and since |〈v, f〉| ≤ ‖f‖ for all unit vectors v, ‖Tu‖ = sup{|〈v, Tu〉| : ‖v‖ = 1}. Therefore,

‖T‖ = sup{|〈v, Tu〉| : ‖u‖ = 1 , ‖v‖ = 1} . (0.1)

When T is self-adjoint; i.e., when T = T ∗, there is a simpler formula:

0.1 LEMMA. Let T ∈ B(H), T = T ∗. Then

‖T‖ = sup{|〈u, Tu〉| : ‖u‖ = 1 } . (0.2)

Proof. Temporarily define CT := sup{|〈u, Tu〉| : ‖u‖ = 1 }. Let u, v be unit vectors in H such that

v 6= ±u. Since T is self-adjoint,

〈u+ v, T (u+ v)〉 = 〈u, Tu〉+ 〈v, Tv〉+ 2<(〈v, Tu〉)
〈u− v, T (u− v)〉 = 〈u, Tu〉+ 〈v, Tv〉 − 2<(〈v, Tu〉) .

Therefore,

<(〈v, Tu〉) =
1

4
(〈u+ v, T (u+ v)〉 − 〈u− v, T (u− v)〉) .

Defining f = u+ v and g = u− v, neither of which is zero, we obtain

<(〈v, Tu〉) =
1

4

(
‖f‖2 〈f, Tf〉

‖f‖2
− ‖g‖2 〈g, Tg〉

‖g‖2

)
≤ 1

4
(‖f‖2 + ‖g‖2)CT = CT .

Replacing v by eiθv and varying θ, we obtain that |〈v, Tu〉| ≤ CT for all unit vectors u and v, the

excluded case v = ±u being trivial. Now (0.2) follows from (0.1).
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If T ∈ B(H), then ‖T ∗‖ = ‖T‖, whcih follows from (0.1) since |〈v, T ∗u〉| = |〈u, Tv〉|. Also, for

all unit vectors u and all S, T ∈ B(H), ‖STu‖ ≤ ‖S‖‖Tu‖ ≤ ‖S‖‖T‖ so that ‖ST‖ ≤ ‖S‖‖T‖.
In particular, ‖T 2‖ ≤ ‖T‖2, and then by a simple induction, ‖Tn‖ ≤ ‖T‖n for all n ∈ N. The

inequality can be strict: For example, if T is nilpotent of order n, so that Tn = 0, but T 6= 0, then

0 = ‖Tn‖ < ‖T‖n.

0.2 THEOREM. For all T ∈ B(H), H a Hilbert space, ‖T ∗T‖ = ‖T‖2.

Proof. Since T ∗T is self-adjoint, ‖T ∗T‖ = sup{|〈u, T ∗Tu〉| : ‖u‖ = 1 }. However, 〈u, T ∗Tu〉 =

〈Tu, Tu〉 = ‖Tu‖2, so that

‖T ∗T‖ = sup{‖Tu‖2 : ‖u‖ = 1 } = ‖T‖2 .

In particular, if T is self-adjoint, then ‖T 2‖ = ‖T‖2, and then it follows that ‖Tn‖ = ‖T‖n for

all n ∈ N. The identity ‖T ∗T‖ = ‖I‖2 is known as the C∗ algebra identity because of its crucial

role in the Gelfand-Naimark theory of C∗ algebras.

0.2 Compact operators

0.3 DEFINITION (Compact operator). An operator T ∈ B(H), H a Hilbert space, is compact

in case whenever {fn}n∈N is a weakly convergent sequence in H, {Tfn}n∈N is a strongly convergent

sequence in H.

0.4 EXAMPLE. Let (Ω,M , µ) be a measure space, and let H = L2(Ω,M , µ)). Let K be a square

integrable function on the product space (Ω× Ω,M ⊗M , µ⊗ µ) and define

‖K‖2 =

∫
Ω×Ω
|K|2dµ⊗ µ .

Then for each h ∈ H, and each x ∈ Ω,∣∣∣∣∫
Ω
K(x, y)h(y)dµ(y)

∣∣∣∣ ≤ (∫
Ω
|K(x, y)|2dµ(y)

)1/2

‖h‖ . (0.3)

By Fubini’s Theorem, the right hand side is a square integrable function of x, and hence for all

f ∈ H, the function Kf defined by

Kf(x) :=

∫
Ω
K(x, y)f(y)dµ(y) (0.4)

belongs to H, and moreover, ‖Kf‖ ≤ ‖K‖‖f‖. Therefore, the map f 7→ Kf is a bounded linear

transformation on H.

In fact, K is compact. To see this, let {fn} be a sequence that converges weakly to f ∈ H. By

Fubini’s Theorem, for almost every x ∈ X, y 7→ K(x, y) is square integrable, and thus we may

write Kf = 〈K(x, ·), f〉, and then by the weak convergence, Kf(x) = limn→∞Kfn(x) for almost

every x. Moreover, since weakly convergence sequences are uniformly bounded, there exists C <∞
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such that ‖fn‖ ≤ C for all n, and then ‖f‖ ≤ C as well since ‖f‖ ≤ lim infn→∞ ‖fn‖. Therefore,

by (0.3)

|K(f − nn)(x)|2 ≤ 4C2

(∫
Ω
|K(x, y)|2dµ(y)

)
.

Then by the Lebesgue Dominated Convergence Theorem, limn→∞ ‖Kf − Kfn‖2 = 0. Thus,

{Kfn}n∈N converges strongly to f . This proves that K is a compact operator.

The class of compact operators considered in this example is called the class of Hilbert-Schmidt

integral operators

An even simpler example is given by the class of finite rank operators on a Hilbert space H.

First, we fix a useful notational convention. Given two vectors f, g ∈ H, let |g〉〈f | denote the

operator on H given by

|g〉〈f |h = 〈f, h〉g for all h ∈ H . (0.5)

An operator T ∈ B(H) has finite rank if its range, ran(T ), is a finite dimensional subspace of

H, or equivalently, if the orthogonal complement of its null-space, ker(T )⊥, is finite dimensional.

If T is finite rank and {f1, . . . , fm} is an orthonormal basis for ker(T )⊥, then we may write T in

the form

T =

m∑
j=1

|gj〉〈fj | , (0.6)

where for each j, gj = Tfj . Conversely, every operator of the form (0.6), even without the assump-

tion that {f1, . . . , fm} is orthonormal, is finite rank. It is very simple to show that every finite rank

operators is compact; this is left to the reader.

0.5 THEOREM. Let T ∈ C (H). Then T ∗ ∈ C (H), and for all S ∈ B(H), ST and TS belong to

C (H). Finally, C (H) is an operator norm closed subspace of B(H).

Proof. To show that T ∗ ∈ C (H) whenever T ∈ C (H), let T ∈ H and let {fn}n∈N be a sequence

in H that converges weakly to f ∈ H. We must show that limn→∞ ‖T ∗(fn − f)‖ 6= 0. If this is not

the case, then for some ε > 0, there is a subsequence {fnk
}k∈N such that ‖T ∗(fnk

− f)‖ ≥ ε for all

k. Passing to this subsequence, ‖T ∗(fk − f)‖ ≥ ε for all k. Then there exists a sequence {uk}k∈N

of unit vectors such that

|〈Tuk, fk − f〉| = |〈uk, T ∗(fk − f)〉| = ‖T ∗(fk − f)‖ ≥ ε

for all k. The norm closed unit ball B in H is weakly sequentially compact, and hence there

exists a (further) subsequence {uk`}`∈N that converges weakly to some u ∈ B. Since T is compact,

lim`→∞ ‖T (uk` − u)‖ = 0. Therefore, for all sufficiently large `, ‖T (uk` − u)‖ < ε/2, and then for

all such `,

|〈Tu, fk` − f〉| ≥ |〈Tuk` , fk` − f〉| −
1

2
ε ≥ 1

2
ε .

However this is impossible since {fn}n∈N converges weakly to f . This contradiction shows that T ∗

is compact.

It is evident that since S takes norm convergent sequences to norm convergent sequences, then

ST is compact for all S ∈ B(H) and T ∈ C (H). Since TS = (S∗T ∗)∗, the first part of the proof

shows that TS is compact for all S ∈ B(H) and T ∈ C (H).
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Now let {Tn}n∈N be a norm convergent sequence in C (H) and let T be the limit in B(H). We

must show that T ∈ C (H). Let {fk}k∈N be a weakly convergent sequence with limit f . Then there

is a finite constant C such that ‖fk‖ ≤ C for all k, and also ‖f‖ ≤ C.

Pick ε > 0, and then pick N so that ‖Tn − T‖ < ε whenever n ≥ N . Then for all k, `,

‖Tfk − Tf`‖ ≤ ‖(T − TN )fk‖+ ‖TN (fk − f`)‖+ ‖(T − TN )fk‖ ≤ Cε+ ‖‖TN (fk − f`)‖‖+ Cε .

Since TN is compact, there is a finiteM so that whenever k, ` ≥M , ‖‖TN (fk−f`)‖‖ < ε. Altogether,

k, ` ≥M ⇒ ‖Tfk − Tf`‖ ≤ (2C + 1)ε .

Since ε > 0 is arbitrary, this shows that {Tfk} is a Cauchy sequence. Let g denote the limit. Then

for all h ∈ H,

〈h, g〉 = lim
n→∞

〈h, Tfn〉 = lim
n→∞

〈T ∗h, fn〉 = 〈T ∗h, f〉 = 〈h, Tf〉 ,

and therefore Tf = g = limn→∞ Tfn.

A number λ ∈ C is called an eigenvalue of T ∈ B(H) in case there is a non-zero vector f ∈ H
such that Tf = λf , and in this case, f is called an eigenvector of T with the eigenvalue λ.

If λ is an eigenvalue of T , the corresponding eigenspace Hλ is the subspace of H spanned by all

of the eigenvectors of T with eigenvalue λ. That is,

Hλ = ker((λI − T ) ,

which shows that Hλ is always closed.

0.6 THEOREM. Let T be a compact operator on a Hilbert space H. Then for each r > 0, there

are at most finitely many λ ∈ C such that λ is an eigenvalue of T and |λ| ≥ r. Moreover, if λ is

an non-zero eigenvalue of T , then dim(ker(λI − T )) <∞.

Proof. If for any non-zero λ, dim(ker(λI − T )) = ∞, then there exists an orthonormal sequence

{un}n∈N of eigenvectors of T , Tun = λnun, such that infn∈N{|λn|} > 0. Then {un}n∈N converges

weakly to zero, but {Tun}n∈N does not converge strongly. If T is seld-adjoint, so that eigenvectors

with distinct eigenvalues are necessarily orthognal, essentially the same argument can be used for

the second part.

To prove the second part in general, suppose that there are infnitely many eigenvlaies {λn}n∈N

with |λn| ≥ r for all n. For each n, let un be a unit vector with Tun = λnun. Passing to a

subsequence, we may suppose that un converges weakly to u ∈ B as n → ∞. Define Kn =

span({u1, . . . , un}). Since any set of eigenvectors with distinct eigenvalues is linesrly independent,

Kn+1 ∩ K⊥n 6= {0} for any n. Define v1 = u1, and for all n ∈ N, choose any unit vector vn+1 ∈
Kn+1 ∩ K⊥n . Since vn converges weakly to 0 as n → ∞, Then limn→∞ ‖Tvn‖ = 0. Now note that

(λnI − T )vn ∈ Kn−1 for each n ≥ 2. Hence vn is orthongal to (λnI − T )vn, and hence

‖Tvn‖2 = ‖(T − λn)vn + λnvn‖2 = ‖(T − λn)vn‖2 + ‖λnvn‖2 ≥ r .

This contradiction shows that there do not exists infinitely many eigenvlaues λ with |λ| ≥ r.
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0.3 The Hilbert-Schmidt Spectral Theorem

In an infinite dimensional Hilbert space, bounded operators, even bounded self-adjoint operators,

need not have any eigenvalues at all. For example, let H := L2([0, 1],B, µ) where µ is Lebesgue

measure. Define Tt(t) = tf(t). Then it is easily checked that ‖T‖ = 1 and T = T ∗. However, if

Tf = λf , then (t−λ)f(t) = 0 for almost every t, and this is impossible unless f = 0. However, for

compact self-adjoint operators, the situation is different.

0.7 THEOREM. Let T be a self-adjoint compact operator on a Hilbert space H. Then either ‖T‖
or −‖T‖ is an eigenvalue of T (or both are).

Proof. By Lemma 0.1, ‖T‖ = sup{|〈u, Tu〉| : ‖u‖ = 1 }. Therefore, either

‖T‖ = sup{〈u, Tu〉 : ‖u‖ = 1 } or ‖T‖ = sup{−〈u, Tu〉 : ‖u‖ = 1 } , (0.7)

or both. Suppose first that ‖T‖ = sup{〈u, Tu〉 : ‖u‖ = 1 }. We may assume that T 6= 0 to avoid

trivialities.

It follows that there exists a sequence of unit vectors {un}n∈N such that limn→∞ |〈u, Tu〉| =

‖T‖. Since every bounded sequence contains a weakly convergent subsequence, we may select a

subsequence {unk
}k∈N that converges weakly to some u ∈ H with ‖u‖ ≤ 1.

We now show that in fact ‖u‖ = 1 and 〈u, Tu〉 = ‖T‖. Note that

〈u, Tu〉 − 〈unk
, Tunk

〉 = 〈u− unk
, Tu〉+ 〈unk

, T (u− unk
)〉 .

Since {u−unk
}k∈N converges weakly to 0, limk→∞〈u−unk

, Tu〉 = 0. Moreover, since T is compact,

{T (u− unk
)}k∈N converges strongly to zero and hence

lim sup
k→∞

|〈unk
, T (u− unk

)〉| ≤ lim sup
k→∞

‖T (u− unk
)‖ = 0 .

Therefore

〈u, Tu〉 − ‖T‖ = lim
k→∞

(〈u, Tu〉 − 〈unk
, Tunk

〉) = 0 .

Hence ‖T‖ = 〈u, Tu〉. By the Cauchy-Schwarz inequality, ‖T‖ = |〈u, Tu〉| ≤ ‖T‖‖u‖2. Since

‖u‖ ≤ 1, we must have ‖u‖ = 1.

Now that we have found a unit vector u such that 〈u, Tu〉 = ‖T‖ ≥ 〈v, Tv〉 for all unit vectors

v ∈ H, let h be any unit vector, and define the function ϕ on (−1/2, 1/2) by

ϕ(t) =
〈u+ th, T (u+ th)〉

‖u+ th‖2
, (0.8)

and note that ϕ(0) ≥ ϕ(t) for all t ∈ (−1/2, 1/2). Since T is self adjoint, and since 〈u, Tu〉 = ‖T‖,

〈u+ th, T (u+ th)〉 = 〈u, Tu〉+ t〈h, Tu〉+ t〈u, Th〉+ t2〈h, Th〉
= ‖T‖+ 〈u, Tu〉+ t〈h, Tu〉+ t〈Tu, h〉+ t2〈h, Th〉
= ‖T‖+ 〈u, Tu〉+ 2t<(〈Tu, h〉) + t2〈h, Th〉 .

Therefore,

ϕ(t) =
‖T‖+ 2t<(〈Tu, h〉+ t2〈h, Th〉

1 + t2<(〈u, h〉) + t2
,
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Computing the derivative, we find 0 = <(〈Tu, h〉 − ‖T‖<(〈u, h〉). Replacing h by ih, we see that

also =(〈Tu, h〉 = ‖T‖=(〈u, h〉, and altogether that 〈Tu − ‖T‖u, h〉 = 0 for all unit vectors h, and

hence for all vectors h. Taking h = Tu − ‖T‖u, we conclude that Tu = ‖T‖u. Thus, u is an

eigenvector of T with eigenvalue ‖T‖.
Now suppose that the second alternative in (0.7) is valid. This is the same as ‖T‖ =

− inf{〈u, Tu〉 : ‖u‖ = 1}. The same reasoning proves the existence of a unit vector u such

that −‖T‖ = 〈u, Tu〉. Defining ϕ(t) exactly as in (0.8), we have this time that ϕ(0) ≤ ϕ(t) for all

t ∈ (−1/2, 1/2). Again, this means ϕ′(0) = 0, and computing the derivative as above we find that

Tu = −‖T‖u.

The following simple lemmas will be frequently useful.

0.8 LEMMA. Let T be a self-adjoint operator on a Hilbert space H. Suppose that K is a subspace

of H such that K is invariant under T , meaning that Tf ∈ K for all f ∈ K. Then K ⊥ is also

invariant under T .

Proof. Let f ∈ V , and g ∈ V ⊥. Then 0 = 〈Tf, g〉 = 〈f, Tg〉 so that Tg ∈ V ⊥.

In particular, if T is a self-adjoint operator on H, and K = ker(T ), then K⊥ is invariant under

T , and being a closed subspace of H, K⊥ is a Hilbert space in its own right. If T is a compact

self-adjoint operator, he restriction of T to K⊥, T |K⊥ , is an injective compact self-adjoint operator

on K⊥.

Next, any eigenvalues of a self-adjoint operator on a Hilbert space H are necessarily real:

0.9 LEMMA. Let T be a self-adjoint operator on a Hilbert space H. Suppose that f 6= 0 and that

Tf = λf for some λ ∈ C. Then λ ∈ R.

Proof. Let u = ‖f‖−1f . Then λ = 〈u, Tu〉 = 〈Tu, u〉 = 〈u, Tu〉 = λ.

0.10 THEOREM (Hilbert-Schmidt Spectral Theorem). Let T be a self-adjoint compact operator

on a Hilbert space H. Let K = ker(T ). If dim(K⊥) =: m < ∞, define the index set J to be

{1, . . . ,m}. Otherwise, define J := N. Then there exists an orthonormal basis {un}n∈J for K⊥

consisting of eigenvectors of T with Tuj = λj for all j ∈ N such that λj is real, |λk| ≤ |λj | for all

j, k ∈J and |λ1| = ‖T‖. Moreover,

T =
∑
j∈J

λj |uj〉〈uj | , (0.9)

where, in case J = N, the sum converges in the operator norm and limn→∞ λn = 0.

Proof. By restricting T to (ker(T ))⊥, we may assume without loss of generality that ker(T ) = {0},
which we do in order to simplify the notation.

By Theorem 0.7, either ‖T‖ or −‖T‖ is an eigenvalue of T , or both are. Let u1 be an eigenvector

of T with eigenvalue λ1, where either λ1 = ‖T‖ or λ1 = −‖T‖. If dim(H) = 1, we are done.

Otherwise, define K1 = span({u1}). Then K1 is invariant under T , and then by Lemma 0.8,

K⊥! is a invariant under T . Since the orthogonal complement of any set is closed, K ⊥
1 is closed,

and hence is a Hilbert space. Since K⊥1 is invariant under T , the restriction of T to K1, T
∣∣
K⊥1

, is a

self-adjoint compact operator on K ⊥
1 .
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Therefore, we may apply Theorem 0.7 to T
∣∣
K⊥1

: Either
∥∥∥T ∣∣K⊥1 ∥∥∥ or −

∥∥∥T ∣∣K⊥1 ∥∥∥ is an eigenvalue

of T
∣∣
K⊥1

. Choose u2 to be an eigenvector of T
∣∣
K⊥1

with eigenvalue λ2 = ±
∥∥∥T ∣∣K⊥1 ∥∥∥. Evidently,∥∥∥T ∣∣K⊥1 ∥∥∥ ≤ ‖T‖ and hence |λ2| ≤ |λ1|. If dim(H) = 1, we are done. Otherwise we iterate.

Suppose we have found an orthonormal set {u1, . . . , um} consisting of eigenvectors of T with

Tuj = λuj and |λj | ≤ |λk| for all 1 ≤ j < k ≤ m. Suppose that dim(H) > m. Define Km :=

span({u1, . . . , un}), which, being spanned by eigenvectors, is evidently invariant under T . By

Lemma 0.8, K⊥m is a closed subspace of H that is invariant under T .

Therefore, we may apply Theorem 0.7 to T
∣∣
K⊥m

: Either
∥∥∥T ∣∣K⊥m∥∥∥ or −

∥∥∥T ∣∣K⊥m∥∥∥ is an eigenvalue

of T
∣∣
K⊥m

. Choose um+1 to be an eigenvector of T
∣∣
K⊥m

with eigenvalue λm+1 = ±
∥∥∥T ∣∣K⊥m∥∥∥. Then

Tum+1 = λm+1 so that um+1 is also an eigenvector of T . Evidently,∥∥∥T ∣∣K⊥m∥∥∥ ≤ ∥∥∥T ∣∣K⊥m−1

∥∥∥
and hence |λm+1| ≤ |λm|. Thus, {u1, . . . , um+1} is an orthonormal set consisting of eigenvectors of

T with Tuj = λuj and |λj | ≤ |λk| for all 1 ≤ j < k ≤ m+ 1.

If dim(H) := N <∞, the inductive construction terminates in N steps producing an orthonor-

mal basis for H. Otherwise it continues indefinitely producing an infinite orthonormal sequence

{un}n∈N with Tun = λnun and n 7→ |λn| non-increasing on N. By Theorem 0.6, for each r > 0,

there can be only finitely many n such that |λn| ≥ r. It follows that limn→∞ λn = 0.

We now claim that {un}n∈N is complete. To see this, let K denote the orthogonal complement

of the span of {un}n∈N, and note that since the span of {un}n∈N is invariant under T , so is K.

Since ker(T ) = {0}, if K 6= {0}, ‖T |K‖ > 0. We could then apply Theorem 0.7 to produce an unit

vector u that is an eigenvector of T with Tu = ±‖T |K‖u, and with 〈u, un〉 = 0 for all n. But this

is impossible since by the construction of {un}n∈N, for all unit vectors u ∈ H with 〈u, uj〉 = 0 for

j = 1, . . . ,m, |〈u, Tu〉| ≤ |λm| and we have seen that limn→∞ |λn| = 0. Hence K = {0}, which

means that {un}n∈N is complete.

Since {uj}j∈J is an orthonormal basis for H, we have that for all f ∈ H, f =
∑

j∈J 〈uj , f〉uj ,
and hence

Tf = T

∑
j∈J

〈uj , f〉uj

 =
∑
j∈J

〈uj , f〉Tuj =
∑
j∈J

λj |〈uj〉〈uj |f .

If J is finite, this proves (0.9).

For the case J = N, we now show that the sum in (0.9) converges in the operator norm. To

do this, for each n ∈ N, define Tn =

n∑
j=1

λj |〈uj〉〈uj |. Then all n > m and unit vectors u,

|〈u, (Tn − Tm)u〉| =

∣∣∣∣∣∣
n∑

j=m+1

λj |〈uj , u〉|2
∣∣∣∣∣∣ ≤ |λm+1|

∞∑
j=1

|〈uj , u〉|2 = |λm+1| .

By Lemma 0.1, ‖Tn−Tm‖ ≤ |λm+1| and then since limn→∞ λn = 0, {Tn}n∈N is a Cauchy sequence

in B(H). This sequence therefore converges in operator norm to a limit that must agree with T on

the dense span of {uj}j∈N , and must therefore be T . This proves (0.9) in the infinite dimensional

case.
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There are several corollaries:

0.11 COROLLARY. For all self-adjoint T ∈ C (H), there exists an orthonormal basis for H
consisting of eigenvectors of H.

Proof. Let K := ker(T ), which is a closed subspace of H, and therefore a Hilbert space in its own

right. Combine any orthonormal basis for this space with the orthonormal basis of K⊥ that is

provided by Theorem 0.10.

0.12 COROLLARY. C (H) is the operator norm closure of the set F (H) of finite rank operators

on H.

Proof. We have seen that F (H) ⊂ C (H), and that C (H) is closed so that F (H) ⊂ C (H). The

formula (0.9) displays every self adjoint compact operator T as the operator norm limit of finite

rank operators, and if T is compact, so are T + T ∗ and i(T ∗ − T ).

If T ∈ C (H), and T = T ∗, and ϕ is a conitnuous function on defined on [−‖T‖, ‖T‖], then we

define

ϕ(T ) =
∑
j∈N

ϕ(λj)|uj〉〈uj | .

0.4 The Fredholm Alternative

The Fundamental Theorem of Linear Algebra says that a linear transformation T between finite

dimensional vector spaces V and W is invertible if and only if V and W have the same dimension

and T is either injective or surjective. In other words, for linear maps between vector spaces of the

same finite dimension, injectivity implies surjectivity and vice-versa.

In infnite dimensions, this is not true in general, but there is an important case in which is is

true.

0.13 THEOREM. Let T be a compact operator on a Hilbert space H. Then (I − T ) is invertible

if and only if (I − T ) is injective, and (I − T ) is invertible if and only if (I − T ) is surjective.

Morover

dim(ker(I − T )) = dim((ran(I − T ))⊥) . (0.10)

0.14 Remark. The first part of the theorem can be expressed as saying that either (I − T ) is

invertible, or else 1 is an eigenvalue of T . This is the Fredholm alternative. For λ 6= 0, (λI − T ) =

λ(I − λ−1T ), and hence (λI − T ) is invertible if and ony if (I − λ−1T ) is invertible, and λ−1T is

comapct if and only if T is compact. Hence if T is compact, and λ 6= 0, either λ is an eigenvalue

of T or else λI − T is invertible.

0.15 LEMMA. Let T be a compact operator on a Hilbert space H. Then either there exists C > 0

such that for all f ∈ H,

‖(I − T )f‖ ≥ C‖f‖ (0.11)

or else ker(I − T ) 6= {0}.
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Proof. Suppose that there is no C > 0 such that (0.11) is valid for all f ∈ H. The there exists a

sequence of unit vectors {un}n∈N such that limn→∞ ‖(I − T )un‖ = 0. Since the closed unit ball B

in H is weakly sequentially compact, by passing to a subsequence, we may assume that {un}n∈N

converges weakly to some u ∈ B, and then, since T is compact, that limn→∞ ‖Tun − Tu‖ = 0.

Then since

|1− ‖Tun‖| = |‖un‖ − ‖Tun‖| ≤ ‖un − Tun‖ = ‖(I − T )un‖ ,

limn→∞ ‖Tun‖ = 1., and hence ‖Tu‖ = 1.

Since T commutes with (I − T ), and is bounded, the hypothesis that limn→∞ ‖(I − T )un‖ = 0

implies that

0 = lim
n→∞

‖T (I − T )un‖ = lim
n→∞

‖(I − T )Tun‖ = ‖(I − T )Tu‖ .

Since ‖Tu‖ = 1, this means that Tu is a non-zero vector in ker(I − T ).

0.16 LEMMA. Let T be a compact operator on a Hilbert space H. if ker(I − T ) = {0}, then

ran(I − T ) is closed.

Proof. Let {gn}n∈N be a sequence in ran(I − T ) that converges in norm to some g ∈ H. We must

show that g ∈ ran(I − T ). Since (I − T ) is injective, for each n ∈ N, there is a unique fn ∈ H such

that (I − T )fn = gn. Then by (0.11), {fn}n∈N is a Cauchy sequence in H, and hence there exists

f ∈ H such that limn→∞ ‖fn − f‖ = 0. Then

g = lim
n→∞

(I − T )fn = (I − T )f ,

showing that g ∈ ran(I − T ).

0.17 LEMMA. Let T ∈ B(H) Then

(ran(T ))⊥ = ker(T ∗) . (0.12)

Proof. Let f ∈ ker(T ∗). For all g ∈ H, 0 = 〈T ∗f, g〉 = 〈f, Tg〉, and hence f ⊥ Tg. Thus

ker(T ∗) ⊂ (ran(T ))⊥. Let g ∈ (ran(T ))⊥. For all f ∈ H, 0 = 〈T ∗f, g〉 = 〈f, Tg〉, and hence Tg = 0.

Thus, (ran(T ))⊥ ⊂ ker(T ∗).

Proof of Theorem 0.13. Suppose that I − T is injective. By Lemma 0.16, V1 := ran(I − T ) is a

closed subspace of H , and hence a Hilbert space. Since T is a continuous vector space isomorphism

of H onto V1, it has a bounded inverse: By Lemma 0.15, the unique f such the (I − T )f = g; i.e.,

(I − T )−1g , satsifies ‖(I − T )−1g‖ ≤ C−1‖g‖, showing that (I − T )−1 ∈ B(H). (One could also

invoke the Open Mapping Theorem.)

Suppose that V1 is a proper subspace of H. Then since I − T is injecrtive, V2 := (I − T )V1 is a

proper subspace of V −1 = (I−T )H, and it is closed since (I−T ) is a topological homeomorphism.

We inductively define Vn+1 := (I − T )Vn for each n ∈ N, and then, as above, we have that each

Vn+1 is a proper, closed subspace of Vn.

Then Vn∩V ⊥n+1 is a non-zero subspace for all n ∈ N. Choose any unit vector un ∈ Vn∩V ⊥n+1. Since

Vn ⊂ Vm for all n ≥ m, {un}n∈N is an orthonormal sequence. Since un ∈ Vn and Tun − un ∈ Vn+1,

un and Tun − un are othogonal, and hence

‖Tun‖2 = ‖(Tun − un) + un‖2 = ‖Tun − un‖2 + ‖un‖2 ≥ 1 .
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However, since {un}n∈N is orthonormal, it converges weakly to 0, and then since T is compact

limn→∞ ‖Tun‖ = 0. This contradiction shows that ran(I − T ) = V1 = H, and hence that I − T
is surjective onto H as well as injective, and we have already seen that (I − T )−1 ∈ B(H). This

proves that I − T is invertible if and only if it is injective.

Next, suppose thar I−T is surjective. Then by Lemma 0.17, !−T ∗ = (I−T )∗ is injective, and

since T ∗ is aslo compact, what we have proved above shows that !− T ∗ is invertible in B(H). But

then I − T is invertible in B(H), with inverse ((I − T ∗)−1)∗.

Finally, suppose that I−T is not invertible. Then ker(I−T ) and (ran(I−T ))⊥ = ker(I−T ∗) are

eigenspaces of the compact operators T and T ∗, and hence are fnite dimensional. Let {u1, . . . , um}
be any orthonormal basis of ker(I − T ), and let {v1, . . . , vn} be any orthonormal basis of (ran(I −

T ))⊥. Let p := min{m,n}, and define F =

p∑
j=1

|vj〉〈uj |. Note that (I − T + F ) is injective if and

only if if p = m, and (I − T +F ) is surjective if and only if if p = n. Then since T −F is compact,

by what we have proved above, p = m = n, and this proves (0.10).

0.18 Remark. For S ∈ B(H), the nullity of S is defined by nullity(S) = dim(ker(S)), and the rank

of S is defined by rank(S) = dim(ran(S)). When H = Cn, so that we may identity B(H) with the

n×n matrices, we have the simple identity that for any subspace K of H, dim(K) + dim(K⊥) = n,

and hence rank(S) = n− dim((ran(S))⊥). Defining T = I − S, so that S = I − T , and noting that

in finite dimensions every linear operator is compact, the identity (0.10) of Theorem 0.13 says that

nullity(S) + rank(S) = n.

By Lemma 0.17, and what we have said above, and equivalent formulation is that

nullity(S) = nullity(S∗) . (0.13)

This formulation has the advantage of not referring explicitly to the dimension, and as Theorem 0.13

shows, it remains true in infinite dimensions when S = I − T with T compact. For λ 6= 0, write

S = λ−1(λI − T ). Then of course nullity(λI − T ) = nullity(λ∗I − T ), and hence if T is compact

operator, then λ is a eigenvalue of T if and only if λ∗ is an eigenvalues of T ∗ and in that case, these

eigenvalues have the same (finite) geometric multiplicity, just as in finite dimensions.


