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Chapter 1

Essential Results form Topology

1.1 Introduction

The basic strategy in real analysis is approximation. In particular, one often tries to approximate general
elements of some infinite dimensional vector space of functions by elements of a subspace consisting of well-
behaved functions, or one tries to construct solutions to equations as limits of solutions to “approximate”
equations. The basic framework for making mathematical sense of “approximation” is provided by the
theory of metric spaces, and more generally the theory of topological spaces. Methods of approximation
are especially effective in a metric space that is complete and rich in compact sets, as we explain in this
introductory chapter.

In the next chapter, we study the Lebesgue theory of integration. A fundamental advantage of it
over previous integration theories is that it permits the construction of many complete metric spaces in
which compact sets can be concretely described. This provides an extremely useful framework for solving
a wide variety of equations. First, we introduce the fundamental topological theory, and illustrate it with

examples that do not require the Lebesgue theory of integration.

1.2 Metric Spaces

1.2.1 DEFINITION (Metric Space). A metric space (X,d) consists of a set X and a function d :
X x X — [0, 00) satisfying:
(1) d(z,y) >0 for all z,y € X and d(z,y) =0 < z=y.
(2) d(z,y) = d(y,z) for all z,y € X.
(8) d(z,z) < d(z,y) + d(y, z) for all z,y,z € X.
The inequality in (3) is called the triangle inequality, and a function d satisfying (1), (2) and (3) is

called a metric on X.

1.2.2 EXAMPLE. For real numbers a < b, let C([a,b],R) denote the set of of continuous real-valued
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functions on [a,b]. Given any two f,g € C([a,b],R). Define

deo(f,9) = sup |f(t) —g(t)] .

t€la,b]

It is easy to check that ds is a metric on C([a,b],R), called the uniform metric. Since C([a,b],R) has
an obvious vector space structure, it is our first example of a metric space that is also a vector space of

functions.

1.2.1 Continuity in metric spaces

A function f from X to Y is continuous if a sufficiently small change in the input results in a small change
in the output. In other words, f(z) will be a close approximation of f(z¢), if  is a sufficiently close

approximation of xg. Here is the precise version of this in the metric space setting:

1.2.3 DEFINITION (Continuous functions from one metric space to another). Let (X,dx) and (Y, dy)
be two metric spaces. Let f be a function from X to Y. Then f is continuous at z¢9 € X in case for every
€ > 0, there is a d. > 0 such that

dx(z,20) <0 = dy(f(z), f(zo)) <e€. (1.2.1)
The function f is continuous in case it is continuous at each xg € X.

1.2.4 THEOREM (Continuity and sequences). Let (X,dx) and (Y,dy) be two metric spaces. Let f be
a function from X toY. Then f is continuous at xg € X if and only if for every sequence {xy} in X

lim zp =29 = lem flzg) = f(xo) - (1.2.2)

k—o0

Proof. Suppose that f is continuous, and that limy_, o, 2x = 2. Pick any € > 0, and let §, be as in (1.2.1).
Choose N so large that for all k > N, d(zy,z¢) < .. Then, for all & > N, d(f(x), f(x0)) < €. Since € is
arbitrary, this shows that limg_,o f(2r) = f(z0).

Next suppose that f is not continuous at xy. Then there exists some € > 0 so that for every § > 0,
there is at least one point z satisfying dx (z,zo) < 0 such that dy (f(x), f(zo)) > €. Define a sequence
{1} as follows: For each k, choose ) so that dx (zx,zo) < 1/k such that dy (f(zx), f(zo)) > €. Then
limg 00 dx (xk, o) = 0, but it is not the case that limy_, o f(2x) = f(20). Thus, when f is not continuous
at o, (2.1.5) does not hold true. Hence, whenever (2.1.5) does hold true, it must be the case that f is

continuous at xzg. O
There is another characterization of continuity involving the notion of open sets, which we now define:

1.2.5 DEFINITION (Open sets in metric spaces). Let X be a metric space with metric d. Given a
number r > 0, and a point € X, let B,(x) be defined by

B.(zx)={yeX : dly,x)<r}.

This set is called the open ball of radius r about x.

A subset U of X is open in case either:



(1) Tt is the empty set 0, or else

(2) For each x € U, there is an r > 0, depending on x, such that
B.(z)CU.

It is possible, and as we shall see, useful to characterize the continuity of functions between two metric

spaces simply in terms of open sets, without explicit reference to the the specific metrics themselves.

1.2.6 THEOREM (Continuity and open sets). Let X and Y be metric spaces with metrics dx and dy
respectively. Let f be a function from X toY. Then f is continuous if and only if for every open set U
inY, f~Y(U) is open in X.

Proof. Suppose that f is continuous, and let U be an open set in Y. If f~1(U) = 0, then f~1(U) is open
by (1). Otherwise, if f~1(U) # 0, consider any 2 € f~1(U). Then f(x) € U, and since U is open, there
exists a € > 0 such that B.(f(z)) C U. Then, since f is continuous at xg, there is a d > 0 so that

dx(Z,2) < 6 = dy (f(©), f(z)) <€ .

Hence
f(Bs(z)) C Be(f(x)) C U .

But this means that
Bs(z) c f71(U) .

Since x was any point in f~!(U), we have shown that f~(U) contains an open ball about each of its
members, and hence is open.

Conversely, suppose that f has the property that whenever U is open in Y, f~1(U) is open in X. Fix
any r € X and any € > 0. f~1(B.(f(x))) is open and contains 2. Therefore, there is some J. > 0 such
that

Bs, (z) € fTH(Be(f(x))) -

But then
f(Bs.(2)) C Be(f()) ,

which is just another way to write (1.2.1). Since € is arbitrary, f is continuous at z. Since z is arbitrary,

f is continuous. O

1.2.2 Complete metric spaces

The metric space (C([a,d],R), dw) has another feature that is desirable for analysis: It is complete.

1.2.7 DEFINITION (Complete metric space). A metric space (X,d) is complete in case whenever

{z} }ren is a Cauchy sequence in X, there exists an « € X such that

lim d(zp,z)=0.

k—o0

1.2.8 THEOREM. (C([a,b],R),ds) is complete.



Proof. Suppose that {fx}ren is a Cauchy sequence in (C([a,b],R),d). Then for any € > 0, there is an
N¢ so that
kag Z Ne = doo(fkmf@) S €.

Fix any t € [a,b], Since |fx(t) — fe(t)] < doo(fi, fe),
k.t > Ne— |fi(t) — fe()] <€, (1.2.3)

and hence {fi(t)} is a Cauchy sequence in R. By the completeness of the real numbers, it has a limit
which we denote by f(t). This defines a real valued function f on [a,b], and it remains to show that
f €C(la,b],R), and that limy_ 00 doo (fi, f) = 0.

By the definition of f(t), |fx(t) — f(t)| = limy—oo | fx(t) — fe(t)|. For any s,t € [0, 1],

[F(&) = F <1 (O) = @l + e (@) = fr(s)| + | fu(s) = fs)]

and so
k> Ne—|fu(t) = f(O)] < €. (1.2.4)

For k£ = N, this becomes
|f(@) = f(s)] < [fn.(8) = [ (s)] + 2¢ .

Since fy. is continuous, there is a § > 0 so that |s —t| < § = |fn.(s) — fn.(t)] < e. Therefore,
ls —t| <0 =[f(s) = f(t)] < 3e.

Since € > 0 is arbitrary, this proves that f € C([a,b],R). Finally, since (1.2.4) is valid uniformly in ¢,

lim dy(fi, f) = 0.

The next theorem provides an example of the importance of completeness.

1.2.9 THEOREM (Banach Contraction Mapping Theorem). Let (X,d) be a complete metric space. Let
O : X — X have the property that for some A < 1, d(®(x), ®(y)) < Ad(z,y) for all x,y € X. Then there
s a unique rg € X such that

xg = D(xp) . (1.2.5)

Moreover, for all x € X, let the sequence {x}ren be defined by x1 = x and for x4 = ®(ay). Then
lim d(zg,21) =0 . (1.2.6)
k—o0

Proof. Pick any = € X, and construct the sequence {x}ren as described in the theorem. Define R :=
d(x9,x1) = d(®(x),x)). By the hypothesis

d(l'g”xz) = d(@(mg),@(l‘l)) S /\d(IQ,Qﬁl) =AR.

Then by a simple induction,
d(Tpr2 Trr1) < AR



for all k € N. By the triangle inequality, for all £ > k,

—k—1 o
. Ak—l
d(ze, xp) < jgo A(Thyjt1, Thrj < jgo)\kﬂ ip— mR )

Since limy_ o, A\¥ = 0, this proves that {x;}ren is a Cauchy sequence. Since (X,d) is complete, this

sequence has a limit . Clearly
O(zg) = lim P(xg) = lim xp41 = 2o
k— o0 k—o0
so that xg is a fixed point of ®. Finally if y, is any fixed point of ®, then
d(z0,y0) = d(®(20), ®(y0)) < Ad(z0,y0) -

The only ¢ € [0, 00) satisfying ¢ < At is t = 0. By property (1) in the definition of a metric, this implies

that yg = g which proves the uniqueness. O

1.2.10 EXAMPLE. The previous theorem is the basis of the basic existence and uniqueness theorem
for ordinary differential equations; we now sketch the main points in the simplest case. Let v(x,t) be a

continuous function of R X R such that for some L < 0o,
[o(@,8) — (g, )| < Lz —

for all x,y,t. For z(-) € C([0,(2L)"!],R) and xo € R define

@(m(-))(t):x0+/0 o(@(s), 5)ds .

Note that x(-) is a fized point of © is and only if for all t,

x(t) = xo +/O v(z(s), s)ds .

Suppose that such a fixed point exists. Then, since the right hand side is continuously differentiable, x(t)

s continuously differentiable, and differentiating both sides,
2/ (t) = v(z(t),t) (1.2.7)

for all t, and moreover, x(0) = xo. Conversely, any solution of (1.2.7) with x(0) = ¢ is a fized point of
®. Hence, proving existence and uniqueness of fized points of ® is tantamount to proving the existence
and uniqueness of solutions of the ordinary differential equation (1.2.7), at least on this time interval.
To apply the Banach Contraction Mapping Theorem, consider the complete metric space C([0, (2L)71],R)
equipped with the d., metric.

Let z(-),y(-) € C([0,(2L)!],R). Then for all 0 <t < (2L)~ 1,

[@(z() () = 2(y())(D)]

/0 [w(e(t),£) — v(y(t), D]t

< / [o( (), £) — v(y(t), £)][dt
< L / [2(t) — ()l
< Lt sup |z(t) —y(t)| < %doo(x(),y())

0<s<t



Thus,

doe (B(()), By() € e a(),y()
and the Banach Contraction Mapping Theorem yields the existence of a unique fixed point of ®. This
yields the existence and uniqueness of a solution to (1.2.7) on the interval [0,(2L)"t]. The basic idea

explained here can be used to prove much more.

We have just explained how completeness can be applied to solve equations. We shall do the same

for compactness after developing more of the theory.

1.2.3 Compactness in metric spaces

Alongside completeness, the other fundamental concept pertaining to approximation in analysis is that of

compactness:

1.2.11 DEFINITION (Sequentially compact subset of metric space). Let (X,d) be a metric space,
and A C X. Then A is sequentially compact in case every sequence {zy}ren in A contains a subsequence
converging to an element of A. A metric space (X, d) is sequentially compact in case X itself is sequentially

compact.

Note that if (X,d) is a metric space, and A C X, and d4 denotes the restriction of d to A x A, the
(A, da) is itself a metric space, and A is sequentially compact subset of X if an only if (A, d4) is a compact
metric space. Thus, characterizing compact subsets of a metric space reduces to a question about whether
or not a metric spaces is compact.

Later in this chapter we shall prove the Arzela-Ascoli Theorem which characterizes compact sets in
(C([a,b]),ds), and we shall give an example of the application of this to solving equations. There is
an equivalent formulation of sequential compactness in a metric space that will be useful in proving the

Arzela-Ascoli Theorem and other theorems characterizing compact sets.
1.2.12 DEFINITION (Totally bounded). A metric space (X,d) is totally bounded if and only if for
every € > 0, there is a finite set U, consisting of finitely many open balls of radius €; i.e.,
U. = {Bc(x1),...,Be(zn.)}
that covers X; ie, X = <, Be(z).

1.2.13 THEOREM (Sequential compactness and total boundedness). A metric space (X, d) is sequen-
tially compact if and only if it is complete and totally bounded.

Proof. Suppose that (X, d) is not totally bounded. We shall show that then it is not sequentially compact.
To do this, we construct a sequence that has no convergent subsequence. By hypothesis, for some € > 0,
there does not exist any finite cover of X by open balls of radius e. Thus given any set {x1,...,2,} of X,

U?;l B(z;) # X, and so we can select x,,41 so that
d(zp41,25) >€, forallj=1,....n.

Thus, starting from an arbitrary choice of x1, using a simple induction we can construct an infinite
sequence {x}ren such that
d(z,me) > €



for all k # £. Clearly, such a sequence has no convergent subsequence.
Next, suppose that (X, d) is totally bounded and complete. Let {xj}ren be any infinite sequence in
X. For each m € N, there exists a set {B1/y, (1), ... B1/m(%n,, )} of open balls of radius 1/m such that

By the pigeon-hole principle, at least one of these balls contains infinitely many elements of any infinite
sequence in X.

By what we have explained above, there exists an infinite subsequence {x,(cl)}keN of {2k }ren such
that all elements of this subsequence lie in some open ball of radius 1. Next, for the same reason, exists
an infinite subsequence {x,(f)} keN of {x,(el)}keN such that all elements of this subsequence lie in some open
(4)
k

ball of radius 1/2. Continuing the obvious induction, we obtain a sequence {x;’ }ren of sequences such

,gj)}keNa and all elements in {Cfg(j)

that each {:r](j’Ll)}keN is a subsequence of {z }ren lie in some open ball

of radius 1/j.
Now we use Cantor’s “diagonal sequence” construction: define y; = scg-j ). Then {y;}jen is a subse-

quence of {x}ren, and for all m,

Thus, {yk tren is a Cauchy sequence. Since (X, d) is complete, it is also convergent. We have thus shown

the existence of a convergent subsequence of an arbitrary sequence of X. O

Many important theorems can be proved by using the fact that real valued continuous functions on
a sequentially compact metric space have maxima and minima. That is, if f is a real valued continuous

function on a sequentially compact metric space, the there exist x¢ and x; such that

f@o) < flz) < flan)

for all z € X.

While most often in the chapters that follow, we shall be working with the notions of continuity and
compactness in a metric space setting, this is not always possible, and it is not always convenient even
when it is possible. It is advantageous to develop these notions in a more general setting, that of topological

spaces. We now introduce this more general setting.

1.3 Topological spaces

Since by Theorem 1.2.6 we can characterize continuous functions from one metric space to another in
terms of open sets, without explicitly mentioning either metric at all, it is sometimes useful to “strip

away” the metric structure, and only refer to the open sets.

1.3.1 DEFINITION (Topological Spaces, Hausdorfl Topological Spaces). Let X be any set, and let O

be any collection of sets in X satisfying:

(1) The empty set () belongs to O, as does X itself.



(2) The union of any arbitrary set of sets in O belongs to O.
(8) The intersection of any finite set of sets in O belongs to O.

In this case, O is said to be a topology on X, and the sets belonging to O are called open sets in X
(for the topology in question). A subset A of X is closed in case its complement, A° is open.

The pair (X, Q) is said to be a topological space. It is a Hausdorff if whenever z,y are any two distinct

elements in X, there exists disjoint open sets sets U and V with x € U and y € V.
Note that by De Morgan’s laws, the intersection of any arbitrary set of closed sets in X is itself closed.

1.3.2 EXAMPLE. It is left as an easy exercise to show that if X is any metric space, and O is the
collection of all open sets in X, as defined above in terms of open balls, O does indeed constitute a topology
on X.

If (X, d) is any metric space and x,y are distinct in X, then r := d(z,y) > 0. If w € B, /3(x) and
2 € B,3(y), then

r=d(z,y) <d(z,w)+dw,z)+d(zy) < dw,z)+2r/3,

so that d(w,z) > r/3, In particular, B,;3(x) N B,3(y) = 0. Since B,3(x) and B,/3(y) are open sets
containing r and y respectively, this proves that every metric space is Hausdorff.

Not every topology is Hausdorff. If X is an set, the trivial topology on X is given by O = {0, X}.

This is evidently a topology, and when X contains more than a single element, it cannot be Hausdorff.

1.3.3 EXAMPLE (Relative topology on a subset). Let (X, O) be a topological space. Let A be any subset
of X. The relative topology on A induced by O is denoted by O4 and is given by

O,={UNA : UeO}.
It is readily checked that this is a topology.
1.3.4 DEFINITION (Metrizable Topology). Let (X,O) be a topological space. The topology O is

metrizable if there exists some metric d on X x X such that the set of open sets for this metric is exactly

0.

The remarks in Example 1.3.2 show that non-Hausdorff topologies are never metrizable. We shall be
(almost) exclusively concerned with Hausdorff topologies, but as we shall see, there are useful Hausdorff
topologies that are not metrizable.

The next definitions introduces some more useful terminology

1.3.5 DEFINITION (Interior, closure and neighborhoods). Let (X, Q) be a topological space, and A a
subset of X .The interior of A, A°, is the union of all of the open sets contained in A. The closure of A, A,
is the intersection of all of the closed sets containing A. Finally for any € X, the set NV, of neighborhoods
of x consists of all sets B such that x € B°.

1.3.1 Continuity in topological spaces

1.3.6 DEFINITION (Continuous functions between topological spaces). Let (X, Ox) and (Y, Oy) be
two topological spaces. A function f from X to Y is continuous at x € X in case for every neighborhood
V of f(z), there is a neighborhood U of z such that f(U) C V.

A function f from X to Y is continuous whenever U is open in Y, f~1(U) is open in X.



It is easy to see that f: X — Y is continuous if and only if it is continuous at each x € X.

1.3.7 Remark. By Example 1.3.2 and by Theorem 1.2.6, the definition of continuity that we make next

is consistent with our existing notion of continuity in the metric space setting.

We now turn to the notion of approzimation in topological spaces. The following definition is the

starting point.

1.3.8 DEFINITION (Limit points in a topological space). Let (X, Ox) be a topological space. If A is

any set in X, a point x € X is a limit point of X in case every for every open set U that contains ,

AN O\{)}) £0 .

That is, every open set U that contains x also contains some point in A other than x. Note that x
itself may or may not be in A.

Note that if (X,Ox) is Hausdorff, and z is a limit point of A C X, with ¢ A, then not only is
ANU non-empty for every neighborhood U of x: ANU must contain infinitely many points. To see this,
suppose y € ANU. Let V, and V,, be disjoint open sets containing x and y respectively. Then V, N U
is another neighborhood of z, contained in U, so AN (V, NU) # 0. Since AN (V, NU) C ANU, and
is missing at least y. Repeating this procedure, it is clear that we can repeatedly remove elements from

ANU without ever emptying it, and so it must contain infinitely many points.

1.3.9 DEFINITION (convergent sequence). Let (X, O) be a topological space. Let {zj} be a sequence
of elements of X. Then {zy}ren s convergent to z in case every open set U containing x also contains

all but finitely many terms in the sequence {z}ren.

Note the differences between the notions of limit point the notion of the limit of a sequence. One
difference is that a sequence {zy }ren is a function from N to X, though it is common practice to identify
the sequence with its range, which is a subset of X. Apart from this, there is the essential difference
between “infinitely many” and “all but finitely many”.

In particular, in a Hausdorff space, a sequence can have at most one limit, but (identified with its
range, and considered as a set), but it may have more than one limit point, since x is a limit point of
{zn}nen if and only if every open set U containing x also infinitely many terms in the sequence {zy},
while lim,,_, o ,, = « if and only if every neighborhood U of x contains all but finitely many terms in the
sequence.

In a metric space, there is of course a characterization of limit points in terms of sequences; z is a

limit point of A if and only if there is a sequence {z, }nen of elements in A such that lim,_ o zx, = .

1.3.10 EXAMPLE (The right order topology on R). Let O, be the set of all subsets of R of the form
(a,00), a € R, together with ) and R. It is readily checked that this is a topology, called the right order
topology. Conisder the function from R to R defined by

1 >0
fla) =

0 2<0.
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Then
0 a>1
f7((a,0)) =< (0,00) 0<a<1
R a<0.

Therefore, if we equip the range with the right order topology and the domain with the usual topology,
f is conitnuous, though it is not continuous if both the domain and range are equipped with the usual
topology.

Let (X.0) be a topological space. A functions that is continuous from (X.0) to (R, O,) is called lower
semicontinuous. The left order topology and upper semicontinuous functions are defined in the analogous

way using the sets (—oo,b).
We are now ready for the theorem that justifies the terminology “closed”:

1.3.11 THEOREM (Closed sets and limit points). Let (X, O) be any topological space. A subset A of

X is closed if and only if A contains all of its limit points.

Proof. Suppose that A is closed, and x € A°. Since A€ is open, there is an open set U containing x that
has an empty intersection with A. Thus, x is not a limit point of A. Since x was an arbitrary point outside
A, A must contain all of its limit points.

On the other hand, suppose that A contains all of its limit points. We must show that A is closed,
or, what is the same thing, that A¢ is open. Consider any point z € A°. Since it is not a limit point of x,
there is an open set U, containing = that has empty intersection with A. For each x € A¢, chose such a

U,. But then, since U, contains z,

A¢ C U U,
TEA®
On the other hand, since each U, C A€,
U U ca
rEA°C
Thus, A = U U., and by (2) in the definition of topological spaces, U U, is open. O
rEAC rEAC

We close this subsection with one more definition:
1.3.12 DEFINITION (Density). Let (X, O) be a topological space. Let A C B C X. Then A is dense
in B in case the closure of A contains B.

By Theorem 1.3.11, A is dense in B if and only if every point in B is a limit point in A; i.e, if every

point in B can be approximated arbitrarily well by points in A.

1.3.2 Compactness in topological spaces

1.3.13 DEFINITION (Compact Sets). Let (X, Ox) be a topological space. A subset K is called compact

in X in case for open cover U of K; that is, for every collection U of open sets such that

KclJU,

u€eU
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there is a finite subset G of U that also covers K:

Kcl|JU.
ueg
G is called a finite subcover of A. The topological space (X, ) is called compact in case X itself is

compact.

1.3.14 THEOREM. Let (X,0) be any compact topological space. Then every closed subset K of X is

compact. Conversely, if X is Hausdorff, every compact subset of X is closed.

Proof. Let U be any open cover of K. Then Y U {K*¢} is an open cover of X. Thus, there exists a finite
set of the sets in sets in U U {K°} that covers all of X, and K¢ is not needed to cover K. Hence K is
compact.

Conversely, suppose K is compact and (X, Q) is Hausdorff. Suppose that y ¢ K, but that y is a limit
point of K. For each z € K, there exist open sets U, and V, such that U, NV, =0, x € U, and y € V.
Then {U, : z € K} is an open cover of K, so there exists a finite subcover {Uy,, ..., U, } that covers

K. However,
n

yeVi= (W,
j=1
and V is open. Since y is a limit point of K, K NV # (). But this is impossible since VN U,, = () for each
J,and K C U7_ Uy;. O]

Our first example of a convergence theorem involving compactness is the classical result known as
Dini’s Theorem. In proving this, we shall make use of the following fact: If I/ is any set of open subsets
of X, then by De Morgan’s laws, .

() =0

Ueu veu
Thus U is an open cover if and only if { U® : U € U } is a set of closed subsets of X with empty
intersection.

Therefore, X is compact if and only if whenever IC is a set of closed subsets of X such that
Nx=0.
KeK

there is a finite subset {K7, ..., K,} C K such that

(E =0.
j=1

This analysis is often summarized by saying that X is compact if and only if X has the “finite intersection

property”.

1.3.15 THEOREM (Dini’s Theorem). Let (X,O) be a compact topological space, and let {fn}nen be
a sequence of real valued continuous functions on X, and suppose that there is a continuous real valued

function f on X such that for each x € X, the sequence {fn(2)}nen s monotone non-decreasing, and

lim f,(x) = f(z) .

n— oo
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Then
lim f, =f

n—oo

uniformly.

In other words, pointwise convergence, together with compactness and monotonicity, imply uniform
convergence. Also note that replacing each f, by — f,, one converts a monotone non-decreasing sequence
into a monotone non-increasing sequence, and so the theorem remains true if one replaces “monotone

non-decreasing” by “monotone non-increasing”.
Proof. Fix € > 0. Define the sets Ky, £ € N, by
Ko={zeX : f(@)—fu@)>c}.
Since f and f; are continuous, Ky is closed. Since {f,(z)}nen is monotone non-decreasing,

(>k= K, CKp. (1.3.1)

Also, since for each z, limy_,o fe(x) = f(2), m K, = () Then, by the compactness of X, there is some

k=1
n € N such that N
() Ke=0. (1.3.2)
=1
Combining (1.3.1) and (1.3.2), we see that Ky = 0 for all £ > n. Hence, for all £ > n, and all z,
|fe(z) — f(x)|] < e. which proves the uniform convergence. O

Next, we turn to one of the main theorems on compactness.

1.3.16 THEOREM (Compactness, Continuity, and Minima). Let (X, Q) be any topological space, and
let K be a compact subset of X. Let f be a function from X to R that is continuous when R is equipped

with its usual metric topology. Then there exists and x € K so that
flz) < fy) for all ye K. (1.3.3)
Proof. Consider the open sets (—n,00) in R, since f is continuous,
U={ f(~n,0) ineN}

is an open cover of X, and hence K. Since K is compact, there exists an open subcover. But for n > m,
1 (=m,0)) € f~Y((—n,)), so there is an n with K C f~!((—n,0)). In particular, f is bounded
from below on K.

Now let a be the greatest lower bound of the numbers f(y) for y € K. We claim that there exists an
x € K with f(z) = a. If so, then plainly (1.3.3) is true.

To prove this, let us suppose that there is no such . Then
U={F((a+1/n,00)) :neN}

is an open cover of K. This means that there is a finite subcover, and again, since the sets in the open
cover are nested, a single one of them, say f~!((a + 1/n,00)), covers K. But this would mean that

f(y) > a+ 1/n for each y in k, which is not possible since a is the greatest lower bound. O
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Any point z for which (1.3.3) is true is called a minimizer of f on X. Likewise, any point z for which
flz) > fly) for all ye K. (1.3.4)

is called a mazimizer of f on X.

There are several important conclusions to be drawn from this proof. First, if f is continuous, so
is —f, and a minimizer of —f is a maximizer of f. Hence the theorem implies the existence of both
minimizers and maximizers for continuous functions on compact sets.

Now suppose we have a real valued function f defined on a sets K, and we want to know if f has a
minimizer in K. If we can find a topology on K that makes f continuous, and makes K compact, then
we can apply the previous theorem.

However, the demands of continuity and compactness pull in opposite directions when we look for
our topology: The topology has to have sufficiently many open sets in it for f to be continuous, since we
need f~1(U) to be open for every open set U in R. On the other hand, the more open sets we include in
our topology, the more open covers we have to worry about when showing that every open cover has a
finite subcover.

Very often, one is stuck between a rock and a hard place, and there is no topology that both makes
f continuous, and K compact. Indeed, there are many very nice functions f — such as the exponential
function of R — that simply do not have minimizers or maximizers. While R is compact under the trivial
topology O = {f,R}, and while the exponential function is continuous under the usual metric topology
on R, the fact that the exponential function does not have either a maximizer or a minimizer shows that
there is no topology on R under which R is compact and the exponential function is continuous.

A situation that is frequently encountered in applications is that a function f on X does have, say, a
minimizer, but not a maximizer. Also in this situation, it is impossible to find a topology for which f is
continuous and X is compact, since them both minima and maxima would exist.

However, if we are just looking for minima, it is worth noticing that in our proof of Theorem 1.3.16,
we did not use the full strength of the continuity hypothesis. The same proof yields the same conclusion

if we assume only the property that f~1((,0)) is open for each t in R.

1.3.17 DEFINITION (Upper and lower semicontinuous function). Let (X, Ox) be a topological space.
A function f from X to R is called lower semicontinuous in case for all ¢t in R, f~1((¢,00)) is open. It
is called upper semicontinuous in case for all ¢ in R, f~!((—oco,t)) is open. As has been explained in
Example 1.3.10, lower semicontinuity of f is the same as conitnuity of f from (X,Ox) to (R, O,), where

O, is the right order topology on R.
Summarizing the discussion above, we have the following variant of Theorem 1.3.16:

1.3.18 THEOREM. Let (X,O) be a topological space, and let K C X be either compact or sequentially
compact. Let f be a lower semicontinous real valued function on (X, Q). Then there exists xo € K such
that f(x) < f(x) for allx € K.

Thus, we can prove existence of minimizers for f on X by finding a topology that makes f lower
semicontinuous, and K compact. This turns out to be a very useful strategy, as we shall see.
Still, to use either Theorem 1.3.1 or Theorem 1.3.16, we need criteria for compactness. How can we

tell if a set X is compact? In metric spaces, we can reduce this to a question about sequences.
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1.3.19 DEFINITION (Sequential compactness). A topological space (X, Q) is sequentially compact in

case every sequence {,},en has a convergent subsequence {z,, }ren-

1.3.20 THEOREM (Compactness and subsequences in a Metric space). Let (X, d) be any metric space,
and let K be any subset of X. Then K is compact if and only if every infinite sequence {x} of elements

of K has an infinite subsequence {xy,,} that converges to some x in K.

In other words, a metric space is compact if and only if it is sequentially compact. In the broader
setting of topological spaces, there is no relation between compactness and sequential compactness. There
are topological spaces that are compact, but not sequentially compact, and there are sequentially compact
spaces that are not compact.

The notion of compactness as we have defined it in terms of open covers is a 20th century notion. In
the 19th century, mathematicians thought about compactness issues in terms of sequential compactness.

It is important to note that this theorem is not true in the general setting of topological spaces; it is
important that the topology be a metric topology. Likewise, in the general topological setting, it is not
true that a function f is continuous if and only if it takes convergent sequences to convergent sequences.

The close connection between sequences and continuity and compactness that one has in metric spaces
does not carry over to the more general topological setting at all. Fortunately, almost all of the topologies

that we shall encounter are metric topologies.

Proof of Theorem 1.3.20. The fact that compactness implies sequential compactness in a metric space is
relatively easy. Suppose there exists a sequence {z, },en that has no convergent subseqeunce. Then there
is no y € K such that for all » > 0, B,.(y) contains xj, for infinitely many k, since otherwise there would
be a subsequence converging to y. (Consider the balls B;/,(y), and apply Cantor’s diagonal sequences
argument to the sequence of subsequences coinained in these balls.) Hence, for each y € K there exists an
open set U, that contains y, but which cointains zj, for at most finitely many k. Then {U, : y € K} is
an open cover of K. Since K is compact, there exists a finite subcover {U,,,...,U,, }. Thus, every k, z,
belongs to U, for some j, but each U, contains zj, for only finitely many k, which is impossible. Hence
a convergent subsequence exists.

Fot the other implication, we assume sequention compactness, and shall prove compactness in four

steps.
Step 1: K is bounded: We first show that K is bonded, which means that

sup d(z,y) < oo .
z,ye K

This supremum is called the diameter of K.

To see that the diameter is finite, suppose that it is not. Under this hypothesis, we construct a
sequence {x,}nen as follows. First, fix any € X. Now for each n € N, choose some z,, € K\B, ().
The set K\ B, (x) is not empty when the diameter of K is infinite.

Then, by hypothesis, there is a subsequence {z,, }ren and some y € K such that

lim z,, =y . (1.3.5)

k—o0
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Then by the triangle inequality, we would have
d(x,xn,) < d(z,y) + d(y, Tn,) -

But this cannot be: By construction, d(z,z,,) > ny, while d(z,y) is some fixed, finite number, and for
all sufficiently large k, d(y, zn,) < 1, by (1.3.5). This contradiction shows that K must be bounded.

Step 2: K contains a dense sequence: We next show that there is a sequence {z, },en that is dense in K;
i.e., that for every € > 0, and every a € K, there is some n such that d(z,,z) < e.

In other words, the sequence {z,},en passes arbitrarily close to every point in K. Here is how to
construct it:

Pick the first term x; arbitrarily. We then define the rest of the sequence recursively as follows:
Suppose that {z1,...,z;} have been chosen. For each y € K, define

di(y) = @igk{d(ywj)} :

This is, by definition, the distance from y to the set {z1,...,2x} C K, and of course, this is no greater
than the diameter of K, which is finite by the first step.
Therefore, dj, defined by

dy, := sup di(y)
yeK

is no greater than the diameter of K.
Armed with this knowledge, we are ready to choose xpy1: We choose xi 41 to be any element of K
with
di(Tr41) > %dk .

We now claim that limyg_,o dx = 0. It should be clear that {x, },en is dense if and only if this is the
case. So, to complete Step 2, we need to prove that limy_, o di, = 0.

Towards this end, the first thing to observe is that {dj}ren is a monotone decreasing sequence,
bounded below by zero: Indeed, for any sets A C B C K, the distance from y to B is no greater than the
distance from y to A. Therefore, we only have to show that some subsequence of {dj}ren converges to
Zero.

To do this, let {zk, }nen be a convergent subsequence of {zy}ren, and let y be the limit; i.e.,

lim z,, =y .
n—oo

Then of course since by the triangle inequality

d(‘rknvxknJrl) < d(xknuy) + d(y7 xkn+1) )

and since n11_>rr010 d(xy, ,y) = nh_{lgo d(y, Tk,,,) =0,

lim d(zg,, 2k, ,)=0.

1
n— 00 nt

But since

Tk, € {xl,...,xknJrl_l} s
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1
d(xkn ) ‘Tkn+1) > dkn+1 -1 (:Ckn+1 ) > idkn+1—1 .
Therefore,

lim d 1 =0
n—o0 kng1—1 ’

and then, since the entire sequence is monotone decreasing, limy_,~, dx = 0. Hence, the sequence we have

constructed is dense.

Step 3: Given any open cover of K, there exists a countable subcover. To prove this, consider any open
cover G of K. Consider the set of open balls B,.(x) where r > 0 is rational, and {zj}ren is the dense
sequence that we have constructed in Step 2. This set of balls is countable since a countable union of
countable sets is countable.

The countable subcover is constructed as follows: For each rational » > 0 and each k£ € N, choose U, j
to be some open set in G that contains B,(xy) if there is such a set, and otherwise, do not define U, k.
Let U be the set of open sets defined in this way; clearly U/ is countable by construction.

We now claim that I/ is an open cover of K. Clearly the sets in i/ are open. To see that they cover,
pick any = € K. Since G is an open cover of K, z € V for some V € G. Then, since V is open, for some
rational r > 0, Ba,(z) C V.

Then, since {xj }ren is dense, there is some k with zj € B,.(z). But then z € B,(x) and

B, (xg) C Bap(z) CV

(where the first containment holds by the triangle inequality). This shows that for the pair (r, k), there is
someV € G containing B, (zy). Therefore, by construction, U, ;, € U contains B,.(zy), and hence x € U, .

Since x is an arbitrary element of K, U covers K.

Step 4: Some finite subcover of the countable cover is a cover. Now order the sets in our countable cover
U into a sequence of open sets {Uy }ren that covers K.

Suppose that for each n, it is not the case that

Kc|JU. (1.3.6)
k=1

n
Then we can construct a sequence {z, }nen be choosing x,, € K\ (U Uk>.
k=1
Let {zn, } jen be a subsequence with lim; ;. ,; = y € K. Then, since U is an open cover of K, there

is some Uy with y € Ug. But then all but finitely many terms of the sequence {z,,};en lie in Uy, and so
the whole sequence lies in some finite union of the sets in ¢. This is a contradiction, and so (1.3.6) is true

for some n € N. O

Part of the proof made use of a dense sequence in our sequentially compact metric space. The existence

of a dense sequence is often useful, and so we make the following definition.

1.3.21 DEFINITION (Separable topological space). A topological space (X, Q) is separable in case it

contains a countable dense subset.

We have seen the a compact metric space is always separable, but also many non-compact spaces are

separable. We shall se examples shortly.
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We shall soon prove two powerful theorems on approximation and compactness in an infinite dimen-
sional vector space, C(X,R), the space of real valued continuous functions on a compact Hausdorff space

X, equipped with the uniform metric
do(f,9) = sup{|f(z) — g(x)[} .
rzeX
Note that by Theorem 1.3.16 and the fact that X is compact, there exists an zg € X such that
|f(zo) — g(z0)| = Sgg{\f(x) —g@)[} .

It is then very easy to see that do, is indeed a metric on C(X,R), called the uniform metric. It is left as

an exercise to generalize Theorem 1.2.8 and show that (C(X,R), dw) is complete.

1.3.3 Generated topologies

When working a class of functions F on a set X with values in a topological space (Y,U), it is often useful
to introduce a topology that makes every function f € F continuous, but which contains the minimal
number of open sets for this purpose. given two topologies O; and O3 on a sets X, we say that O; is
weaker than Os in case O; C Os. In the case at hand, there is a unique weakest possible topology O on
X with respect to which each f € F is continuous, and such that Or is weaker than any other topology
with this property.

The weaker a topology is, the more compact sets there will be, and so such topologies are useful when

we wish to apply theorems requiring both continuity and compactness.

1.3.22 THEOREM (Generated topologies). Given a class of functions F on a set X with values in a
topological space (Y,U), define
E={fTU) : feF,UcuU},

and define & to be the set of all finite intersections of sets in £. Finally define Ox to be the set of arbitrary
unions of sets in E. Then Ox is a topology, and it is the weakest topology with respect to which each f € F

1S continuous.

Proof. Since each x € X lies in f~1(Y) € &£ for any f € F, it is clear that X € O, and taking the
empty union, () € Or. Evidently O is closed under arbitrary unions. Thus, if OF is closed under finite
intersections, is is a topology. Let E, F € Ox. If t € EN F, then, by definition, there exist F,, F, in
& such that E, C F and F, C F. Since & is closed under finite intersections, * € B, N F, € g, and
E,NF, C ENF. Making such a construction for each x € E N F, we have

ENF = U E,NE, ,
z€ENF
showing that F N F € Oz. Thus, OF is a topology.
Now let O be any topology with respect to which each f € F is continuous. Evidently, O must
contain all of the sets
E={fYU) : feF,UclU}.

Certainly also any such topology must contain, ) , the set of all finite intersections of sets in £, and then

it must contain all arbitrary unions of sets in &. Hence O must contain Or. O
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1.3.23 DEFINITION (Weak topology). Given a set X and a family F of functions from X to a
topological space (Y, Q), the weak topology on X generated by F.

1.4 Some frequently used theorems

1.4.1 Baire’s Theorem

1.4.1 DEFINITION (Nowhere dense). Let (X, O) be a topological space. A subsetX is nowhere dense

in case the closure of A has empty interior; i.e., (A)° = 0.

Note that if A is closed, it is nowhere dense if and only if A° = ), which is the case iff and only if
AcNU # P for all U € O. Therefore, a closed set A is nowhere densre if and only if its complement is an

open dense set in X.

1.4.2 LEMMA (Baire’s Lemma). Let (X,d) be a complete metric space. Let {U,}nen be a sequence of
open dense sets in X. Then ﬂ U, is dense in X.
neN

Proof. Let W be any open subset of X. It suffices to show that

(YU W #0. (1.4.1)
neN
Now construct a Cauchy seequence as follows: Since U; is open and dense, and W is open, Uy N W is
open and non-empty. Hence for some r; > 0 and some z; € X, B, (z1) C Uy NW. (Note that if
B, (z1) C Uy N W, then for any r; < s1, By, (x1) C Uy N W because By, (z1) C B, (z1).) Without loss

of generality, we may suppose that r; < 1. Since Us is open and dense and B, (z¢), is open, there exist

ro > 0 and some xo € X so that B,.,(z3) C By, (1) NUz. Without loss of generality, we may suppose that
ro < 11 /2

Now supposing that {(r1,z1),... (rn, Zs)} are chosen, pick (rn41,Zn+1) so that
By, (Tng1) C By, (20) N Upga and Tl < Tn/2 .

By contruction

B, (x,) C By, (zym) CW forall n>m (1.4.2)
and
By, (@n) C [ UnNW . (1.4.3)
m=1

The sequence {x,, }nen is Cauchy since (1.4.2) says that for all 5,k > m, d(z;, zx) < rp, and limy, o0 7, =

0. Since (X, d) is complete, there exists zg € X such that lim, . 2, = xg. By (1.4.2) again, for all n > m,

Zn € By, (Tm), and hence zg € By, (x4,) for all m. By (1.4.3), 2o € ﬂ U,NW. O

n=1

1.4.3 THEOREM (Baire’s Theorem). A complete metric space (X, d) is never the countable union of

nowhere dense sets.
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Proof. Let {E, }nen be a sequence of nowhere dense sets in X. It suffice to show U E, # X. By Baire’s
n=1
Lemma,

(UEn> = @) £0

since each (FE,,)¢ is open and dense. O

Notice that to prove Baire’s Theorem, we only needed to know that the inetrsection of a sequence of
open dense sets is non-empty, while Baire’s lemma tells us that not only is M52, U,, non-empty, it is even
dense. This stronger information is sometimes useful in applications.

In fact, in a metric space (X,d) that has no isoolated points, N ,U,, is uncountable. To see this,
suppose on the contrary that NS, U, is countable. Let {x, }nen be a sequence such that {z,, : n € N} =
N>, Up. (There will be repeats in the sequence if the latter set is finite.) Define E,, = US U {z,,}. Then

each E, is closed and has empty interior (since X has no isolated points). Then

o (©2)o () () (1)

By Baire’s Theorem, this is impossible.

1.4.2 The Arzela-Ascoli Theorem

Let X be a compact topological space, and consider the metric space, and hence topological space,

consisting of C(X,R) equipped with the uniform metric.

1.4.4 DEFINITION (Equicontinuous, pointwise bounded). Let F C C(X,R). Then F is equicontinuous
in case for each ¢ > 0 and each x € X, there is a neighborhood U, of x such that for all f € F,

yeUc=|f(y) - flx) <e.
Also, F is pointwise bounded in case for each € X, {f(x) : f € F } is a bounded subset of R.

The first thing to observe is that if F is a compact subset of C(X,R), then F is both pointwise
bounded and equicontinuous.

Indeed, suppose that F is compact. Then evidently F C U By(1), and hence there exists a finite

fer
set {f1,..., fn} in F such that
FclJBs0).
j=1
Let M, denote the maximum of |f;|, which is continuous on X, and hence bounded. Let M =
max;—1, ... nM;. Then for any f € F, there is some j such that do(f, f;) < 1, and hence for all z,

.....

[f(@)] < |fi@)|+|f(x) = fi(a)] < Mj +doo(f, f;) <M +1.

This even shows that F uniformly bounded.

To show that F is equicontinuous, fix x € X and € > 0. For each f € F, define V} by

Vi={geF :dlg,f)<e/3}.
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Clearly, each V¥ is open, and U V¢ = F. Hence there exists a finite set {f1,..., fn} C F such that
fer

CJ Vi, =F.
j=1

Next, define U; C X by U; ={y € X : |f;(y) — fj(z)] <e€/3}. Evidently U = N7_,U; is a neigh-
borhood of z.
For any f € F, dwo(f, f;) < €/3 for some j, and so for y € U,

1f(y) = F@)| < 1F Q) = L)+ 115(y) = f3 @)+ 1f5(2) = fF(@)] < |f5(y) = f3(@)] + 2doo(f, f5) <€

Thus, U is a neighborhood of z such that |f(y) — f(z)] < efor all y € U and all f € F.
Thus, a necessary condition for F to be compact in C(X,R) is that F be equicontinuous and pointwise

bounded. The Arzela-Ascoli Theorem says that these conditions are essentially sufficient as well:

1.4.5 THEOREM (Arzela-Ascoli). Let X be a compact topological space space, and let F be an equicon-

tinuous and pointwise bounded subset of C(X,R). Then the closure of F is compact.

Proof. The first thing to observe is that if F is equicontinuous and pointwise bounded, then so is the
closure of F. Hence, let us assume that F is closed as well as equicontinuous and pointwise bounded. We
shall then show that F is compact.

By Theorem 1.3.20, it suffices to show that for any infinite sequence { f;}sen in F, there is a convergent
subsequence, and then by the completeness of C(X,R) it suffices to show that for any infinite sequence
{fe}een in F, there is a Cauchy subsequence. Therefore, fix any infinite sequence { f¢}ren in F. We must

prove that there is a subsequence {f¢, }jen such that for all € > 0, there is an N, € N such that
Jyk > Ne=|fe,(x) = fe,(x)| <e forall z € X. (1.4.4)

Fix € > 0. Use the compactness of X and the equicontinuity of F to select a finite set of points
{z1,...,2m} and neighborhoods {U,...,U,,} that cover F and are such that

zeU; = |f(x) - fla;)| < % for all f € F . (1.4.5)

Since for each 4, the set {f(x;) : f € F } is a bounded subset of R, we can choose a subsequence of
{fe}een along which fy, (z;) converges for each i. Since convergent sequences are Cauchy, it follows that
there exists N, € N such that

Gk > N = |foy (@) — fo (@) < < . (1.4.6)

w| ™

But then since each x € X belongs to U; for some i, we have (for this ¢), and j, k > N,

A

[fo; (@) = fo. (@) < |fe; (@) = for,(@i)| + [ o, (i) — for, ()| + [ fo; (i) — fo, (2)]
g 1o, @) = F (@)l + 5

€ .

IA

IN

where the first inequality is the triangle inequality, the second is (1.4.5) and the third is (1.4.6). This
proves (1.4.4). O
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Another proof of the Arzela-Ascoli Theorem may be given using the fact that complete totally bounded
subsets of a metric space are compact. This approach is useful in proving other compactness theorems, so

we briefly explain it as well. The key is the following lemma of Hanche-Olsen and Holden:
1.4.6 LEMMA. Let (X,dx) be a metric space. Suppose that for all € > 0 there exists a § > 0 and a
metric space (W, dw) and a function ® : X — W such that:
(1) ®(X) is totally bounded in W.
(2) For all z,y € X,
dw (®(z),(y)) <6 = dx(z,y) <€ .
Then X s totally bounded.

1.4.7 Remark. If ® : X — W were invertible, then (2) could be rewritten as: For all w,z € W,
dw(w,2) < § = dx (@ (w),® 1 (2)) <€,

which would mean that &1 is continuous. However, we do not assume that ® is invertible. Nonetheless,
even when ® is not invertible, and A is any subset of W, we write ®~!(A) to denote the preimage of A
under ®, i.e., ®71(A) = {z € X : ®(x) € A}. Condition (2) then says that the diameter of the preimage

of a set of diameter less than ¢ is less than e.

Proof. Fix € > 0, Let §, (W,dw) and ® be such that (1) and (2) are satisfied. Since ®(X) is totally
bounded, there is a finite cover {Uy,...,U,} of ®(X) be balls of radius ¢ in W. It follows immediately that
{®=Y(Uy),... @ 1(U,)} is a cover of X by sets of diameter 2¢. For each i = 1,...,n, pick z; € ~1(U;).
Then ®~1(U;) C Bac(x;), and so {Bac(z1),. .., Bac(z,)} is a finite cover of X by balls of radius 2¢ . Since
€ > 0 is arbitrary, (X, d) is totally bounded. O

Second proof of the Arzela-Ascoli Theorem. We may suppose as before that F is closed and hence that
(F,ds) is a complete metric space. It therefore suffices to show that it is totally bounded. Starting as
before, fix € > 0, and use the compactness of X and the equicontinuity of F to select a finite set of points
{z1,..., 2} and neighborhoods {Uy,...,U,,} that cover F and are such that
zeU; = |f(x) — fla;)| < g for all f € F . (1.4.7)
Define ¢ : ¥ — R™ by
(f) = (f(z1),-- -, flzm)) -

Since F is pointwise bounded, ®(F) lies in some bounded rectangle in R™, and bounded sets in R™ are
totally bounded. Thus, ® satisfies condition () of Lemma 1.4.6. Next, consider any f,g € F. Denoting

the Euclidean norm on R™ by || - ||,

[®(f) = (Il = [I(f (1), -, flwm) = (9(1), - . g(@m))]| = Iﬁf\f@j) —9(z;)| - (1.4.8)

fix any € X. Then for some j, € Uj, and for this j,

[f(@) —g(@)| < |f(@) = Fzy)| + [ (25) = g(s)] + |g(x;) — g(2)]

< 5 gl + g
< SR - (o)l +

3 3
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where the first inequality is the triangle inequality, the second is (1.4.7) and the third is (1.4.8). Thus,
condition (2) of Lemma 1.4.6 is satisfied for § = ¢/3, and we have proved that F is totally bounded. O

1.4.3 The Stone-Wierstrass Theorem

The Stone-Wierstrass Theorem is an approximation theorem that generalizes the classical Wierstrass
Approximation Theorem that we discussed at the beginning of these notes.

We begin with two definitions. Let X be a compact topological space, and let C(X,R) be the space
of continuous real valued functions on X equipped with the uniform metric do,. A subset A of C(X,R) is
an algebra in case A is a vector subspace over R of C(X,R) equipped with its usual rules of addition and
scalar multiplication, and if, moreover, for every f and g in A, the pointwise product fg also belongs to
A.

A subset A of C(X,R) is separating in case for pair of distinct points z,y in X, there is an f € A such
that f(z) # f(y).

Notice that if X is not Hausdorff, not even C(X,R) the space of all continuous real valued functions
on X is separating. Indeed, if X is not Hausdorff, there exist two distinct points z and y in X such that
every neighborhood U of x contains y. But then for any continuous function f, f(z) = f(y). Indeed, if
|f(x)—=f(y)| :=r >0, then f~1((f(z)—7r.2, f(z)+7/2)) would be an open neighborhood of z that excluded
y. Thus, for all continuous f, f(z) = f(y), so not even C(X,R) separates, let alone any proper subset of
C(X,R). Hence throughout this subsection, we shall only be concerned with Hausdorff topological spaces.

The primary example of a separating algebra to keep in mind is X = [0, 1], with A being the algebra
of all polynomials in the real variable € [0,1]. To see that this algebra is separating, consider the

polynomial p(z) = . Then for zo # z1 in X, p(xo) # p(x1).

1.4.8 THEOREM (Stone-Wierstrass). Let X be a compact topological space, and let A be a subset of
C(X,R) that is a separating algebra. Let B be the uniform closure of A. Then either B = C(X,R), or
else B consists of all continuous functions on X that vanish at some fized point xo. In particular, if A

contains the constant functions, B = C(X,R).

We will prove Theorem 1.4.8 as a consequence of two lemmas, and shall make use of the partial order
in C(X,R): If f,g € C(X,R), we write f < g in case f(x) < g(z) for all x € X. With this partial
order, C(X,R) is a lattice: Given any f,g € C(X,R) there is a unique function g A f € C(X,R) such that
g A f <f,g, and such that h < g A f whenever h < f,g. Of course, g A f is given by

g A f(x) =minf f(z), g(z) },

which is continuous.
Likewise, given any f,g € C(X,R) there is a unique function g vV f € C(X,R) such that f,g < gV f,
and such that g V f < h whenever f,g < h. Of course, gV f is given by

gV f(x) =max{ f(x), g(z) },

which is continuous.
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A subset F of C(X,R) is itself a lattice if and only if whenever f,g € F, then both fAgand fVg
belong to F. Then observing that

fRg=(f+ta-1f—g) ad fVg=_L(f+g+if-al. (1.4.9)

we see that a subset F of C(X,R) that is a vector space is a lattice if and only if whenever f € F, then
|f| € F.

1.4.9 LEMMA (Limit point criterion for lattices in C(X,R)). Let X be a compact Hausdorff space. Let
F C C(X,R) be a lattice.

If f is any element of C(X,R) with the property that for every x,y € X, there exists a function
faoy € F for which

foy(@)=f(z) and  fou(y) = f(y) . (1.4.10)

Then f is a limit point of F; i.e., it belongs to the closure of F.

Proof. Fix any f € C(X,R) with the property every x,y € X, there exists a function f,, € F such that
(1.4.10) is satisfied. Fix any € > 0. We must show that there exists some g € F with |g(z) — f(x)| < € for
all z € X.

First, for each (z,y) € X x X, make some choice of f, ,, and define the open set U, , C X by

Upsy=1{2 1 faylz) < flz)+e€}.

Evidently, z,y € U, . Therefore

X:UUr,ya

zeX
and then, since X is compact, there exists a finite set {z1,...,z,} C X such that
n
X=Usy-

Jj=1

Now define the function f, by

fy = fxl,y /\faczyy /\"'/\fafmy :

Since F is a lattice, f, € F, and
fy S f +e

in the lattice order; i.e., everywhere on X.

Furthermore, since fz, ,(y) = f(y) for each j, f,(y) = f(y). Therefore, defining the open set V, by

Vyi={z€eX : f(z) —e< fy(2) },

we have y € V,;, and hence

x=v,

yeX
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hen, since X is compact, there exists a finite set {y;,

,Ym} C X such that

X=V -
k=1
Now define g by

g:fy1 \/fyz V~-~7nym
Then since F is a lattice, g € F, and by construction,

f_€§g§f+67
which means that |f(z) — g(x)| < € for all x € X.

1.4.10 LEMMA (A closed algebra in C(X,R) is a lattice). Let X be a compact Hausdorff space. Let B
be a closed subset of C(X,R) that is also a subalgebra of C(X,R). Then B is a lattice.

Proof. By the remarks we have made concerning (1.4.9), it suffices to show that for all f € B, |f| € B.
Since X is compact and f is continuous, f is bounded above and below, and hence there is a finite positive
number ¢ such that |c¢f| < 1. Then since |cf| = ¢|f|, we may freely suppose that f| < 1.

Therefore, fix any f € B with |f| < 1, We shall complete the proof by showing that there exists a
sequence of polynomials {p, },en so that

7= lim p,(f?)

— 00

(1.4.11)
in the uniform topology. Since B is an algebra, p,(f2) € B for each n, and then since B is closed, |f| € B.
For any number a € [0,1], we define a sequence {b, },en recursively as follows: We set b = 0 and
then for all n € N,
a—b?
bn+1 = by + 9 T
Notice that

2
b1:0> b2:g7 b3:a_a77

8
and so forth. It is easy to see by induction that for each n, there is a polynomial p,,, independent of the
value of a, so that such that b, = p,(a).

each a € [0,1],

We claim that y/a = lim,,_, b,. This will give us a sequence of polynomials {p, }nen such that for

Va = lim p,(a),
n—oo
and therefore, such that

F(@)| = lm p(£(x)

convergence.

for all x in X. Then, since X is compact, Dini’s Theorem implies that (1.4.11) is true with uniform

Hence, we need only verify the claim that v/a = lim,,_, b,. To do this, note that

\F—an:\f—bn—(\/&_b”);\/&"‘bn):(\/a_bn) (1_\/52_[%)
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Since a < 1, as long as b, < y/a, the right hand side is non-negative, and therefore b, < y/a. Since
b1 < V/a, it follows that 1/a is an upper bound for the sequence {b, }nen-
Now, knowing that b2 < a for all n, it is clear from the definition that {b,}nen is a monotone

non-decreasing sequence. Therefore the limit b = lim,, ., b,, exists and satisfies

a—b?

b=b+

This means that b2 = a, and since b > 0, b = \/a. O

Proof of Theorem 1.4.8: Fix x # y in X, and consider the linear transformation from A to R? given by

[ (@), f(y) -

The range of this linear transformation is a subspace S of R?.

Since A separates, there can be at most one point 2y € X for which g(x¢) = 0 for all g € A.

Let us first assume first that neither x nor y is such a point. Since A is an algebra, and a vector space
in particular, if ¢ is in 4 so is very multiple of g. By assumption, there is some g € A such that g(z) # 0,
and by choosing an appropriate multiple, we may arrange that g(z) = 1.

Thus, S contains a vector of the form (1,a). (Since A separates, we can choose g € A so that
9(y) =a#1)

Now there are two cases to consider. If also a # 0, then the two vectors (1,a) and (1,a?) are linearly
independent, and (1, a?) also belongs to S since A is an algebra (so that g?> € A). On the other hand if
a = 0 then S contains the vector (1,0), and, since there is some other g with g(y) = 1, there is some b € R
such that (b,1) € S. Hence in this case, S contains the two vectors (1,0) and (b, 1) which are linearly
independent. Either way, S = R?, and so we have proved that as long as g(x) # 0 and h(y) # 0 for some
g,h € A, then S is all of R2.

This has the consequence that for any f € C(X,R), we can find a function f,, € A for which

(f(@), f(v) = (fay(@), fay(y)) - (1.4.12)

Now we have two cases once more: Suppose first that there is no point z¢ € X with f(zo) = 0 for all
f € A. Then the above argument applies for all  and y in X and all f € C(X,R), we can find f,, € A
such that (1.4.12) is true. Moreover, by Lemma 1.4.10, B is a lattice. Therefore, by Lemma 1.4.9, f is a
limit point of B, and since B is closed, f € B. Since f is an arbitrary element of C(X,R), we see that in
this case, B = C(X,R).

The remaining case to consider is that in which there is one point zq such that g(zo) = 0 for all g € A,
and hence B, so that B is certainly contained in the closed subset of C(X,R) consisting of continuous
functions f on X such that f(xg) = 0.

Let f be any such function. The argument made above show that as long as neither x nor y equals
Zo, then there is some g € A, and hence B, for which (1.4.12) is true. Now suppose that © = xg, and

y # xg. Then we trivially have
f(xo) = g(z0) =0
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for all g € B. And since A separates, and is a vector space, we can choose g so that f(y) = g(y). Therefore,
for any f € C(X,R) with f(z) =0, no matter how z and y are chosen, we can can find g, , € B so that
(1.4.12) is true.

Then the argument made above shows that every f € C(X,R) with f(zo) = 0 is a limit point of B,
and hence belongs to B. Therefore, in this second case, B is the subset of C(X,R) consisting of functions
f with f(zo) = 0. O

In our proof of Theorem 1.4.8, we made use of the fact that our functions f were real valued, and not
complex valued: The real numbers are ordered, while the complex numbers are not, and the order on the
real numbers played a crucial role in the proof through our use of Lemma 1.4.9.

This is not simply an artifact of the proof: If in the statement of the theorem we replace C(X,R) by,
C(X,C), the space of continuous complex valued functions on X, the statement becomes false.

To see this, take X to be the closed unit disc in the complex plane C. Take A to be the algebra of all
complex polynomials in the complex variable z, which clearly separates. Polynomials in z are analytic,
and uniform limits of analytic functions are analytic, and so the closure of A consists of functions that are
analytic in the interior of the the unit disc. Obviously, not every continuous function of the closed unit
disc is analytic in the interior of the disc; f(z) = z*, the complex conjugate of z, is an example. Hence,
the uniform closure of A is not the full set of continuous complex valued functions on the closed unit disc.

However, under one simple additional condition on the algebra A, one can reduce the complex valued
case to the real case.

A (complex) subalgebra A of the algebra of complex valued function on a compact Hausdorff space is
called a x-algebra in case it is closed under complex conjugation. That is, whenever f € A, then f* € A,
where f* is the function defined by f*(z) = (f(x))* for all z € X.

In this case, for every f € A, the real and imaginary parts of f both belong to A. It is also easy to
see that when A separates, so does the real algebra consisting of the real and imaginary parts of functions
in A. Applying the Stone-Wierstrass Theorem to this algebra, one can separately approximate, in the
uniform metric, the real and imaginary parts of any continuous complex valued function on X by functions
in A.

In summary, we have:

1.4.11 THEOREM (Complex Stone-Wierstrass). Let X be a compact topological space, and let A be
a subset of C(X,C) that is a separating x-algebra. Let B be the uniform closure of A. Then either

B = C(X,C), or else B consists of all continuous functions on X that vanish at some fived point xg. In

particular, if A contains the constant functions, B =C(X,R).

Here is one important application of Theorem 1.4.11: Let X be the unit circle in C, with its usual

topology. Let A C C(x,C) be the set consisting of functions f of the form

fz)= > a;2"

j=—n
for some n € N, and some numbers a_,, ..., a, in C. (Each element of X is a complex number z, and 2"
denotes the nth power of z.) The elements of A are called complex trigonometric polynomials
It is easy to see that A is a x-algebra, and that A separates. Hence, by Theorem 1.4.11, A is dense
in C(X,C). This proves:
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1.4.12 THEOREM (Density of Complex Trigonometric Polynomials). Let X be the unit circle in C,
with its usual topology. Then the set of complex trigonometric polynomials is dense in C(X, C), with respect

to the uniform metric.

1.4.4 Tychonoff’s Theorem

Let X be a set. The Cartesian product of X with itself, X x X, is the set of all ordered pairs (1, z3) of
elements of X. Of course (z1,x2) is the graph of a unique function f : {1,2} — X, namely the one with
f(1) = z1 and f(2) = x2. (One can accommodate Cartesian products of two different sets ¥ and Z in
this framework by considering X =Y U Z and restricting attention to functions f such that f(1) € Y and
f(2) € Z. No real generality is lost in taking the sets to be the same, and the notation is much simpler,
so that is how we shall proceed.)

More generally, given any set non-empty S, the Cartesian product of X indexed by S, denotes X5,
is the set of all functions from S to X. For example, XN is the set of all infinite sequences {x,},en of
elements of X.

On any Cartesian product, there is a natural family of functions with values in X, namely the

coordinate functions: For each s € S, define
0s: X% =5 X

by
o(f) = f(s) .

That is, one simply evaluates the function f € X at s.

Note that when S = {1,2}, ¢;((x1,22)) = x;, which is why the ¢, are called coordinate functions.

1.4.13 DEFINITION. Let (X, O) be a topological space, and S and arbitrary set. The product topology
on the Cartesian product X° is the topology generated by the coordinate functions. That is, it is the

weakest topology for which each of the coordinate functions is continuous.

Now suppose that (X, ) is a compact topological space. When is (X, O) compact in the product

topology? The answer, given by Tychonov’s theorem is: “Always.”

1.4.14 THEOREM (Tychonoft’s Theorem). Let (X, O) be a compact topological space, and S any non-
empty set. Then X°, equipped with the product topology, is compact.

The special case of this theorem in which X is a compact metric space and S is countable (or finite) is
fairly easy to prove using the theorems presented so far in these notes. This is developed in the exercises
that follow. The general case involves either the theory of “nets” or the theory of “filters”, and this would
be a digression, since we shall not invoke the general case in this course, nor shall we have any other
occasion to use the theory of nest of filters. Furthermore, the proof of the general case involves the axiom
of choice in a much more subtle way than does the spacial case. This is not a problem, but discussion
of these subtleties would take us far afield. (The axiom of choice enters the subject, even in the special
case, in an essential way: It is the axion of choice which assures us that X° is non-empty: one can always
choose, for each z € s, some x(s) € X. Moreover, it is known that Tychanov’s Theorem is logically

equivalent to the Axiom of Choice.)
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It is well worth knowing the general case nonetheless. It shows that advantage of the 20th century
notion of compactness, as defined above, in terms of open covers, and the 19th century notion of sequential
compactness. As shown in the exercises, if we take X = [0, 1] with its usual topology, and equip X~ the
set of all functions from [0, 1] to [0, 1], then X is not sequentially compact, but is compact by Tychonov’s
Theorem. Many theorems in which compactness is an hypothesis remain true if this hypothesis is replaced
by sequential compactness (see the exercises). Tychonov’s Theorem is an important example for which

this is not the case.

1.5 Exercises

1. Let (X, d) be a separable metric space. Let Y be any subset of X, and define dy to be the restriction
of d to Y x Y. Show that (Y, dy) is separable.

2. Suppose that (X, d) is a complete metric space with a finite diameter; i.e., there exists D < oo such
that d(z,y) < D for all z,y € X. Is it true that every continuous real valued function on X is bounded?

Prove this assertion or give a counterexample.

3. Let (X, d) be a compact metric space.

(a) Show that if f : X — X is continuous but not onto, there is some zg € X and some r > 0 so that
d(f(x),zg) > r for all z € X.

(b) Let f be an isometry from X into itself; i.e., a function with the property that

d(f(z), f(y)) = d(z,y)

for all x,y € X. Show that f is necessarily one to one and onto, and hence invertible.

4. Let (X, d) be a compact metric space, and let f : X — C be continuous. Show that for all € > 0, there

exists L < oo so that
|f(x) — f(y)] < Ld(x,y) + €

for all z,y € X.

5. (a) Let (X,d) be a complete metric space in which bounded sets are totally bounded. Let A C X be
closed and B C X be compact. Show that there exist 1 € A and x5 € B such that

d(z1,x9) < d(z,y) foralze A,yeB.
(b) Show by example that this is false if we weaken the assumption to only suppose that B is closed.

o0

6. Define ¢; to be the set of complex valued sequences {z;};en such that Z |z;] < co. Define a function
j=1

on dy, on {5 by

de, ({5} {yb) =D |y —y5l -
j=1

(a) Show that (¢1,dy, ) is a metric space.
(b) Show that the metric space (¢1,dp,) is complete.
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7. Let (¢, dp,) Show that a bounded subset X of /5 is totally bounded if and only if for all € > 0, there
exists N, € N such that
Z lz;|? < €2

k>N

for all {z,} € X.

8. Let (¢1,dy,) be defined as in Exercise 6. Show that X C ¢; is totally bounded if and only if for all
€ > 0, there exists N, € N such that
Z ‘IEJ| <€

k>Ne
for all {z;} € X. Then show that B;({0}), the ball of radius 1 about the zero sequence, is not totally

bounded, and hence that the closed ball of radius 1 about the zero sequence is not compact.

9. Let X =[0,1]. Each € X has a binary expansion

r = i by (z)27"
n=1

with each b, (z) € {0,1}. We stipulate that if = is a dyadic rational, only finitely many of the b, (x) are
non-zero, and under this condition, the b, (z) are uniquely determined, so that b, : X — {0,1} C X is a

well-defined function for each n.
(a) Show that no subsequence of {b,}n,en converges pointwise.

(b) Equip XX with its product topology and note that each b, is a function from X to X, and hence is
an element of XX. Show that no subsequence of {b,},en converges in the product topology, and thus

that the analog of Tychonov’s Theorem for sequential compactness is false.

10. Let (X,d) be a compact metric space. Then XN consists of all sequences {z;}ren in X. Define a
function d on XN x XN by

A (e hoen) = 32 Fd(roe)
k=1

a) Show that d is a metric on XN x XN,

(
(b) Show that the metric topology in XN induced by d is at least as strong as the product topology.
(c) Show that with the metric topology induced by d, XN is sequentially compact.

(

d) Show directly, without invoking Tychonov’s Theorem that XN compact in the product topology.

11. Let (X,dx) and (Y,dy) be two compact metric spaces. Let C(X x Y,R) be the set of all valued
functions on X X Y continuous real that are continuous with respect to the product topology. Let A be
the set of functions f on X X Y of the form

flz,y) = Zgj(af)hj(y)

for some n € N and some {g1,...,9,} C C(X,R) and some {hq,...,h,} C C(Y,R). Show that A is dense
in C(X x Y,R) in the uniform topology. (Note: The usual notation for A is C(X,R) @ C(Y,R), and it is
called the tensor product of C(X,R) and C(Y,R).)
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12. A topological space is locally compact in case every point has a neighborhood whose closure is compact.
Let (X,dx) and (Y, dy) be locally compact metric spaces, and suppose that f : X — Y is continuous and
bijective. Show that f~! is continuous if and only if f~!(K) is compact for all compact K C Y.

13. Let (X, O) be a compact topological space. Let A and B be non-empty closed and disjoint subsets of
X. Suppose that for every b € B, there exist a continuous function f; : X — [0, 1] such that f,(b) =1 and
fv(a) =0 for all @ € A. Show that there exist open sets U and V such that AC U, BC Vand UNV = 0.

14. Let (X, O) be a compact topological space, and let F be a set of functions real valued on X that is

equicontinuous and uniformly bounded. Define

g(x) = sup f(x) .

fer
Is g(z) necessarily continuous? Prove that your answer is correct.
15. Let (X,dx) and (Y,dy) be metric spaces with Y complete. For L € (0,00), a function f: X — Y is

L-Lipschitz in case dy (f(x), f(y)) < Ldx(z,y) for all z,y € X.
Let S be a dense subset of X. Let g : S — Y satisfy

dy(g9(x),9(y)) < Ldx(z,y) forall z,yes.
Show that there exists a unique L-Lipschitz function f : X — Y such that the restriction of f to S is g.

16. Let {f,}nen be a sequence of continuous real valued functions on [0, 1] that are continuously differen-
tiable on (0,1). Suppose that f,,(0) = 0 for all n and that there is a continuous function g : [0, 1] — [0, o)
such that |f) (z)] < g(z) for all n € N and all = € (0,1). Show that there exists a uniformly convergent
subsequence {fp, }ren-

17. Let (X,dx) and (Y,dy) be two metric spaces. Let f : X — Y be continuous uand surjective, and

supose that
dx (w1, 22) < dy (f(21), f(22))
for all z1,2 € X.
(a) If (X,dx) complete, must (Y,dy) be complete? Prove this or give a counterexample.
(b) If (Y, dy) complete, must (X,dx) be complete? Prove this or give a counterexample.

18. Let (X, d) be a metric space. If every real-vauled conttinuous function f on X has a maximum, does

this mean that X is compact? Prove your answer is correct.

19. Let (X,d) be a compact metric space. Ptove that if {Uy,...,U} is an open cover of X, there there
exists a closed cover {C4,...,Cy} with C; C Uj for j =1,... k.

20. Let A and B be compact subsets of a Hausdorff topological space. Prove that there exist open sets
Uand Vsuchthat ACU,BCVand UNV =0.

21. Let (X,dx) and (Y, dy) be metric spaces and let F' : X — Y be a continuous functions such that f
maps closed sets to closed sets and such that the inverse image of any point in Y is compact. Show that

f~(K) is compact whenever K is compact.

22. Ler {f,}nen be a sequence of uniformly continuous functions from R to R. Suppose that f,, converges

uniformly to f. Must f be uniformly continuous?



Chapter 2

Topological Vector Spaces

2.1 Topological Vector Spaces

2.1.1 Neighborhood bases for topological vector spaces

2.1.1 DEFINITION (Topological Vector Space). A topological vector space is a vector space X over C
that is equipped with a topology of open sets & such that the maps (o, z) — az and (z,y) — x + y are
continuous on C x X and X x X respectively. A real topological vector space is defined in the same way
except that the field C replaced by R.

Let X be a vector space. For all x € X and A, B C X, define
zr+B:={z+y : yeB} and A+B:={zx+y : v € AyeB}. (2.1.1)

Then A + B is said to be the Minkowski sum of A and B. For z € X, let T, denote the map from X to
X given by Tp(y) = x +y. Then T, ! = T_,, and T, is vector space isomorphism on X. The maps T,
z € X, are called translations.

Likewise, for a € C\{0} let S, denote the map form X to X given by x — ax. Since S;' = S,1,
each S, is a vector space isomorphism on X. The maps S,, a € C\{0} are called scale transformations.
For all & € C and all A C X, define

aA:={ax : x € A}. (2.1.2)

Whenever (X, &) is a topological vector space, both T, and T, ! are continuous. Hence each T}, z € X,
is a homeomorphism on X. Likewise, each S,, o € C\{0}, is a homeomorphism on X. It follows that
U C X is open if and only if x + U = T,(U) is open for each x € X. If U is any non-empty set, and
—x € U, then 0 € x + U = T,(U). Therefore, the sets in & are precisely the translates of the sets in O
that contain 0. Likewise, U C X is open if and only S, (U) € € for all o € C\{0}.

2.1.2 DEFINITION (Neigborhood base at 0). Let (X, &) be a topological vector space. A neigborhood
base at 0 for the topology € is a set ¥ C € such that 0 € V for all V € ¥, and if 0 € U € O, there exists
some V' € ¥ such that V C U. A topologocal vector space is locally convez in case it has a neigborhood

base at 0 consisting of convex sets.

© 2017 by the author.
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2.1.3 LEMMA. (X,0) be a topological vector space, and let ¥ be a neighborhood base at O for the
topology . Then a non-empty U C X is open if and only if for each x € U, there is some V € ¥ such
that x +V C U.

Proof. Suppose that for each x € U, there is some V,, € ¥ such that x + V, C U. Then each x + V is

open and writing U = U{x +V, 2 €U} displays U as a union of open sets. Hence U € 0.
Conversely, suppose that U € ¢. Then for each x € U, —z + U is an open set containing 0. Hence

for some V, € ¥, V, C —x+U. But then x +V, C U. O

It is a simple matter to construct topologies & on a vector space X such that each translation map

T, is a homeomphism on (X, 0)

2.1.4 LEMMA. Let X be a vector space, and let W be a family of subsets of X that is closed under
finite intersections.
Define O to be the set of subsets U of X given by

O=0U{U C X : for all z € U there exists W, € # such that z + W, C U} . (2.1.3)

Then O is a topology on X, and under this topology, each of the maps Ty, x € X, is continuous.

Proof. Evidently, § € &, and evidently an arbitrary union of sets U such that for each x € U, there is
some W, € # such that x + W, C U also has this same property. Hence & is closed under arbitrary
unions.

To see that & is closed under finite intersections, let {Ui,...,U,} C O, and let U = N7_,U;. By
definition, for each x € U, x € U, j = 1,...,n, and hence there is some W, ; such that x + W, ; C Uj.
But then

n
z+ ﬂ Wz CcU,
j=1
and by the closure under finite intersections, N7_; W, ; € #', and hence U € 0.

For the final statement, since T, * = T_,, it suffices to show that each T} is open. By definition, the
general open set U has the form U = U{y + W, :y € U} for some set {W, : y € U} C #. Bu then
T,(U)=U{z+y+ W, :yec U} which is open. O

The condition that (z,y) — x4y is continuous on X X X in the product topology is stronger than the
condition that each of the maps T, are continuous. The latter condition amounts to separate continuity
of the map (z,y) — x +y, and for (X, &) to be a topological vector space, we require joint continuity. To
achieve this, and to ensure that the topology & provided by Lemma 2.1.4 has the other properties that
would make (X, €) is a topological vector space, and moreover is is Hausdorff, we must impose further
conditions on the sets in #. We close this section with some useful results that make direct use of the

joint continuity of the algebraic operations.

2.1.5 DEFINITION. Let X be a vector space over C. a set A C X is absorbing if for all x € X, there
is a 0, > 0 so that for t in(—d,,9,), to € A, or, what is the same thing, that x € tA for all ¢ > 1/6,. A

set A C X is balanced in case for all o € C with |a] =1, A C A. (Hence every balanced set contains 0.)

2.1.6 LEMMA. In any topological vector space, every neighborhood V' of 0 is absorbing.



33

Proof. Let x € X, and let V' be a neighborhood of 0. Since 0z = 0, the continuity of scalar multiplication
implies that there exists r > 0 so that |a| < r = ax € V. (For this proof, even separate continuity would
suffice.) O

In a topological vector space, not every neighborhood of 0 need be balanced, but there will always be

a nieighborhood base consisting of balanced sets.

2.1.7 LEMMA. Let (X, 0) be a topological vector space. Every neighborhood U of 0 contains a balanced
neighborhood V' of 0, and thus that there exists a neighborhood base for O consisting of balanced sets.

Proof. By the joint continuity of scalar multiplication, there is an open set W containing 0 and an r > 0
so that aw € U for all |a| < r and all w € W. That is, defining D := {« : |a| < r}, DW C U. Since
DW = J,ep @W is a union of open sets, V := DW is open and evidently balanced. O

2.1.8 LEMMA. Let (X,0) be a topological vector space. For every neighborhood U of 0, there is a
balanced open set G (necessarily a neighborhood of 0) such that G+ G C U.

Proof. By the joint continuity of vector addition, for x,y € X, and for every neighborhood of U of 0,
there exist neighborhoods V, W of 0 such that (z+ V) + (y+ W) C (z +y + U). Let G be a balanced
neighborhood of 0 contained in VNW, which exists by Lemma 2.1.7. Then (x+G)+ (y+G) C (z+y+U).
Specializing to x = y = 0, we have that G+ G C U. O

Lemmas 2.1.7 and 2.1.8 made use of the joint continuity of the algebraic operations in their proofs.

The next two theorems are consequences of these lemmas.

2.1.9 THEOREM. Let (X, 0) be a topological vector space. Then X is Hausdorff if and only if {0} is
closed in X.

Proof. If X is Hausdorff, then for each x # 0, there is a open neighborhood V,, of x such that V¢ contains
a neighborhood of 0. Choosing such a set for each z # 0, {0} = {J,,o{Vz}, which is open.

Conversely, suppose that {0} is closed in X. Let z # 0, and let U be a neighborhood of 0 such that
0 ¢ z+ U. Then there is a balanced neighborhood G of 0 such that 0 ¢ z+ G — G. Now let z,y € X
with ¢ # y, and put 2z = x — y. Then for all g1,g2 € G, so that —gy also belongs to G since G is
balanced, 0 ¢ z + G — G means that 0 # z — y + g1 — g2, and hence y + g2 # = + g1, which means that
(y+G)N(z+G)=0. O

2.1.10 THEOREM. Let (X,0) be a topological vector space. Let K C X be compact, and F C X be
closed, and suppose that K N F = (). Then there exists a neighborhood V' of 0 such that (K +V)NF =0

Proof. Let © € K. Then = ¢ F, and since F' is closed, there is a neighborhood U of 0 such that
(x4+U)NF = 0. By Lemma 2.1.8, for each z € K, there exists a balanced neighborhood G, of 0 such
that (x + G, + Gz) N F = 0. Then {z + G4 }.cx is an open cover of K. Since K is compact, there exists
a finite set {z1,...,2,} such that
K C U(xj—Fij) .
j=1

Set W = U;L:1 Gz, which is an open neighbrood of 0.

For all z € K, there exists j € {1,...,n} such that x = z; + g for some g € G,,. For all w € W,
r+w=a;+g+wex;+ Gy, +Gy,. Since (x; + Gy, + G, ) NF =0 (x+W)NF =0. O
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2.1.2 Generating locally convex topologies

2.1.11 THEOREM. Let X be a vector space, and let # be a family of subsets of X such that that is
closed under finite intersections. Suppose further that: each W € W is absorbing, convezr and balanced,
and that for all W € W, %W belongs to W . Let O be defined by

O=0U{U C X : for all x € U there exists W, € # such that x + W, C U} .

Then (X, 0) is a topological vector space, and W is a neighborhood base at 0 for this topology. Moreover,
if for all © # 0, there exists W € W such that x ¢ W, then (X, 0) is a Hausdorff topological vector space.

Proof. By Lemma 2.1.4, 0 is a topology on X under which translation is a homeomorphism.

We now show that the map (a, z) — az is jointly continuous on (C\{0}) x (X, &). Let oy € C\{0}
and x € X. It suffices to show that if U € & and agx € U, then there is a § > 0 and a W € # such
D(z+ W) C U where D := {a €C : Ja—ag| < d}. Since agz € U € O, there is some W € # such that
apx + W C U. Then

oz + %W = (a—ag)x + (apz + %W) .

Since W is absorbing and balanced, for § sufficiently small, if |a — ap| < &, then (o — ap)z € $W. Then
since W is convex, az + s W C 2W + (apz + W) C agz + W C U. Taking W= 1W, we have what we
sought for the scalar multiplication.

We now show that map (z,y) — « + y is jointly continuous on X x X. Let z,y € X, and let
U € 0 be such that © +y € U. Then there exists W € # such that x +y+ W C U. But then
(z+ W)+ (y+3W)CU.

Finally, by Lemma 2.1.9, (X, €) is Hausdorff in case {0} is closed. For a balanced neighborhood of 0,
x W is the same as 0 ¢ z+W. For each z # 0, choose W, € # such that 0 ¢ W,.. Then {0}* = {J,_,, W2

is open. O

Let X be a vector space and let ¥ be a set of of absorbing, convex and balanced subsets of X. Since
any finite intersection of absorbing, convex and balanced sets is again absorbing, convex and balanced,
if we define # to be the set of all finite intersections of sets in ¥, then by Theorem 2.1.11, # is a
neighborhood base at 0 of a uniquely determined topology ¢ on X such that (X, 0) is a locally convex
topological vector space.

The vector spaces topologies that we consider below are always generated this way, and we will often

need to determine when two such topologies are comparable. The following lemma facilitates this.

2.1.12 LEMMA. Let X be a vector space. Let V7 and ¥ be two sets of absorbing, convex and balanced
subsets of X, both also closed under multiplication by 2%, k € N. Let #; and #3 be the sets of all finite
intersections of sets in V1 and V4 respectively. Let Oy and Oy be the topological vector space topologies on
X that have #1 and Ws respectively as neighborhood bases at 0. Then Oy C O if each Vi € ¥1 contains
some Vo € ¥5.

Proof. Let U € 0y. By definition, for each = € U, there exists W, € #; such that z + W, C U. Suppose
that each W € # contains some = #5. In particular, writing U = Ugzep{z + W, }, and letting Ww
denote some element of #5 contained in W, we have U = Uyep{z + /V[v/l} Thus U € 0.
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Therefore, it suffice to show that whenever each V; € #] contains some V5 € %5, then each W7 € #;
contains some Wy € #5.
Let W1 € #1. Then W is a finite intersection of elements of #7. Each of these contains a set in ¥5.

The intersection over the later sets belongs to #5, and is contained in #]. O

2.1.3 Finite dimensional subspaces

Let (X, 0) be a Hausdorff topological vector space. Let Y be a finite dimensional subspace of X. Let
{y1,.--,yn} be a basis for Y. Then associated to this basis, there is the natural linear map T from C"

into X and onto Y given by

T(ag,...,an) = Zajyj , (2.1.4)
j=1

which is evidently injective as well as surjective onto Y. By the joint continuity of scalar multiplication
and vector additions, it is evident that T is continuous.

Let S be the unit sphere in C™. That is, S consists of all (ay,...,a,) € C* such that Y7, |a;]* = 1.
Equip C™ with is usual topology. Then S is compact in C", and hence T'(S) is compact in X. Since (X, )
is Hausdorff, T'(S) is closed and since T is injective, 0 ¢ T'(S). Hence there is an open set V' containing 0
that does not intersect T'(S), and by Lemma 2.1.7, we may take V to be balanced.

If € T71(V), then ||z| # 1 since VNS = @. Furthermore if ||z| > 1, then for some t € (0,1),
tz € S, and then tT(X) = T(tz) € T(S). this is impossible since V' is balanced so that tT(x) € V. Hence
T~Y(V) is contained in the open unit ball B(1,0) in C". Therefore, V C T'(B(1,0)). By homogeneity, for
all r > 0, T(B(r,0)) contains a neighborhood of 0 in Y. This means that T is open, and hence T is
continuous.

This shows that every n dimensional subspaces Y of any Hausdorff topological vector space (X, 0) is
naturally isomorphic and homeomorphic to C"® under the map T defined in (2.1.4) using any basis of Y.
In particular, all Hausdorff topological vector spaces of the same finite dimension n are homomorphically
isomorphic to one another.

Finally, let Y be any n-dimensional subspace of a Hausdorff topological vector space (X, &), and let
zeXbutx¢Y. Let {y1,...,yn} be a basis for Y, and note that {y1,...,yn, 2z} is linearly independent.
Let T : C"*' — W be the homeomorphic isomorphism induced by this basis. Note that

Y =T '({(ay,...,a,,0) : (a,...,a,) € C"}),

and z = T71(0,...,0,1). Evidently, T=!(z) ¢ T-1(Y), which is a closed subspace of C**!. Hence there
is an neighborhood U of 0 in X such that (z+U)NY = ((zx +U)NW)NY = 0, showing that z is not in

the closure of Y. Thus, Y is closed. We summarize the content of this section in a theorem:

2.1.13 THEOREM. Let (X, 0) be a Hausdorff topological vector space. Let Y be a finite dimensional
subspace of X. Then'Y is closed, and if {y1,...,yn} is any basis for Y, the map T defined by (2.1.4) is

a homeomorphic isomorphism of C™ onto Y.

Now let (X, &) be a topological vector space, not necessarily Hausdorff. Let Y be a subspace of X.

Define an equivalence relation ~ on X by 1 ~ x9 if and only if 1 — 25 € Y. For z € X, let {z}.. denote
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the equivalence class of z. Let X/Y denote the set of equivalence classes in X. This is a vector space
with the operations a{z}. = {az}. and {2}~ + {y}~ = {z + y}~.

The quotient topology on X/Y is the topology % consisting of those subsets U C X/Y such that the
preimage of U under the map 7 : z — {x}. belongs to &. Then 7 is continuous from (X, &) to (X/Y, % ).
It is easy to check that (X/Y,%) is a topological vector space. Moreover, 7~1({0}.) = Y, and so the
singleton consisting of {0}, alone is closed in X/Y if and only if Y is closed in X. Thus, by Lemma 2.1.9,
X/Y us Hausdorff if and only if Y is closed.

Now let Z be a finite dimensional subspace of X, and Y a closed subspace of X. Then 7(Z) is a finite
dimensional subspace of X/Y | which is Hausdorff, and then by Theorem 2.1.13, 7(Z) is a closed subspace
of X/Y. Then Y + Z = n~Y(n(Z)) is closed in X. This proves:

2.1.14 THEOREM. Let (X, 0) be a topological vector space, not necessarily Hausdorff. Let Y and Z
be subspaces of X with' Y closed and Z finite dimensional. Then'Y + Z is closed in X.

2.1.4 Seminorms, norms and normed vector spaces

2.1.15 DEFINITION. Let X be a vector space over C or R. A function f : X — R is conver in case
for all A € (0,1) and all z,y € X,

FIA =Nz +Ay) < A=) f(z) +Af(y) (2.1.5)

and is subadditive in case for all z,y € X,

fa+y) < fl@)+ fy) (2.1.6)
and is homogenous of degree one in case for all x € X and o € C
flax) = lal (@) - (2.1.7)
A function f: X — R is positively homogenous of degree one in case for all t € [0, c0)
fltz) =1tf(z) . (2.1.8)

2.1.16 LEMMA. Let X be a vector space over C or R and let f : X — R be positively homogeneous of

degree one. Then f is convex if and only if f is subadditive.

Proof. Suppose that f is homogeneous of degree one and convex. Then

o) =2 (52) <2 (30 + 370) = £+ 1)

Conversely, Suppose that f is homogeneous of degree one and subadditive. Then for A € (0, 1)
F((L= N+ Ag) < F((1= N)a) + FOw) = (1= N f(2) + Af(a) -
O

2.1.17 DEFINITION (Seminorm and norm). Let X be a vector space over C or R. A seminorm on X
is a function p : X — [0,00) such that p is homogeneous of degree one and convex, or, what is the same
thing, homogeneous of degree one and subadditive. A seminorm p is a norm in case p(x) = 0 implies
that = 0. A different notation, namely = — ||z|| is usually used for norm functions, also sometimes for

seminorms.
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2.1.18 LEMMA. Let p be a seminorm on the vector space X. Define the set B, by
B, :={zreX plx)<1}. (2.1.9)
Then By, is absorbing, balanced and convex. Moreover,
B, =Nrs11Bp . (2.1.10)

Proof. For z € X, A > 0, p(Az) = Ap(z) < 1, so that Az € B,, for all A < 1/p(z). Therefore, B, is
absorbing. For z € B, a € C, |a| < 1, p(ax) = |a|p(z) < 1, so that ax € B,. Therefore, B, is balanced.
For all z,y € By, and all A € (0,1), p((1 — Nz + Ay) < (1 — Np(z) + Ap(y) < 1. Therefore, B, is convex.

To prove (2.1.10), note that « € rB, if and only if 7—'x € B, if and only if p(r~'z) < 1. By the
homogeneity of p, p(r~'z) <1 is the same as p(x) < r. Hence x € N,~17B, if and only if p(z) < r for all
r > 1, and this means that p(z) < 1. O

It turns out that there is a one-to-one correspondence between absorbing, balanced, convex sets V in

X with the property that V' = N,~17V, and seminorms p on X, as the lemmas show.

2.1.19 LEMMA. Let V be any absorbing, convezx set in X. Define a function py : X — [0,00) by
py(z)=mnf{t >0 : zetV}. (2.1.11)

Then py is subadditive and positivel homogeneous of degree one. If morover V is balanced, then py is a

seminorm on X.

Proof. Since V is absorbing, py (z) < oo for all x € X. Next, let 2,y € X. Let ¢, s be such that © € tV
and y € sV. That is, t~lz,s7ly € V. Since V is convex, (1 — A\)t~tax + Asly € V for all A € (0,1).
Define A = s/(t + s). Then we have z +y € (¢t + s)V. Therefore, py(x +y) < pv(x) + pv(y).

For all r;t > 0,

tre) eV <= (tr)z eV

and therefore py (rX) = rpy(z). This porves that py is positively homogeneous of degree one, and
completes the proof of the first part of the lemma.

Now suppose that V' is balanced. Then py (ax) = py(z) when |o| = 1. Then for r > 0 and o € C,
a=1forall x € X,

py (rax) = rpy(ax) = rpy (z) = |ra|p,(z) .

This shows that py is homogeneous of degree one. Altogether, we have shown that py is a seminorm. [J
2.1.20 LEMMA. Let V be any absorbing, balanced, convex set in X. Suppose also that V = Np~>1rV.

Let py be the seminorm defined by (2.1.11), and then let By, be the absorbing, balanced, convez set defined
by (2.1.9) with py in place of V. Then'V = B,,,.

Proof. If x € V, then py(z) < 1, and hence z € B,,. If v € B,,,, pyv(z) < 1, and then € rV for all
r > 1. Since V =N,s17V, 2 € V. Thus, V = B, . O]

2.1.21 LEMMA. LetV C X be absorbing, balanced and convex, and let py be the seminorm defined in
(2.1.11). Then py is a norm if and only if for all non-zero x € X, there is some t > 0 such that x ¢ tV
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Proof. If for all non-zero x € X, there is some ¢y > 0 such that « ¢ tV, py(z) = inf{t >0 : z € tV} > to,
and hence py(z) > 0 for all  # 0. Conversely, if py(z) > 0 for all © # 0, then for all z and all
0<t<py(x),zd¢tV. O

Summarizing, we have the following reuslt:

2.1.22 THEOREM. Let X be a vector space over C. For each absorbing, balanced, convex set V in X,
the function py defined by (2.1.11) is a seminorm. Conversely, for each seminorm p, the set is absorbing,
balanced and convex. Moreover the map p — B,, with B, defined in (2.1.9), is a bijection between the
set of seminorms on X and the set of absorbing, balanced, convex sets V. C X with the property that
V = Nps1rV. Finally, for any absorbing, balanced and convex V. C X, the seminorm py defined in
(2.1.11) is a norm if and only if for all non-zero x € X, there is some t > 0 such that x ¢ tV.

As a consequence of Theorem 2.1.11 and Theorem 2.1.22, there is a topology & on a vector space X
associated to any set & of seminorms p on X, and (X, &) is a topological vector space such that for each
p € & and each € > 0, eB, € 0, and consequently, such that each p € & is continuous.

Let p be any seminorm on the vector space X. Consider the nested family of absorbing, balanced,
convex sets # = {2¥B,, : k € Z}. Since this set is nested, it is closed under finite intersections. Then by
Theorem 2.1.11, the set & defined by (2.1.3) is a topology on X such that (X, &) is a topological vector
space. This topology is Hausdorff if and only if p is a norm.

To get a Hausdorff topology out of seminorms, one must use a sufficiently large family of them. Let

Z be a set of seminorms on X. Define
Wep ={2"B, : keZ,pc P}. (2.1.12)

Then # is closed under finite intersections and each set W € #  is balanced, convex and absorbing and by
Theorem 2.1.11, the set & defined by (2.1.3) is a topology on X such that (X, &) is a topological vector
space. This topology is Hausdorff if and only if for each x €, there is some p € & such that p(x) # 0.

2.1.23 DEFINITION. Let & be a family of seminorms on a vector space X. The weakest topology on
X that contains all translates of all of the sets in #, as defined in (2.1.12) is called the topology on X
generated by .

If 22 is a countable set of seminorms on X, then topology on X generated by &2 is metrizable. This

is the main content of the next theorem.

2.1.24 THEOREM. Let & be a countable family of seminorms on a vector space X, and suppose that
for each x € X, there is some p € & such that p(x) # 0. Then there is a translation is a translation
invariant metric p on X such that the topology induced on X by this metric coincides with the topology

on X generated by &.

Proof. Order the elements of & in a sequence {p,}nen. Define the function ¢ : [0,00) — [0,1) by
¢(t) =t/(1+1t). Then for s,t > 0,
s t

¢(s+t):1+S+t+1+8+t§¢(8)+¢>(t) (2.1.13)
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and ¢ is strictly monotone increasing. For x,y € X define
plz,y) = 27" ¢(pn(x —y)) , (2.1.14)
n=1

and note that the sum converges absolutely and in fact p(z,y) < 1 for all z,y € X. It is evident that
p(x,y) = p(y,x), and since if = # y, there is some n such that p,(z —y) # 0, then p(z,y) # 0. Finally, by
the subadditivity of each p,, for all z,y,z € X,

pn(@—2z) =pu((z—y)+ (y—2)) <pulz —y) +puly — 2) ,
and then by (2.1.13), ¢(pn(z — 2)) < d(pn(z — y)) + d(pn(z — 2)). It follows that p satisfies the triangle
inequality, and therefore is a metric on X. Notice that by definition, for all z,y,z € X,
p(Tey, Tez) = p(y, 2)

so that p is translation invariant. For r > 0, let B,(r,0) :={z € X : p(z,0) <r}.

It remains to show that for each k € Z and n € N, 2*B,, contains B,(r,0) for some r > 0, and that
for each r > 0, B,(r,0) contains a set that is open in the topology generated by 2.

Consider the set 2°B, = {z : p,(x) < 2*}. Since for each n, and each z, p(z,0) > 27 "¢ (p,()),

2"p(z,0)

Pl < T, 0)

for all « such that p(x,0) < 27". Hence for each n € N, and each € > 0, there is an r, . > 0 such that

pn(z) < € whenever x € B(r,,0). Taking e = 2*, this can be written as
B(r, o¢,0) C 2¥B,, .

Next, fix r > 0 and n € N. Fix N € N such that 2=~ < 7/2. Then

N e’} N
p(0,0) = 32 G + > 2 < S 2 (@) + /2
n=1 n=N+1 n=1

Since for all t > 0, ¢(t) < t, if z € (r/2)B,,,, then ¢(p,(z)) < (r/2). Now pick £ € N so that 27¢ < r/2,
and note that
N
W = ﬂ Q_EBpn
n=1
is in the canonical neighborhood base at 0 of the topology generated by &?. By what we have noted above,
for all x € &, p(x,0) < r. That is W C B(r,0). O

A single seminorm that is not a norm cannot generate a Hausdorff topology: If p is a seminorm but
not a norm, there is some non-zero € X such that p(z) = 0, and therefore tz € B, for all ¢ > 0, or
what is the same, = € 2kBp or all k € Z. Hence x belongs to each open set containing 0. However, when
the seminorm p is norm, this problem is eliminated. A very important class of topological vector space

topologies arises this way.
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2.1.5 Normed vector spaces

2.1.25 DEFINITION (Normed vector space). A normed vector space (X, || - ||) is a vector space X

equipped with a norm function || - ||. For each r > 0 and xy € X, define
B(r,zo)={ze X : |z —zol| <7} . (2.1.15)

For each r > 0, B(r,0) is balanced, convex and absorbing. Define # = {B(2*,0) : k € Z}, which is
nested and therefore closed under finite intersections. Then by Theorem 2.1.11, #  is a neigborhood base
for a topology on X that makes it a topological vector space. This topology is called the norm topology.

The set B(r,zo) is call the open ball of radius r centered at .

Let (X, -|) be a vector space, and define a function p : X x X — [0,00) by p(z,y) = || — y||. Then
evidently p(z,y) = p(y,x) for all z,y, and p(x,y) = 0 if and only if x = y. Moreover, by the subadditivity
of the norm, for all xz,y,z € X,

pla,z) = |lz =zl = [z —y) + (y = )| < llz =yl + ly = 2] = p(z,y) + p(y, 2) -

Therefore, the triangle inequality is satisfied, and hence p is a metric on X called the norm metric.

For all g € X, the metric open ball of radius r about is precisely the set B(r, z¢) defined in (2.1.15),
and U C X is open in the metric topology if and only if for each zy in U, there is some r > 0 such
that B(r,z9) C U. Decreasing r if need be, we may assume that r = 2% for some k& € Z, and then since
B(2%,20) = 20 + B(2%,0), the metric topology is precisely the topology determined by the neighborhood
base # = {B(2*,0) : k€ Z}.

A normed vector space is therefore not only a Hausdorff topological vector space, but the norm

topology is a metric topology, and it has a countable neighborhood base.

2.1.26 DEFINITION (Equivalent norms). Let ||-||o and ||-||1 be two norms on a vector space X. These

norms are equivalent in case for some constant 0 < C' < oo,

1
Cllzll < |lz)lo < 6|\x||1 forallz € X . (2.1.16)
Il - llo and || - |1 be two norms on a vector space X such that (2.1.16) is satisfied. For j = 0,1, let
Bj(r,0) be the centered open ball of radius = for the norm || - ||;. Then is equivalent to
B1(C’7’7 0) C B()(’l", 0) C Bl(T/C, 0) (2117)

for all » > 0. Therefore, two norms generate the same topology if and only if they are equivalent.

2.1.27 THEOREM. Let (X, | -||) be a normed vector space, and let Y be a finite dimensional subspace
of X. Then'Y is closed. Moreover, all norms on any finite dimensional vector space are equivalent to one

another.

Proof. since normed vector sapces are Hausforff topological vector spaces, this is immediate from Theo-
rem 2.1.13. O

2.1.28 THEOREM. Let (X,| - |x) and (Y,| - |ly). Let Bx(r,0) and By (r,0) denote the open balls
of radius r > 0 in X and Y respectively. Let T be a linear transformation from X to Y. Then T is
continuous if and only if

IT|| :=sup{ | Tz|ly : € Bx(1,0) } <oo. (2.1.18)
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Proof. Suppose that T is continuous. Then T~1(By(1,0)) contains Bx(r,0) for some r > 0, and hence
for all x € Bx(1,0), || Tz|ly < 1/r. Hence ||T|| < 1/r. Conversely, suppose that (3.1.1) is valid. Then for
all 1,22 € X and all A > ||z — z2||x,

|Txy — Txally = MT((x2 —2z2)/Mly < AT -
It follows that
[Tz — Trally <||T[|lz1 — 22l x -

Thus, T is not only continuous, it is Lipschitz continuous. O

On account of this theorem, the term bounded linear transformation is often used as a synonym for the
term continuous linear transformation when referring to transformations from one normed vector space

to another. The bounded transformations themselves are often called operators.

2.1.29 DEFINITION. Let (X,|-]lx) and (Y, - |ly) be normed vector spaces. Let Z(X,Y) denote the
vector space of continuous (bounded) linear transformations from X to Y. The function T +— ||T||, with
IT|| defined by (3.1.1) is called the operator norm on #(X,Y).

The terminology in the previous definition is appropriate; it is easy to see, and left to the reader, that
the operator norm, is indeed a norm on the vector space Z(X,Y)
We shall be forced to consider topologies & in vector spaces X that are not topologies coming from

norms on account a simple corollary of the following result of Riesz.

2.1.30 LEMMA (Riesz’s Lemma). Let (X, ] - ||) be a normed vector space. Let Y be a proper, closed
subspace of X. Then for all o € (0,1), there exists u € X, ||u|| =1, such that

a<inf{llu—yl : yeY}.

Proof. Since Y is proper, there exists some g ¢ Y, and then since Y is closed, there exists some r > 0
such that B(r,zo) NY = (). Therefore, d := inf{|ju —y|| : y € Y} >r > 0. By the definition of d, for all
a € (0,1), there exists yo € Y such that ||zo — yo|| < d/a. Then, by the definition of d,

alltg —yol| < d < ||lwog—yo —y| forall yeY.

That is,
a< o~ Y% _ y forall yeY .
lzo = woll o — woll
Let u = ||z — yo||~*(zo — yo). Notice that ||zg — yo|| "'y ranges over all of Y as y ranges over Y. O

2.1.31 COROLLARY. In every infinite dimensional normed vector space (X, | - ||), there exists an
infinite sequence {un }nen such that ||u,|| = 1 for all n, but from which no convergence subsequence can
be extracted. In other words, the closed unit ball in an infinite dimensional normed vector space is never

sequentially complete.

Proof. The sequence {uy }nen is constructed inductively as follows: Pick some uq € X with ||uq|| = 1. For
the induction, suppose that we have found vectors {u1,. .., u,} such that ||u;|| = 1 for each j and if j # k,
then ||u; — ug|| > 1/2. Let V,, :=span({u,...,u,}) which is is closed by Theorem 2.1.27 proper since X
is infinite dimensional. By Riesz’s Lemma, we may choose w41 with ||u,41]| = 1 snd |Jups1 — yl| > 1/2

for all y € Y. In particular we have ||u; —u;|| > 1/2forall1 <j <k <n+1. O
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2.1.6 Topologies induced by sets of linear transformations

The usual way of constructing seminorms on X is to consider linear transformations 7' from X to a normed
vector space (Y, | - ||). (A particularly important example is that in which (Y, -||) = (C,|-|).) Then
evidently the function pr on X defined by

pr(z) = [Tz (2.1.19)

is a seminorm, and is a norm if and only if 7" is injective.

Let (Y,] - ||) be a normed space and let .7 be any set of linear maps from X — Y. For each T € .7,
let pr be defined as in (2.1.19). Let 0 be any translation invariant topology on X. Then T is continuous
from (X, 5) to Y equipped with the norm topology if and only if for each z¢y € X, and each € > 0, there
is a set U € @ such that for all r—x, €U,

| Tz — Taol| = |T(x — zo)|| < € .
Since pr(xz — xg) = ||T(x — zo)||, for all k € Z,
rcag+2%B,, <= x-10€27"B,, < |Tz—Tx| <27%.

Hence T is continuous on (X, 5) if and only if if & contains each of the sets zo + 2B, k €Z, 9 € X.

This proves:

2.1.32 THEOREM. Let  be any set of linear transformations from a vector space X to a normed
space (Y, || -1]). Let & be the set of seminorms on X given by & = {pr : T € T} where pr(x) = ||T(x)|.
Let O be the topology generated by &, as in Definition 2.1.23. Then (X, O) is a topological vector space
such that each T € T is continuous from (X, 0) to (Y,|| - ||), and O is the weakest topology of any sort
on X such that each T € T is continuous from (X, 0) to (Y, | - |)-

In what follows, the case in which (X,| - ||x) and (Y| - ||y) are two normed vector spaces, and
T = B(X,Y), the set of all bounded linear transformations from X to Y, is especially important. In
many cases we shall be able to show that norm closed, norm bounded, convex sets K C X are compact
in the weak topology on X generated by 7. (To say that K is norm bounded, or simply bounded, means
that there exists C' < oo such that ||z|| < C for all x € K.) This will be more useful to us if we have not
only compactness, but sequential compactness, which is the same thing if this weak topology, or at least
the relative weak topology on K is metrizable.

The following theorem gives a useful sufficient condition for weak topology generated by .7 to be

metrizable on bounded subsets of X.

2.1.33 THEOREM. (X, | -|x) and (Y,| -|ly) are two normed vector spaces, and let 7 be any subset
of B(X,Y). Suppose that Fy is a countable subset of T that is dense in 7 in the operator norm. Then

restricted to bounded subsets the weak topologies generated by Fy and 7 coincide.

Proof. Let K be a bounded subset of X. Let 0y and & be the relative weak topologies generated by J
and 7 respectively. Evidently, &y C 0.
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Let C < oo be such that ||z||x < C for all z € K. For any T € .7 and any € > 0, there is Ty € F
such that ||T — Tp|| < €, and then for all x € K,

Tzlly = Tozly | < (T = To)lly < T = Tollllx]| < eC .

It follows that ||Toz|ly < [|[Tz||y + €C for all z € K. Hence for all k € N, if we choose € (and then Tj) so
that € <27%°1/C, 27" 'B, NK C27"B,, N K. By Lemma 2.1.12, & C 0. O

2.2 Banach spaces

2.2.1 Banach spaces of bounded linear transformations

2.2.1 DEFINITION (Banach space). A Banach space is a normed vector space (X, ||-||) that is complete

in its norm topology.

2.2.2 THEOREM. Let (X,| - |lx) be a normed space, and let (Y,|| - |ly) be a Banach space. Then
B(X,Y), equipped with the operator norm is Banach space.

Proof. Let {T,}nen be a Cauchy sequence in #(X,Y). Then for each x € X, {T,x}nen is a Cauchy
sequence in Y. Since Y is complete, there exists y € Y such that y = lim, o, T,x. Define a function T
mapping X to Y by Tx = y.

To see that T is linear, fix 1,20 € X and aq,as € C. Then

T(a1z1 + agzo) = lim T, (a1x1 + agwe) = a1 lim Thx1 + s lim Thze = a1 Thxy + anTay .
n— oo n— oo n— 00

To see that T is bounded, first observe that since ||| T, || — | T ||| < |10 — Timlls {I|Tn ||} nen is a Cauchy
sequence in R, and hence a := lim,_, ||T,]| exists.

Now consider any x € X with ||z||x < 1. By the triangle inequality,
ITzlly < [Tozlly + (T = To)zlly < Tull + (T = To)zlly (2.2.1)

and since lim, oo ||(T —T)z|ly =0, ||Tz|ly < lim,— o0 ||Tn||- This shows that T is bounded, and in fact,
1T < limp— oo ||T7]].- Now the same reasoning that led to (2.2.1) shows that ||T,x| < |T||+ (T = Ty)z|ly
for all z € X with [[z[|x < 1. Therefore,

lim [Ty < 7)) (2.2.2)

Altogether, ||T|| = lim,— o0 ||T5]|- Now considering the Cauchy sequence {T;, — T'},en, we conclude that

lim,, o || T, —T|| = 0. which shows that T is the operator norm limit of the Cauchy sequence {7, }nen. O

An important spacial case of Theorem 2.2.2 is that in which (Y, || -]|) = (C,| - |), which is of course

the simplest example of a Banach space.

2.2.3 DEFINITION (Dual space). Let (X, || -||) be a normed space. Let X* denote the set of bounded
linear transformations from (X,| - ||) to (C,|-|) and let || - ||« denote the operator norm on X*. Then
(X*, |l - II+) is a Banach space called the dual space to (X, | -||). The norm || - ||« is called the dual norm.
Elements of X, are referred to as bounded linear functionals on X. Applying the same construction to

(X*, || - II+) we obtain the second dual (X**,|| - ||+««), which is also a Banach space.
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There is a natural embedding of X into X**: For each x € X, define the function ¢, on X* by
¢o(L)=L(x) forall Le X*. (2.2.3)

It is evident that ¢, is a linear functional from X™* to C, and for all z € X, L € X*, |¢,(L)| = |L(x)| <
IIL|l«]|z]|. Therefore ¢, is bounded, so that ¢, € X**, and in fact,

1@z lex < [l]] -

Thus, the map = — ¢, is a contractive linear map from (X, || -||) into (X**, || ||+« ), which is a Banach
space. The results of the next section show that this contractive map is actually an isometry, so that
every normed vector spaces is isometrically embedded into a Banach space in a canonical manner. We

may identify the closure of the image as the completion of (X, || - ||).

2.2.2 The real Hahn-Banach extension theorem

In this section we consider real vector spaces X. Every complex vector space X is also a vector space over
R, only now, for each non-zero = € X, x and ix are linearly independent, and in the next section we shall

extend the results of this section to complex vector spaces through this connection.

2.2.4 LEMMA (Helly’s Lemma). Let X be a real vector space, and let V' be a subspace of X. Let x € X,
x &V, and let W = span({z}UV), so that V is a subspace of W of co-dimension 1. Let p be a function on
X with values in [0,00) that is sub-additive; i.e., p(x +y) < p(x) +p(y) for all z,y € X, and is postitively
homogeneous of degree one; i.e., such that p(tz) = tp(x) for allt >0 and all x € X.

Let L be a linear functional on V' such that
L(y) <p(y) forallyeV . (2.2.4)

Then there exists an extension L of L as a linear functional to W such that L(w) < p(w) for all w € W.

2.2.5 Remark. In many, but not all, applicartions, p(z) will be norm on X; i.e., p(z) = ||z||. Then of
course || - || is sub-additive, and it is homogenous of degree one; i.e., p(Az) = |A|p(z) for all @inR, and not
only p(tx) = tp(zx) for all t > 0 which is what we shall use in the proof. In particular, p need not even be
a semi-norm. We also do not require that p(x) > 0 for & # 0. This is true when p is a norm, but it has

no role in the proof.
Proof of Helly’s Lemma. Let y1,y2 € V. By the subadditivity of p, ,
L(y1) = L(y2) = L(y1 = y2) < p(yr —v2) = p((y1 +2) = (42 + 7)) < p(yr + 2) +p(—y2 — 2) -
Rearranging terms, to bring all ys terms to the left, and all y; terms to the right,
—L(y2) = p(~y2 — 2) < —L(y1) +p(y1 + @) .

Since y1, y2 are arbitrary,

a:=sup{ —L(y) = p(y +2)} < inf { —L(y) +p(—y —2)} =:b.
yev ye
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Pick any A € [a,b]. Define L(y + tz) = L(y) + tA. Then for ¢t > 0,

L(y + tx) = t[L(y/1) + N < t{L(y/t) = Ly/t) + p(y/t + @)] = p(y + tx) ,
while for ¢ < 0,
L(y + tw) = t{L(y/t) + N > t{L(y/t) — L(y/t) — p(=y/t — @)} = |t|]p(=y/t — x) = p(y + t) ,
Hence, for all t € R, and all y € V, |L(y + tz)| < p(y + tz). O

2.2.6 THEOREM (The Real Hahn-Banach Extension Theorem). Let X be a real vector space, and let
Y be a subspace of X. Let p be a function on X with values in [0,00) that is sub-additive and postitively
homogeneous of degree one.

Let L be a linear functional on'Y such that for some L(y) < p(y) for ally € Y. Then there exists a
linear functional L on all of X such L(x) < p(z) for all x € X and such that Ly = Ly for allY €Y.

Proof. Consider the set of pairs (V, Ly ) of subspaces V of X and Ly on V with Ly (v) < p(v) for all
v € V. Partially order this set of pairs so that (V,Ly) < (W, Ly) in case V.C W and LW|V = Ly. By
Zorn’s Lemma, since every linearly ordered chain containing (Y, L) has a maximal element, the set of all
such pairs has a maximal element (Z,)?) (V,Ly). By Lemma 2.2.4, X = X, or else (E, )?) would not be

maximal. O

We now give an important geometric application of the Hahn-Banach extension that uses its full

generality.

2.2.7 THEOREM (Hahn-Banach Separation Theorem). Let (X, ) be a real locally convex topological

vector space.

(1) Let A and B be conver, non-empty subsets of X with A open, and AN B = (. Then there erists a

continuous linear functional L on X such that for allxz € A and y € B,
L(z) <1< L(y) . (2.2.5)

(2) Let K and F be convex, non-empty subsets of X with K compact, and F' closed, and KNF = (). Then

there exists a continuous linear functional L on X such that for allx € A and y € B,
L(z) <1< L(y) . (2.2.6)

Proof. We first prove (1). Choose xy € A and yo € B, which is possible since A and B are non-empty.
Define zg := yo — 29 and C = A — B + z; (where A — B denotes A+ (—1)B). C is open and convex, and
since —zg € A—B,0€ C. Since ANB =0, z9 ¢ C.

Since C' is a neighborhood of 0, by Lemma 2.1.6, C' is absorbing so that for all z € X, there is some
t € (0,00) such that x € tC. Therefore, we may define a function pc on X with values in [0, 00) by

pe(z)=inf{r>0: zerC}, (2.2.7)

and since C' is convex, Lemma 2.1.19 says that pc is subadditive and positively homogeneous of degree

one. Also since C is convex, for r € [0,1], rC C C, and hence zy ¢ rC for any r < 1. Therefore, pc(zp) > 1
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Define a linear functional Lo on span({z0}) by Lo(tzo) = 1. Then for ¢ > 0, Lo(tz0) =t < tp(z0) =
p(tzo), whicle for t < 0, Lo(tzg) = t < p(tzg) is trivially true. Hence Ly < p in span({zp}). By
Theorem 2.2.6, there exists an extension L of Ly to all of X such that L < pc on all of X.

Let x € Aand y € B. Then z—y+zo € C, which is open, and hence for some € > 0, (14€)(z—y+29) €
C. Therefore, pc(z —y + 2z0) < (1 +¢€)~L. Then we have L(x — y + 29) < (1 + ¢)~!. Rearranging terms,

€
14¢€’

L(z) < L(y) + (1 + €)' — L(z0) = L(y) —

In particular, L(z) < L(y). Define a = sup,c,{L(z)} > 0. Then L(z) < a < L(y) for all z € A and
ye B.

We now claim that L(x) < a for all z € A. Suppose on the contrary that € A and L(z) = a. Since
A is open, there is a neighborhood V' of 0 such that x +V C A, and by Lemma 2.1.7, we may take V to
be ballanced. It follows that L(v) < 0 for all v € V. Since V is balanced, and L # 0, this is impossible.
Hence for all # € A, L(x) < a. Replacing L by a~!L, we obtain the desired linear functional.

To complete the first part of the proof we must show that L is continuous. By Lemma 2.1.7, C
contains a balanced neighborhood W of 0. Since L < P < 1 on C and hence on W, for all w € W,
L(w) <1 and —L(w) = L(—w) < 1 so that [L(w)| < 1. Hence W C L7!((—1,1)), showing that L is
continuous.

We next prove (2). By Theorem 2.1.10, there is a balanced, convex neighborhood V of 0 such that
(K+V)NF =0. K+V is open and convex, and therefore by part (1), there exists a continuous linear
functional L such that for allz € K and ally € F, L(z) < 1 < L(y). Now define a := maxzex{L(z)} > 0.
Since K is compact and L is continuus, there is some zg € K such that a = L(z¢) < 1. Replacing L by
(14 a)/2)~1L, we obtain the desired linear functional. O

2.2.3 The complex Hahn-Banach extension theorem

In this section (X, &) will denote a complex locally convex topological vector space, and (Xgr, &) will
denote the real normed vector space obtained by regarding X as a real vector space, and equipping it with
the same topology. We write X* denotes the set of continuous (complex) linear functionals on (X, &),

and X7 denotes the set of continuous (real) linear functional on (Xg, 0).

2.2.8 LEMMA (Murray’s Lemma). Let (X, &) be a complex normed vector space. Let R € (Xgr, O) be

a continuous real linear functional on Xr. Define the functional L on X by
Lr(x) = R(z) — iR(iz) . (2.2.8)

Then Lg is complex linear and continuous on (X, 0), and for all x € X, R(x) = R(Lgr(z)), and for any
balanced neighborhood V of 0 in X,

sup{|Lg(z)| : €V } =sup{|R(z)| : z€V }. (2.2.9)

In particular, if the topology € on X is generated by a norm, |[Lr(z)|| = ||L(z)|| for all x inX. Finally,
ifR=RoL, L e X*, then L=Lg. Thus the map L — Ro L is a real linear homeomorphic isomorphism

between X* and X3 that is even isometric when the topology O is generated by a norm.
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Proof. Evidently, for all z1,22 € X and t1,t2 € R, Lg(tix1 + taxe) = Lg(z1) + taLg(z2). Therefore, it
suffices to show that for all z,y € X, Lr(x 4+ iy) = Lr(x) + iLg(y), and this is a simple calculation. The
fact that R(x) = R(Lgr(z)) is evident. It follows that |R(x)| < |Lgr(z)| for all z € X. Therefore, for any
neighborhood V of 0 in X, sup{|R(z)| : « € V } < sup{|Lg(z)] : = € V }. When V is a balanced
neighborhood of 0, and x € V there is some 6 € [0,27) such that e Lp(x) > 0, and then ¢z € V.

Therefore,
|Lr(z)| = e Lr(x) = Lr(e?z) = R(Lr(e”z)) = R(e?z) < sup{|R(z)| : z €V }.

Since x € V is arbitrary, this completes the proof of (2.2.9). If & is a norm topology, take V to be
the open unit ball in X to conclude from (2.2.9) that |Lg| < ||R||. In the general setting, first set
W = R7((—1,1)) which is an open neighborhood of 0 in X. By Lemma 2.1.7, there exists a balanced
neighborhood V of 0 contained in W, and then for this V', sup{|R(z)| : € V } < 1. Then (2.2.9) shows
that V C L' ({a € C : |a| < 1}). Thus, L is continuous. Finally, if R = Ro L, then L(z) and Lg(z) are

complex linear functionals that have the same real parts for all x € X. Hence L = Lg. O

2.2.9 THEOREM (The Complex Hahn-Banach Extension Theorem). Let (X, ||-||) be a complex normed
vector space, and let Y be a subspace of X. Let L be a linear functional on'Y such that for some C' < oo,
|L(y)| < C|ly|| for all y € Y. Then there exists a linear functional L on all of X such that for this same
C, |L(z)| < C||z|| for all z € X and such that Ly = Ly for ally € Y.

Proof. Define R = R o L. By Lemma 2.2.8, ||[R|| = ||L|, where the norms are computed on Y. By
Theorem 2.2.6, there exists a linear functional R on Xg such that R(y) = R(y) for all y € Y, and such
that ||| = ||R|. Then Lz is a complex linear functional on X such that for all y € Y,

Replacing y by iy, yields equality of the imaginary parts as well. Therefore, Lz(y) = L(y) for all y € Y,
and again by Lemma 2.2.8, || L[| = ||}~%H Altogether, ||Lg|| = |IL]. O

2.2.10 THEOREM. Let (X, -||) be a non-trivial normed vector space. For all x € X, there exists
L, € X* such that ||L,|| =1 and L,(z) = ||z]|.

Proof. Let x € X, x # 0, and let Y be the one-dimensional subspace X spanned by x. The general
element of Y has the form az, o € C. Define a linear functional L on Y by L(ax) = af/z|. Evidently
|IL|| =1 and L(z) = ||=||. Let L, denote the norm-preserving extension of L to all of X that is provided
by the Hahn-Banach Theorem. For x = 0, the claim is true, since by the first part, unit vectors L in X*

exist, and any such unit vector will do. O

2.2.11 THEOREM. Let (X,| -||) be a normed vector space. For x € X, let ¢, denote the element of
X** given by ¢,(L) = L(x) for all L € X*. The map x — ¢, is an isomelric imbedding of X into X**.

Proof. We have already observed that x — ¢, is linear and that ||¢.| < ||z||. Let L, be an element of X*
such that ||Ly|l« =1 and L,(x) = ||z||. Then ¢,(L,) = L,(x) = ||z||, and hence |¢5| > ||z|. Altogether,

we have the isometry ||¢.|| = ||z]|- O
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2.2.12 DEFINITION (Natural isometry, reflexive). The map = — ¢, described in Theorem 2.2.11 is
called the natural isometry embedding X in X**. A Banach space (X, || - ||) is reflezive in case every the

natrual isometry is surjective.

Theorem 2.2.11 provides a natural way to complete a normed vector space that is not a Banach space:
Identify it with its image in the Banach space X** under the isometric map x — ¢,. The closure of the
image in X** is a Banach space in which the isometric image of X is dense.

A number of applications of the Hahn-Banach Theorem will be made it what follows, but a simple
alternative proof of Lemma 2.1.30, Riesz’s Lemma, is worthwhile to give at this point. Recall that
Lemma 2.1.30 says that if (X, || - ||) be a normed vector space, and Y be a proper, closed subspace of X,
then for all a € (0, 1), there exists u € X, ||ul]| = 1, such that

a<inf{llu—y| : yeY}.

Second Proof of Lemma 2.1.30. Let x € X, x ¢ Y. Define L on span(Y U {x}) by L(y + az) = « for all
y €Y, a € C. Then ker(L) =Y which is closed in span(Y U{z}), and hence is bounded on span(Y U{x}).
By the Hahn-Banach Theorem, there is a non-zero element L of X* that is zero on all of Y.

By the definition of ||L|., for all o € (0,1), there is a unit vector u € X such that L(u) is real and
L(u) > a|/L]|,. Since for all y € Y,

allLlls < L(w) = L(u—y) < | Ll ]ju—y] ,
inf{lu—y| : yeY}>a O

2.2.13 THEOREM. Let (X,| -||) be a reflexive Banach space space. For all L € X*, there exists a unit
vector x € X such that L(z) = ||z].

Proof. By Theorem 2.2.10, there exists ¢ € X** such that ||¢|.. = 1 and ¢(L) = ||L||. Since X is refexive,
for some x € X with ||z|| =1, ¢ = phi,. Thus, L(z) = ¢, (L) = ||L]. O

It is a much deeper theorem of James that the converse of Theorem 2.2.13 is also true: If for every
L € X* there exists a unit vector € X such that L(x) = || L||, then X is reflexive.

2.2.14 THEOREM. Let (X, ||-||) Banach space space. Then X is reflexive if and only if X** is reflexive.

Proof. Let f € X***. The natrual isometry of X into X** z — ¢, is continuous (even isometric), and

hence x — f(¢,) is continuous, so that for some Ly € X*, for all z € X,

f(¢s) = Ly(x) = ¢2(Ly) - (2.2.10)

Suppose that X is reflexive. Then every ¢ € X** has the form ¢, for some z € X, and then (2.2.10)

becomes
f(o) =o(Ly) . (2.2.11)

which shows that every element f of X*** is an evaluation functional on X**. Hence X* is reflexive.
For the converse, suppose that X* is reflexive. If X is not reflexive, the image of X under the isometric

embedding x — ¢, is a proper closed subspace V of X** and then by the Hahn-Banach Theorem, there
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exists a non-zero f € X*** that vanishes on V. Since X* is reflexive, there exists Ly € X* such that
(2.2.11) is true for all ¢ € X**. But then

0= f(¢s) = L(da) = Ly (x)

for all z, so that Ly = 0, and hence f = 0. This contradiction shows that V' cannot be a proper subspace
of X**.
O

2.2.4 The weak and weak-x topologies

2.2.15 DEFINITION. Let (X, | - ||) be a normed space, and let (X*,| - ||.) be its dual. For x € X,
let ¢, € X** be given by ¢, (L) = L(x) for all L € X*. The weak topology on X is the weakest topology
on X under which each L € X* is continuous. The weak-+ topology on X* is the weakest topology on X

under which each of the functionals ¢,, x € X, is continuous

By Theorem 2.1.32, the weak topology makes X a topological vectors space, and the weak-* topology
makes X* a topological vector space. By Theorem 2.1.33, if X* is separable, then the relative weak
topology is metrizable on bounded subsets of X, and if X is separable, then the relative weak-* topology
is metrizable on bounded subsets of X*
The sets n
Viwokne = [ {2 € X ¢ |Li()| < €} (2.2.12)

j=1
where {L;....,L,} is a (finite) subset of X* and e > 0, constitute a neighborhood base at 0 for the weak
topology on X. It is left as a simple exercise to show that in fact one may require that {L;....,L,}
be linearly independent, and then this smaller set of neighborhoods is still a base at 0. Partly forr this

reason, the following lemma will be useful:

2.2.16 LEMMA. Let (X,| - ||) be a normed space. Let {L1,...,L,} be a linearly independent subset of
X*. Then there exists a set {z1,...,2,} of X such that Ly(z;) = 6, ; for all 1 <i,j <n (and therefore

linearly independent). Moreover, defining
Z:=(\ker(L;)  and W :=span({z1,...,z}) (2.2.13)
j=1

X=ZoW.

Proof. If n = 1 the claim is trivial. Suppose the claim is true for all linearly independent sets of n — 1
vectors in X*, and let {y1,...,yn—1} be such that L;(y;) = 6; j forall 1 <i4,j5 <n—1. If Z;L:_ll a;y; =0,
then foreach k = 1,...,n — 1, a3 = Lk(zg":_ll a;y;) = 0, and so {y1,...,yn—1} is linearly independent.
For all z € X,

Lp(x) =Ly | © — z_: Li(z)y; | + Z_: Ln(y;)Lj(x)

and since x — Z?:_ll L;(x)y; belongs to N, ker(Ly), if it were the case that

n—1

ﬂ ker(Ly) C ker(Ly,) ,
k=1
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then it would follow that L,, — Z;l;ll L,(y;)L; =0, and this would contradict the linear independence of
{L1,...,L,}. Hence there exists z, € ﬂZ;ll ker(Ly) such that L,(x,) = 1. Foreach j =1,...,n—1,

define x; = y; — Ly, (y;)@n. One readily checks that L;(x;) = d; ; for all 1 <4, j < n.

n n
Finally, for all z € X, 2= |z — ZLj(x)xj + ZLj(x)xj , and the first term on the right
j=1 j=1
belongs to Z, and the second to W. If x € ZNW, z = Z?:l a; and for each k, ap = Li(z) = 0 and
hence x = 0. Therefore, X = Z g W. O

One reason it is often useful to consider the weak-* topology on X* is on account of the following

Theorem:

2.2.17 THEOREM (Alaoglu’s Theorem). Let (X, || -||) be a normed space, and let B denote the closed
unit ball in X*. Then B is compact in the weak-x topology.

Proof. For each z € X, define D, = {z € C |z| < ||z||} which is a compact subset of C. By Tychonov’s
Theorem, 2 = []
x € X, ¢(x) € D,, is compact in the product topology. Let £ denote the subset of & consisting of

zex Dz, which consists of all complex values functions ¢ on X such that for each
linear functions. It is easy to that L is a closed subset of 2. (The same argument that we applied in the
Hilbert space setting can be made here.) Hence .Z is compact, and the elements of . are precisely the
elements of B. Moreover, the product topology on & is precisely the weakest topology that makes all of

the evaluation maps ¢ — ¢(x) continuous, but this is precisely the weak-* topology on B. O

2.2.18 COROLLARY (Corollary to Alaoglu’s Theorem). Let (X, | -||) be a reflexive Banach space, B
denote the closed unit ball in X. Then B is compact in the weak topology.

Proof. Since X is isometric with X** under the natural embedding, the weak topology on X is the same

as the weak-x topology on X**. O

If (X, || - ||) is reflexive, then the closed unit ball in X is weakly compact since we may then identify
the weak topology on X with the weak-* topology on X**. But when (X, || -||) is reflexive, the unit ball
in X need not be weakly compact.

While the weak topology on a Banach space (X, ||-||) is weaker than the norm topology, and strictly so
when X is infnite dimensional (since then the norm topology is not metrizable), every weakly continuous
function is norm continuous, but not vice-versa. However, by the very definition of the weka topology,
every norm continuous linear functional is weakly continuous.

There is an important reult of this type for subsets of X: While the class of weakly open sets is

strictly smaller than the class of norm closed sets, every norm closed convex set is also weakly closed.

2.2.19 DEFINITION (Half-space). Let (X, ||-||) be a Banach space. A set H C X is a closed half-space
of X in case for some a € R and L € X*,

H={zeX : R(L(x))>a}. (2.2.14)

By the definition of the weak topology, the functions = — R(L(z)) is weakly continuous, and hence

H is weakly closed, and therefore norm closed.
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2.2.20 THEOREM (Mazur’s Theorem). Let (X, ||-||) be a Banach space. Every norm closed convex set
K C X is the intersection of the half-spaces containing K. In particular, every norm closed convex set K

1s also weakly closed.

Proof. Regard (X, | - ||) as a real Banach space (X, | -||). Let z € K¢. Then {z} is compact and convex
in a trivial manner, while K is closed and convex, and {z} N K = ). By the Real Hahn-Banach Separation
Theorem, there is a continuous linear functional R, on (Xg, || -||) such that and an ¢ > 0 such that for all
yeK,
R.(z)+e<1<R,(y) .

Thus, H, := { x € X : R,(z) > 1 } contains K, and does not contain z. By Murray’s Lemma.
Lemma 2.2.8, there exists a complex contiuous linear functional on (X, )) such that R = Ro L, and hence
H{zeX : R(L.(z)) > 1}, which is manifestly closed. Thus, K = [, x. H, and this displays K as

the intersection over a family of weakly closed sets. O

In particular, the norm closed unit ball in a Banach space X is also weakly closed. The unit ball in its
dual X* is closed in the weak-* topology since the weak-* topology is Hausdorff, and it is weak-* compact
by Alaglu’s Theroem. However, one can give a more elementary proof of this fact as follows: Let B be
the unit ball in X*. If L € X** and L ¢ B, then there exists a unit vector z € L such that ®(L(z)) > 1.
But |[M(2)| <1 for all M € B. Hence

Hp={MeX* : R(M(x) <1} ={MeX* : R(¢s(M)) <1}

is weak-x closed, contains B, and does not contain L. Therefore,
B= ﬂ Hp
L¢B

is weakly closed.

2.2.21 THEOREM. Let (X, ||-|lx) and (Y,||-||y) be Banach spaces, with X reflezive. Let T € B(X,Y).

Let K C X be convex, bounded and norm closed. Then T(K) is convex, bounded and norm closed in'Y .

Proof. By Mazur’s Theorem, K is a weakly closed subset of B, for some r > co where B is the closed
unit ball in X. By Corollary 2.2.18 to Alaoglu’s Theorem, K is weakly compact. By Theorem 2.2.27, T
is weak-weak contiuous, and hence T(K) is weakly compact in Y. Since the weka topology is Hausdorff,
T(K) is weakly closed, and therefore, norm closed. A linear image of a convex set is evidently convex, so
that T'(K) is convex, and [|[Tz|y < ||T||||z||x for all z € K, so that T(K) is bounded. O

2.2.5 The uniform boundedness principle and related theorems

2.2.22 THEOREM. Let (X,| - ||x) be a Banach space, and let (Y,| - ||y) be a normed space. Let
T C B(X,Y). For each T in T, let |T|| denote the operator norm of T. Suppose that for all z € X,

sup {||Tz|ly} < o0 . (2.2.15)
TeT

Then
sup {||T|} < oo . (2.2.16)
TeT
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Proof. For n € N, define E, = ﬂ {reX |Tz|ly <n}={reX : sup{||Tz||y} <n}. Since for
TeT re7
each T, {r € X :||Tz|ly <n}isclosed, E, is closed, and by (2.2.15), U E, = X. By Baire’s Theorem,

neN
for some n, the interior of E,, is non-empty.. Hence for some n € N, » > 0 and z¢g € X, B(r,z¢) C E,.

That is, if ||z]|x <1, and 0 < s < r, g + sz € E,,. Therefore, for all T € 7,
s|ITz|ly = |T(sz — 20) + Taolly <n+ [Tzl .

Define C' = suppco{||Txolly} which is finite by (2.2.15). Then ||[Tz|ly < (n+ C)/s for all x with

|lz||x <1, and this means that ||T|| < (n + C)/r, showing that suppc o {||T||} < (n+ C)/r. O

2.2.23 COROLLARY. Let (X,| - |lx) be a Banach space, and let (Y,|| - ||y) be a normed space. Let T
be a linear transformation from X toY such that LoT € X* for all L€ Y*. Then T € B(X,Y).

Proof. Define A = {LoT : L€Y", |L|y~ = 1}, which, by hypothesis, is set of continuous linear

transformations form (X, | - ||x) to (C,|-|), By the definition of || - ||y+,

sup {|L(T(2))[} < [[T(x)]y} <oo.
LoTecA

By the Uniform Boundedness Principle, C' := supope 4{||L o T'l|y+} < co. Thereofre for all unit vectors

x€ X and L € Y*, |L(T(x))| < C, and this shows that ||T|| < C. O

2.2.24 DEFINITION (Weakly bounded). Let (X, || - ||x) be a Banach space. A C X is weakly bounded

in case for every weak neighborhood U od 0, there is an r < co such that A C rU.

2.2.25 COROLLARY. (X,| - |lx) be a Banach space. A C X is wekaly bounded if and only if it is

norm bounded.

Proof. Suppose A is norm bounded: For some C' < oo, ||z|| < C for all x € A. Let U be any weakly
,,,,, L, for some {L1,...,L,} C X* and € > 0. Let m :=
max{||Li|l«,...,[|[L1|l+}. Then for all z € A, j = 1,...,n, |L;j(z)| < ||Lj|«||lz]] < mC. Therefore, if
r>mC/e, x € Vi, . 1, CU. Thus, A is weakly bounded.

open set containing 0. Then U contain Vi,

Conversely, let = — ¢, be the natural embedding of X into X**. Suppose A is weakly bounded. Then
for each L € X*, there is some r; < 0o so thet A C r;Vy 1, which is the same as |¢p,(L)| = |L(z)| < 7L
for all z € A. That is,

sup {1 (L)} = EIEIEI{\L(HC)I} <00

By the Uniform Boundedness Principle, sup,c 4 [{||¢z||} < oo, but, as a consequence of the Hahn-Banach

Theorem, for each z, ||¢,|| = ||z||. Thus, weak boundedness implies strong boundedness. O

Corollary 2.2.25 says that in a Banach space, where one might expect two distinct notions of bound-
edness — norm boundedness and weak boundedness — there is onty one. There are also fewer dicrinct

classes of linear transformations than one might expect.

2.2.26 DEFINITION (Mixed continuity). Let (X, || -|/x) and (Y, ] - ||y) be Banach spaces. Let T be a

linear transformation from X to Y
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(1) T is weak-weak continuous in case T' is continuous when X and Y are equipped with their weak

topologies.
(2) T is strong-strong continuous in case T is continuous when X and Y are equipped with their norm
topologies.
(8) T is strong-weak continuous in case T is continuous when X is equipped with its norm topology and

Y is equipped with its weak topology.

(4) T is weak-strong continuous in case T is continuous when X is equipped with its weak topology and

Y is equipped with its norm topology.

The next theorem says that the first three types of continuity are the same, and that the fourth
type of continuity is extremely resrictive in an infinite dimensional setting. The key step is to prove that
strong-weak continuity implies strong-strong continuity, but this follows easily from Corollaray 2.2.23, and

hence this thoerem is another fairly direct conseqeunce of the Uniform Boundedness Principle.

2.2.27 THEOREM. (X,| - ||x) be a Banach space, and let (Y,|| - ||y) be a normed space. Let T be a

linear transformation from X to Y. Then the following are equivalent:
(1) T is strong-strong continuous.

(2) T is weak-weak continuous.

(8) T is strong-weak continuous.

Moreover, T is weak-strong continuous if and only if for some n € N, there exists {L1,...,L,} C X*
and {y1,...,yn} C X such that for all x € X,

Tz = (Lj(x))y; - (2.2.17)

Proof. Suppose that T is strong-strong continuous, and therefore bounded. Let {Li,...,L,} be any
finite subset of Y*, and let € > 0. We must show that T-1(Vy,
|L;(T(z))| = |T*Lj(x)], maxi<j<n{|L;(T(z)|} <€ <= maxi<j<,{|T*L;(x)|} < e. Therefore,

L,.c) is weakly open. Note that since

—1
T (VLlw--»Ln,f) = VT*LI;HwT*anf ’

which is open. Thus whenwever T is strong-strong continuous, 7' is weak-weak continuous.

Since the norm topology is stronger than the weak topology, weak-weak continuity implies strong
weak continuity.

Suupose that T is strong-weak continuous. Since every L € X* is weakly continuous by the definition
of the weak topology, L o T is continuous on X equipped with is norm topology. That is, Lo T € X*.
Then by Corollary 2.2.23, T is bounded, and hence strong-strong continuous. This completes the proof of
the equivalence of (1), (2) and (3).

Finally, suppose that T is weak-strong continuous. Then for some {Ly,...,L,} C Y* and some ¢ > 0,

Let Z = (j_, ker(L;), and note that Z C Vi, .1, If 2 € Z, then tz € Z for all t € R. Then
[t Tz|ly = |T(tz)|ly < 1 for all ¢, and this means that Tz = 0. We may assume without loss of



54

generality that {Li,..., Ly} is linearly independent. By Lemma 2.2.16, there exists a set {z1,...,2,}
such that Lj(z;) = 6;,; for 1 < i,j < n. Then for all z € X, = — 2?21
T(x)=T <Z?:1 Lj(:v)xj) = >0 (Lj(x))Tx;. This proves (2.2.17) with y; = Ta; for j =1,...,n.

Conversely, any operator of the form (2.2.17) is weak-strong continuous since each L; is weakly

Lj(xz)x; € Z, and hence

continuous, and scalar multiplication continuous and vector addition are norm continuous. O

2.2.28 THEOREM. Let (X, ||-|lx) and (Y,||-||y) be Banach spaces, with X reflexive. Let T € B(X,Y).

Let K C X be convex, bounded and norm closed. Then T(K) is convex, bounded and norm closed in'Y .

Proof. By Mazur’s Theorem, K is a weakly closed subset of rB, for some r > oo where B is the closed
unit ball in X. By Corollary 2.2.18 to Alaoglu’s Theorem, K is weakly compact. By Theorem 2.2.27, T
is weak-weak contiuous, and hence T'(K) is weakly compact in Y. Since the weka topology is Hausdorff,
T(K) is weakly closed, and therefore, norm closed. A linear image of a convex set is evidently convex, so
that T(K) is convex, and ||Tz|ly < ||T||||x||x for all z € K, so that T'(K) is bounded. O

2.2.29 THEOREM. Let (X,| -]|) be a Banach space. Let {xn}nen be a sequence in X. Then {x,}nen
converges weakly to x € X if and only if for all L € X*,

lim L(z,) = L(z) . (2.2.18)

n—oo

Moreover, if {x,}nen is wekly convergent, then

sup{|lzn|} < oo . (2.2.19)
neN

Proof. By definition, {x, }nen converges weakly to x € X if and only if for every weak neighborhood V'
of 0, z, € x+V for all but finitely many n € N. In particular, for all L € X* and all e > 0, z,, —2 € V,
with is the same thing as |L(z,) — L(z)| < € for all but finitely many n, so that (2.2.18) is valid.

Conversely if (2.2.18) is valid for all L, then for any {Lq,...,L,} C X* and any € > 0, |L;(z,—z)| <€
for all but finitely many n, and thus

n
Tp —T € ﬂ Vije=Viy, L.

j=1

for all but finitely many n. Since the sets Vi, .. 1. . are a neighborhood basis at 0 for the weak topology,
this means that {x, },en converges weakly to .

Finally, by what we just proved, if {z,}nen converges weakly to xz, then {L(x,)}n,en is a
Cauchy sequence in C, and hence is bounded, so that for all L € X*, there exists C; < o0
such that supn € N{L(z,,)} = supn € N{¢,, (L)} < Cr. By the Unifrom Boundednes Principle,
supn € N{||¢, ||} < oo, and as a consequence of the Hahn-Banach Theorem, ||¢,., || = ||y ||, thus proving

(2.2.19). O

2.2.30 THEOREM (Open Mapping Theorem). Let (X, | - ||x) and (Y,| - |ly) be Banach spaces. Let
T e B(X,Y) be surjective. Then T is an open mapping. In particular, when T € B(X,Y) is injective as

well as surjective, its inverse belongs to (Y, X).
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Proof. Let Bx(r,0) denote the open unit ball of radius r > 0 in X, and let By (r,0) denote the open unit
ball of radius r > 0 in Y, Since {Bx(r,0) r > 0} is a neighborhood base at the origin for the topology
on X, and {By (r,0) r > 0} is a neighborhood base at the origin for the topology on Y, if for each r > 0,
there is an s > 0 so that By (s,0) C T(Bx(r,0)), then T maps open sets in X to open sets in Y. moreover,
by homogeneity, to show that 7' has this property, it suffices to show that there is some s > 0 so that
By (s,0) C T(Bx(1,0)).

Since X = UpenBx(n,0), and since T is surjective,

Y = |J T(Bx(n,0)) = | nT(Bx(1,0)) .
neN neN
By Baire’s Theorem, for some n, the interior of nT(Bx(1,0)) is non-empty. Since these sets are a
homeomorphic to one another, each of them has a non-empty interior, and hence T(Bx (1,0)) # 0.
Thus, for some yo € Y, and some ¢t > 0, By (t,9) C T(Bx(1,0)). In other words, of ||y — yolly < t,
then y — yo € T(Bx(1,0)). In particular, yo € T(Bx(1,0)) Then since T(Bx(1,0)) is convex,

1 1 1 -
Y= 5(2/ — o) + SY0 € T(Bx(1,0)) .

This shows that By (t/2,0) C T(Bx(1,0)).
What we have proved so far shows that for all y € By (¢/2,0) and all € > 0, there is an « € Bx(1,0)
such that ||y — Tz|ly < e. By homogeneity, we have that for all r > 0,

foralle >0, |lylly <r = there exists x € Bx(2r/t,0) such that ||y — Tz|ly <e€. (2.2.20)

Pick y € By (t/4,0), and then pick z; € Bx(1/2,0) so that ||y — Tx1|ly < t/8. Now apply (2.2.20)
with y — T'z1 in place of y, and choose x5 € Bx(1/4,0) such that ||(y1 — Tz1) — Txs|| < ¢/16. Proceeding
inductively, we construct an infinite sequence {z,, },en such that for all n, z,, € Bx(27"71,0) and ||y —
T(3"7_y 2j)lly <2772 Note the 3272 | x; coverages to an element z € Bx(1,0), and then [ly —Tz|y =
limy, 00 |y — T(Zg;l zj)]ly = 0. Thus y € T(Bx(1,0)) whenever y € By (t/4,0) which means that
By (t/4,0) C T(Bx(1,0)).

The final statement is clear since 7! is continuous if and only if whenever U is open in X,
(T~H=Y(U)=T(U) is open in Y. O

2.2.31 DEFINITION. Let (X, | - |x) and (Y, - ||y) be normed vector spaces, and let T be a linear
transformation from X to Y, not necessarily bounded. The graph of T, I'(T"), is the subset of X x Y given
by

NT) ={(z,Tz) : x€ X} .

The norm ||(z,y)] := ||z||x + ||y|ly makes X x Y into a normed vector space with the obvious rules for
vector addition and scalar multiplication. A linear operator T from X to Y is said to be closed in case
I'(T) is norm closed in X x Y.

Beware the terminology, which is standard: while a map T is open if and only if the image under T'
of every open set is open, to say that T is closed does not mean that the image under T of every closed

set is closed.
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2.2.32 THEOREM (Closed Graph Theorem). Let (X, | - ||x) and (Y,| - ||y) be Banach spaces. Let T
be a linear transformation from X toY. If T is closed, then T € B(X,Y).

Proof. 1t is easy to see that X x Y is a Banach space in the norm ||(z,y)|| = ||z|| + ||y||. Then since I'(T")
is a norm closed subspace of X X Y, it is a Banach space in this norm. The map (z,Tz) — z is a linear
bijection of X with I'(X), and since ||z||x < ||z||x + [|[Tx||y, it is bounded. (Its operator norm is no
greater than 1.) By the Open Mapping Theorem, its inverse, which is the map z — (x,Tz) is bounded.
That is, there is a finite constant C' such that ||z||x + ||[Tz|ly < C|/z| x, which certainly implies that the

operator norm of 7" is no greater than C. O

The following example of the use of the Closed Graph Theorem is due to Terry Tao.

2.2.33 THEOREM. Let (X, 0) be a Hausdorff topological vector space, and let || - |1 and || - ||2 be two
norms on X such that these norm topologies are both at least as strong as O, and such that X is complete

in both norms. Then || - ||1 and || - |2 are equivalent norms.

Proof. To say that || - |1 and || - |2 are equivalent norms means that the identity transformation I is
bounded from (X, || - ||1) to (X, || - ||2) and vice-versa. Note that I'(I) = {(z,z) : = € X}. Let (z,y)
belong to the closure of I'(I). Then there is a sequence {x,}neny such that lim, ||z, — 2|1 = 0 and
lim, o0 ||Zn — y|l2 = 0. But then every open set U € & that contains z contains z,, for all but finitely
n, and every open set V € & that contains y contains z,, for all but finitely n. If U NV = (), this is
impossible, and since ¢ is Hausdorff, it must be that x = y. Hence (z,y) € I'(I). This I'(I) is closed,
and hence I is bounded from (X, || - ||1) to (X, || - ||2). By symmetry, it is also bounded from (X, || -||2) to
X I, =

The utility of the closed graph theorem lies in the fact that if we seek to prove continuity of a linear
transformation T' between two normed space (X, - ||x) and (Y,] - ||y), we must show that whenever
lim, o0 , = = in X, then lim,, o Tz, = Tz in Y. When the normed spaces are Banach spaces, the
closed graph theorem reduces our burden to show that if lim,, .. x,, =  in X and lim,, o, T'z,, = ¥, then
y = Tx. That is we may assume that both sequences converge and need only identify the limit, as in the

proof of Theorem 2.2.33. We do not need to prove that {Tz, },eN is convergent.

2.3 Exercises

1. Let & be the topology on R generates by the half-open intervals (x,y]. (This is clalled the lower-limit
topology, and (R, €) is called the Sorgenfrey line. Show that (R, &) is not a topological vector space over
R.

2. Let (X, 0) be a topological vector space. Show that for all subsets A, B of X, A+ B C A+ B. Show
that if C C X is convex, then C abd C° are convex.

3. Let (X, 0) be a topological vector space. Let A and B be compact subsets of X. Show that A + B is
compact. Let A be closed and B compact. Show that A + B is closed.

4. Let (X, 0) be a topological vector space. Let L be a linear map from X to C. Show that T is continuous
if and only if ker(T') is closed.
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5. Let (X, || - ||) be a normed vector space. Show that if X* is sepearable, then so is X. Show that if
(X, || -1I) is a separable, reflexive Banach space, then so is X*. Show that in this case, the weak topology

on bounded subset of X is metrizable.

6. Let X = (°°, the space of bounded sequences = {z,}.ne, which, equipped with the norm ||z| :=
sup,enil®n|} is a Banach space. Find a sequence {L,}nen in the unit ball of X* that has no weak-
x convergent subsequence, showing that the unit ball B in X™*, which is weak-x compact by Alaoglu’s

Theorem is not sequentially weak-* compact.
7. Show that the norm function x — ||z|| is lower semicontinuous on any Banach space (X, || - ||).

8. Let (X, || - ||x) be a normed vector spaces, and let (Y, ] - ||y) be a Banach space. Suppose {T}, }nen is
a uniformly bounded sequence in Z(X,Y); i.e.; sup,en{||7n]|} < co. Suppose there is a dense set E C X
such that {T,,x},en converges for all © € E. Show that {T,,2},en converges for all z € X.

9. Let (X, | - ||) be a Banach space. Let X* be its dual and X** be the dual of X*. Let B be the closed
unit ball in X, andl let B*x be the closed unit ball in X**. The natural isometrix embedding of X into
X** idetifies B with a subset of B**. Show that this subset is weak-* dense in B**. Then show that X is
reflexive if and only if B, identified with a subset of X** via the natural isometric embedding, is weak-*

compact.

10. Let (X, - ||) be a reflexive Banach space. Show that for every L € X*, there exists a unit vector
u € X such that L(u) = || L.

11. Let (X, |- ||) be a reflexive Banach space. Let K be a closed convex subset of X. For any zog € X,
define the function F': X — [0,00) by F(x) = ||z — xol|. Show that F is weakly lower semicontinuous on
X, and then show that there exists an z € K such that F(z) < F(y) for all y € K.

12. Let X = C([0,]) the Banach space of continuous functions f in [0, 1] with the norm || f|| = max{|f(z)| :
x € [0,1]}. For a € [0, 00), define

Ka::{feX : /Olf(x)dle,f(()):a} .

(a) Show that for each a € R, K|, is closed and convex.

(b) For f € X, define d(f, K,) = inf{||f —g|| : g € K,}. Show that there is no g € Ky such that
llgll = d(0, Ky), while there is a unique g € K; such that ||g|| = d(0, K;), and there are ininiftely many
g € K5 such that ||g|| = d(0, K3).

13. Let (X, || - ||) be a Banach space. Suppose that {z, },en is a sequence in X that converges to z € X
in the weak topology. . Suppose that {L,},eN is a sequence in X* that converges weakly to L € X*. Is
it necessarily the case that lim, o Ly (z,) = L(x)? Prove this is true or give a counter-example. Is it
necessarily the case that for some strictly increasing sequence {ny }ren in N that limy_ o Ly, (zn,) = L(z)?

Prove this is true or give a counter-example.

14. Let (X, || - ||) be a Banach space. The weak-* topology on X* is no stronger than the weak topology
on X*. When X is reflexive, the two topologoes are the same. Otherwise, the weak-* topology on X* is

strictly weaker than the weak topology on X*. Here is one way to see this: Show that a linear functional
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¢ on X* is weak-* continuous if and only if ¢ is in the image of the canonical embedding of X into X**.
Thus, when X is not refexive, there are continuous (and hence weakly continuous) linear functionals on

X* that are not weak-* continuous.

15. Let (X, | - ||) be a Banach space. A set A C X* is total in case the only vector x € X such that
L(z) =0 for all L € Ais x = 0. Show that if X is separable, then there is a countable total set in X*.
Show that in this case, there is even a sequence {Lj, },en of unit vectors in X* such that for all € X,

|lz|| = sup,en{|Ln(x)|}. Show that £ is not separable, but that it does contain a countable total set.
16. Let (X, || - ||) be a Banach space. Let A C X be weakly compact. Show that A is bounded.

17. (X,] - ||) be a Banach space whose dual X* contains a countable total set, which, without loss of
generlaity may be takesm to be a sequence {L,}nen od unit vectors. Let A C X be weakly compact.
Show that

plz,y) = 27F|Ly(y — o)

defines a metric on A, and that the identity map on A is continuous from the relative weak topology on
A to the metric topology on A. Then, using the fact that A is weakly compact, show that the identity

map is also open, and hence that the relative weak topology and the metric topology coincide.

18. (X, || - ||) be a Banach space, and let A C X be weakly compact. Let {z,},en be any sequence in A.
Let Y be the norm-closed span of {z,, }neN, which is a separable subspace of X. Show that ANY is weakly
compact, and then using the separability of Y, that the relative weak topology on ANY is metrizable, so
that A NY is weakly sequentially compact. Conclude that in any Banach space (X, || - ||), every weakly

compact set A is weakly sequentially compact.



Chapter 3

Hilbert Space

3.1 Hilbert Space

3.1.1 Inner product spaces

The modern definition of a Hilbert space was given by John von Neumann in 1929 during the course of
his work on the mathematical foundations of the then new quantum theory. He had gone to Gotingen to
work with Hilbert on problems in mathematical logic. When he arrived, he was drawn to a seminar on

quantum theory, and embarked on a new direction.

3.1.2 Inner product spaces

3.1.1 DEFINITION (Sesqilinear form). Let H be a complex vector space. A sesqilinear form on H is
a function on H x H with values in C such that for fixed f € H, g — (f,g) is a linear functional on H,

and such that for all f,g € H, (g, f) = (f, g) The sesqilinear form is positive definite in case (f, f) > 0 for
all f#0.

3.1.2 DEFINITION (Inner product space). An inner product space (H, (-,-)) is a complex vector space
‘H equipped with a positive definite sesqilinear form (-,-) on H x H. The norm || f|| of a vector f € H is
defined by

1£1 = V3T - (3.1.1)

The example behind these definitions is £2, the space of complex valued square-summable sequences

where for two such sequences f, g,

(f.9)=>_ F(n)g(n),

which was basic to Hilbert’s theory of “infinite matrices”.
The fundamental theorem concerning inner product spaces is that the Cauchy-Schwarz inequality is

satisfied:

59



60

3.1.3 THEOREM (Cauchy-Schwarz). Let H be a vector space, and let (-,-) be an inner product, possibly
degenerate, on H. Then for all f,g € H.

() < (F )9, 9) (3.1.2)

and, when {-,-) is non-degenerate, so that (H,{-,-)) is an inner product space, there is equality in (3.1.2)

if and only if {f, g} is linearly dependent.

Proof. If either f =0 or g = 0, equality holds in (3.1.2). Suppose that this is not the case. Then || f]| # 0
and ||g|| # 0, and we may define u = || f|| 7' f and v = €*?||g||~1g for 6 € [0,27) to be chosen later. Then

lu]| = |lv|| = 1 and hence
lu =l = (u—v,u—v) = ul* + [[v]]* + 2R((u, v)) = 2(1 + R((u, v))) -

1
Now choose 6 so that R((u,v)) = |(u,v)|, and hence |{u,v)| =1— §||u — o|]?. Multiplying through by
Il £1llgll, this becomes

[(F ol < IIF gl = %II (Ilgllf = eIl £llg) II* - (3.1.3)

This proves the inequality and shows, under the assumption that ||k|| = 0 ounly for h = 0, that equality
holds if and only if ||g||f = €|/ f|lg, which is the cases if and only if {f, g} is linearly dependent. O

A consequence of the Cauchy-Schwarz Inequality is that the function f — | f|| is sub-additive on H.
That is, for all f,g € H, [|f + gl < [If]| +[lg]l-

3.1.4 DEFINITION (Unit vectors and orthogonality). A vector u in an inner product space H is a unit
vector in case [Jul| = 1. Two vectors f,g € H are orthogonal in case (f,g) = 0. A subset {u;};c # of H is

orthonormal in case for all j,k € #, (uj,ux) = 0 if j # k while (uj,u;) = 1.

By the Cauchy-Schwarz inequality, for any two unit vectors u,v € H, R({u,v)) € [-1, 1], and hence it
makes sense to define the angle between two unit vectors in H to be arccos(R({u, v))). The angle between
two non-zero vectors f,g is defined to be the angle between their normalizations || f||~*f and ||g||~tg;
which is consistent with Definition 3.1.4.

Using the the Cauchy-Schwarz Inequality, it is simple to prove that the function f — ||f| is sub-
additive on H. That is, for all f,g € H, || f + gl < || fll + |lgll, and f — || f|| is evidently homogeneous of
degree one. Thus, our terminology is consistent, and an inner product space, (H, (-,)), equipped with the

norm (3.1.1) is a normed vector sapce:

3.1.5 THEOREM (Minkowski’s inequality for inner product spaces). Let (H,(-,)) be an inner product
space. Then for all f,g € H,
1+ gl < WI£IF+ gl (3.1.4)

and there is equality in (3.1.4) if and only if {f, g} is linearly dependent.

Proof. for any f,g € H, by the Cauchy-Schwarz inequality,

1f + 9% = (f + g, f +9) = 117 + g + 2R(f, 9) < FI1* + llgl* + 2l Mgl = (A1 + llgl)? -

The square root function is strictly monotone, and there is equality above if and only if there is equality

in the Cauchy-Schwarz inequality. O



61

The metric associated to the inner product norm is often called the inner-product metric. We know
for any two normed vectors spaces (X, || - ||x) and (Y| - ||lv), & linear transformation T from X to Y is
continuous if and only if it is bounded. Let H and K be two inner product spaces. Let Z(H, K) denote the
set of all bounded linear transformations from #H to K, and in the special case K = H, let #(H) denote
PB(H,H). As always, the function T — ||T|| is evidently a norm on the vector space ZB(H,K) which is
called the operator norm. Elements of % (#H, K) will often be referred to as operators.

There are two important identities that hold in any complex inner product space H, both of which

are easily verified by direct computation: The polarization identity is

(f,9) ((f+g9,f+9)—{f—g9,f—g) —if +ig, f+ig) +i(f —ig, [ —ig)]

[(1f + gl = IIf = gll* = illf +igll* + 1l f —igl”] - (3.1.5)

e el

The polarization identity shows that the correspondence between inner products and norms is one-to-one:
Every inner product defines a norm, and the inner product may be recovered from the norm.

The parallelogram identity is

2
_ 1P+ lgl?

2

f+gl?
=) +

f—g
2

(3.1.6)

This expresses a quantitative strict convexity property of the function f — || f]|?.

3.1.3 Hilbert spaces and the Projection Lemma

3.1.6 DEFINITION (Hilbert Space). A Hilbert space is a complex vector space H equipped with a
sesqilinear form (-,-) such that H is complete in its inner product metric. In particular, a Hilbert sapces

is a Banach space.

By what has been explained earlier about general normed vector spaces, if H and IC are both Hilbert
spaces, then %(H, K) is complete in the operator norm, and hence is a Banach space.

The next theorem makes essential use of the completeness of Hilbert space.

3.1.7 THEOREM (Projection Lemma). Let K be a non-empty closed convex set in a Hilbert space H.
Then K contains a unique element of minimal norm. That is, there exists fo € K such that || fol| < ||f]l
forall f € K, f # fo. Moreover, if {fn}nen is any sequence in K such that

T [fu]l = inf{7] : f e K},
then lim, o0 || fn — fol| = 0.

Proof. Let D := inf{||f|| : f € K}. If D=0, then 0 € K since K is closed, and this is the unique
element of minimal norm. Hence we may suppose that D > 0. Let {f, }nen be a sequence in K such that

lim;, o ||wn|| = D. By the parallelogram identity

2
_ w4 1l
5 :

fm + fn 2+
2

fm_fn
2
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2

By the convexity of K, and the definition of D, > D? and so

fm + fn
2

*_ (Ifml® = D?) + (Ilfa]l” = D?)
5 .

fmffn
2

By construction, the right side tends to zero, and so { fy, }nen is a Cauchy sequence. By the completeness
of H, {fn}nen is a convergent sequence. Let fy denote the limit. By the continuity of the norm, ||fo|| =
lim, o || full = D. Finally, if f; is any other vector in K with || fi|| = D, (fo + f1)/2 € K, so that
|(fo+ f1)/2|| > D. Then by the parallelogram identity once more ||(fo — f1)/2|| = 0, and so fo = f1. This

proves the uniqueness. O

3.1.4 Orthogonal complements
As a first application, we discuss orthogonal complements.

3.1.8 DEFINITION (Orthogonal complement). Let H be a Hilbert space and S C H. Then S+, the

orthogonal complement of S is the set

St=(WSeH; (9.)=0}. (3.1.7)

ges

By the continuity of f + (g, f), for each g, {f € H ; (g, f) = 0} is closed, and hence S+ is closed.
Also it is evident that if fi, fo € S+ and a1, a0 € C, for all g € S,

(arfi +azf2,9) = aa(f1,9) + a2(f2,9) =0 .
Hence S+ is a subspace of H for all S C .

3.1.9 THEOREM. Let H be a Hilbert space, and let I be a closed subspace of H. Let f € H. Then
there exist unique vectors fo € K and fi € K+ such that f = fo+ f1. That is, H = K ® K. Finally,
define the distances d(f, K+) and d(f,K) from f to K+ and K respectively,

d(f,Kt):=inf{||f —g : g€ K} and d(f,K):=inf{||f—g| : g€ K} . (3.1.8)

Then f1 is the unique vector in K+ such that ||f — fi1|| = d(f,K+), and fo is the unique vector in K such
that || f = foll = d(f. ).

Proof. We first show that if such a decomposition of f exists, then it is unique. Suppose that fy, g9 € K
and fi,g1 € K+, and that f = fo + fi = go +g1. Then fo —go = g1 — f1, and fo — go € K while
g1 — f1 € K+, so that fy — go and g; — f; are orthogonal. Therefore

0="(fo— 90,91 — f1) = (fo — g0s fo — 90) = || fo — go||*

and hence fy = go, from which it follows that f; = g;.

To prove the existence of such a decomposition, Let K = {f —¢g : g € K}. Then K is a non-empty
closed convex subset of H, and hence it contains a unique element f— gy of minimal norm. By construction,
forall g€ K and t €R, f — (go +tg) € K, and so the function ¢(t) = ||(f — go) — tg)||* has a maximum
at t = 0. Differentiating,

0=¢'(0) = 2R(f = go, 9) -
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This shows that f — go € K+ and then f = (f — go) + go where f — go € K+ and go € K.

Finally, for any g € K5, [f — g2 = (7 — f1) + (i — 97 = I = f)l> + (1 — ) since
f—fi=fo€Kand f —g € K*+. Therefore, || f —g|| > ||f — fi| with equality if and only if f = f;. The
same reasoning shows that for all g € K, ||f — g|| > ||f — fol|l with equality if and ouly if g = fo. O

Let K be a closed non-zero, proper subspace of a Hilbert space H. For any f € H, define Pf and
PLf to be the unique elements of K and Kt respectively such that f = Pf + Pt f. By the uniqueness
of Theorem 3.1.9, the transformations f — Pf and f + PLf are both linear, and since ||f||? = || Pf||* +
|PL£I1? > max{||Pf||?, | P+ f||?}, it is evident that ||P|, || Pt| < 1. That is, P, P* € %(H). (Since K is a
subspace of H, we may regard %(H,K) as a subspace of %(H), and likewise with Z(H,K*).) Moreover,
since neither I nor K is the zero subspace, there are unit vectors u and v in IC and K+ respectively such
that Pu = u and Ptv = v. Therefore, ||P|| = ||P*| = 1.

3.1.10 DEFINITION. Let J# be a closed non-zero, proper subspace of a Hilbert space H. The bounded
linear transformations P and P+ such that for all f € H, Pf € K, P*f € K+ and f = Pf + P*f are
the orthogonal projections of H onto K and K+ respectively.

3.2 Duality in Hilbert space

3.2.1 The dual space of an inner product space

3.2.1 DEFINITION (The dual space of an inner product space). Let H be an inner product space.

The dual space H* of H is the vector space space of all continuous linear functional on #.

Let L be a continuous linear functional on an inner product space H. As a linear transformation L
from the normed space H to the normed space C, L is continuous if and only if L is bounded, so that the

continuity of L is equivalent to the condition that ||L||. < co where ||L||. defined by
[1L]l« = sup{|L(w)] = [lul <1} . (3.2.1)

By what we have said earlier about bounded linear transformations from one normed space to another,
Il - |« is & norm on H*, and therefore d.(L, M) := |L — M||. defined a metric on H*.

As an example of a bounded linear functional on an inner product space H, consider any g € H, and
define

Lg(f) =g, 1) - (3.2.2)

Then L, is linear, and by the Cauchy-Schwarz inequality, | Ly (f)| < ||g]||f|| with equality if f = g, showing
that || Ly|| = |lg||. Thus the map g — L, is an isometry from # into H*. Note that it is not, however,
linear, but sequilinear: For all a € C, Loy = aLy. We shall soon prove that when H is a Hilbert space,
every L € H* is of the form L = Ly for some g € H.

A number of facts about dial spaces that are, in the general setting of Banach spaces, conseqeunces
of the Hahn-Banach Theorem can be proved directly in the Hilber space setting. For example, the fact
that the dual of any Banach space separates points is a conseqeunce of the Hahn-Banach Theorem. In

Hilbert space, matters are simpler: For all f,g€ H, f # g, Ly_o(f—9)={(f—g.f —g)=|f —g|* > 0.
Thus, Lf_gf 7& Lf_gg.
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Likewise, we know that for any Banach space X, and all x € X, there exists L € X* such that
IL]l« = 1 and L(x) = ||z||. Again, in general, this is a consequence of the Hahn-Banach Theorem, but
when X is a Hilbert space H, we can be more explicit: If f =0, we may take L = L, for any unit vector

g € H. Otherwise, f/| f| is a unit vector in H, and hence Ly, ¢ is a unit vector in H*. Then

Liia () = AN 1) = 11

3.2.2 The Riesz Representation Theorem and the dual space of a Hilbert
space

3.2.2 THEOREM (Riesz Representation Theorem). Let H be a Hilbert space, and let L € H*. There
is a unique vector gr, € H such that L(f) = (gr, f) for all f € H, and ||gr|| = || L||«-

Proof. Tt L(f) = 0 for all f € H, the assertion is trivial, so suppose that |L||. > 0. Define K to be the set
K:={feM : RL) =L}

It is readily checked that this is a closed convex set in H.

If f e K, then ||L||«|If]l > |L(f)| > R(L(f)) = ||L||«, and hence ||f|| > 1. On the other hand, by
the definition of ||L||., there is a sequence of unit vectors {u,}nen such that |L(u,)] — ||L||+«. Then
choosing 6, € [0,27) so that € L(u,) = |L(u,)|, v, = €i0n|£(u:)|u" € K and |lv,]] — 1. Thus,
inf{|lv]| : ve K} =1

It now follows from the Projection Lemma that there is a (unique) unit vector uy € K with

L« = R(L(uo)) - (3.2.3)

For all f € H, R(L(f)) < [L(S)] < [ILI[[f]l, when f with f 7 0,

R(L(f R(L(w
T <= S
Hence, for any g € #H, the function ¢ : (—17 1) — R defined by ¢(t) := R(L(uo +19)) has a
2|lgll” 2|4l [uo + tg|

maximum at t = 0. One readily checks that ¢ is differentiable and computes

#'(0) = R(L(9)) — | L R ({uo, 9)) -

Since the left hand side is zero for all g, ®(L(g)) = || L||+R({uo, g)) for all g. Replacing g by ig, the same
is true of the imaginary parts, and so L(g) = (||L|[+uo,g) for all g. Thus, g = ||L|lsuo is such that
L(f) = {gr, f) for all f € H, and |lgz]| = |-

If hy, were any other vector with L(f) = (hg, f) for all f € H, we would have (g;, — hy, f) = 0 for
all f € H, Taking f = g1, — hz,, we see that |gr, — hz||> = 0, and so hy, = g1, proving the uniqueness of
gr- O

The Riesz Representation Theorem allows us to identify a Hilbert space H with its dual space H*:
That is, the sesquilinear mapping L — g, is an isometry from H* onto H whose inverse is the map g +— L.

A consequence of the Riesz Representation Theorem is that H is reflexive. This is more or less evident
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since the identification of H with H* extends to identify H with H**. The fact that the identification of
H with H* is sesquilinear dooes nor matter since the composition of two sequilinear maps is linear. All
the same, it is perhaps worth spelling out the short argument:

Let ¢ € H**. Then g — ¢(L,) is a continuous linear funtional on H. By Theorem 3.2.2, there is a
unique h € H such that for all g € H,

Since every L € H* is of the form L = Ly, by Theorem 3.2.2 a second time, ¢(L) = L(h) for all L € H*,
and thus ¢ is an evaluation functional. That is, the canonical linear embedding of H into H** is surjective.

An elementary but important application of the Riesz Representation Theorem concerns the adjoint
A* of an operator A € B(H), H a Hilbert space. Let A € #(H), and for g € H, let L, be defined as in
(3.2.2). Then L, o A is a continuous, and hence it is a bounded linear functional on #.

By the Riesz Representation Theorem, since L, 0 A € H*, there exists a unique h € H so that for all
[ eH,

(9. Af) = Lgo A(f) = (h, [) .

Therefore we may define a function A* : H — H by defining A*g to be the unique element of H such that
(9, Af) = (A9, f) (3.2.4)

for all f,g € H.
Again because of the uniqueness, the linearity of A implies that A* is a linear transformation on H.

Moreover, for all unit vectors u,v € H,
[(u, A™0)| = [(A%v,u)| = [(v, Au)| < [Jo]|[| Au] < [|A]l -
Taking u = ||A*v|| "t A*v, we obtain ||A*v|| < ||A]|. Since v is an arbitrary unit vector in H, this yields
A < I4] . (3.2.5)

Therefore, A* € Z(H).
Taking complex conjugates of both sides of (3.2.4), (f, A*g) = (Af, g), and then swapping the roles
of f and g,

(9,A°f) = (Ag, [) (3.2.6)

for all f,g € H. Comparing (3.2.4) and (3.2.6), it is evident that A** := (A*)* = A for all bounded linear
transformations A. Then by (3.2.5),

[A[ =A™ < A < Al -
This means that for all bounded linear transformations ||A]|,
AT = 1Al - (3.2.7)

Summarizing, we have proved the following:
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3.2.3 THEOREM. Let A € #B(H), H o Hilbert space. Then there exists a unique bounded linear
transformation A* on H that that (3.2.4) is valid for all f,g € H. The map A — A* is conjugate linear,
and satisfies || A*|| = [|A]|.

Theorem 3.2.3 says that the map A — A* is a conjugate linear isometry on the Banach space #(H),
and since A** = A, it is an involution. Because of its canonical nature, it is often called the involution on
PB(H). The above considerations are readily extended to maps in Z(H, K) for two Hilbert spaces. This

is left to the reader.

3.2.4 DEFINITION. Let A € #(H), H a Hilbert space. Then the unique bounded linear transformation
A* on H that that (3.2.4) is valid for all f,g € H is called the adjoint of A. A € B(H) is called self-adjoint
in case A = A*, that is, in case for all f,g € H,

(9. Af) = (Ag. f) - (3.2.8)

As an example, let K be a closed, proper, non-zero subspace of a Hilbert space H. Let P be the

orthogonal projection onto K. Then for all f, g € H,
(f,Pg) = (P~ f+ Pf,Pg) = (Pf,Pg) = (Pf,Pg+ P'g) = (Pf,g) .
Thus P is self-adjoint, and for the same reason, so is P.

3.2.5 THEOREM (Hellinger-Toeplitz Theorem). Let A be a linear transformation from H to H defined
everywhere on H and such that for all f,g € H, (3.2.8) is valid. Then A € B(H).

Proof. By the Closed Graph Theorem, it suffices to show that the graph of A is closed. Suppose that
{fn} is a sequence in H such that f =lim, o fn and g = lim,_,oc Af, both exist. Then for all h € H,

That is, for all h € H, (h,g — Af) =0, Taking h = g — Af, we conclude that g = Af, and the graph of A

is closed. 0

3.2.6 THEOREM (Gram-Schmidt). Let H be a Hilbert space, and let { f;}jc # be a linearly independent
subset of H where either ¢ = {1,...,N} for some N € N, N < dim(H), or, in case H is infinite
dimensional, # = N. Then there exists an orthonormal set {u;};e s such that for alln € Z,

span({fi1,..., fn}) =span({u1,...,un}) . (3.2.9)
We may further require that (fn,w,) > 0 for all n, and under this condition, {u;}je 7 is uniquely deter-
mined.
Proof. To have span({f1}) = span({u1}) and |luy|| = 1, we must choose u; = aq||f1||~! f1 for some a; € C

with |a| = 1. For eachn € ¢, n > 1, let K, = span({fi,..., fu}). Since dim(K,)) = n, K,, is closed.
Let P, denote the orthogonal projection onto K. Since {fi,..., fn—1} spans K,_1, and since {f;};c #
is linearly independent, f,, ¢ KC,,_1, and hence P, f, # 0. Choose a,, € C with |a,| = 1, and define

an 1
Up = ————PL . (3.2.10)
[Py full” "
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This formula is valid for all n including n = 1 if we define P, to be the identity operator.

Note that N
| Pr1 fall
— " uy,

(677

fn = n—lfn +Pnl71f = Pn—lfn +

and P,_1f, € K,,—1. Hence

K. =span({fi,..., fa—1, fn}) =span(K,—1 U {fn})) = span(K,,—1 U{u,})) .

Therefore, if K,,—1 = span({u1,...,up—1}), then K,, = span({u1,...,u,}). Since evidently span{fi}) =
span{u; }), induction shows that C,, = span({uy,...,u,}) for all n, and thus (3.2.9) is valid for all n, and
for all n,

u, € K- = (span({uy, ..., un}))* .

That is, for all j < n (uj,ug) =0 for all n € #. Since each u; is a unit vector, {u;};e # is orthonormal.
For the uniqueness, note that u,, must be orthogonal to every vector in KC,,_1 = span({uy,...,un—_1}),
and must belong to K, = span({fi,..., fn}), there are 3; € C, j = 1,...,n such that u, = 2?21 B fis

and therefore

Un = #—1“71 = Prill Zﬁjfj = BnP;_—lfn .
j=1

and so u, must have the form given in (3.2.10), and the only freedom in the choice of {u;};c s is the

choice of the multiples «;, but the further condition (f,,u,) > 0 fixes a; =1 for all j. O

In any infinite dimensional Hilbert space H, there is an infinite linearly independent sequence { fy, } nen
in ‘H, and then by Theorem 3.2.6, there is an infinte orthonormal sequence {u,, }nen in H. Since for m # n,
ltn — Uml|| = V2, no subsequence of this sequence is Cauchy, and hence this sequence has no convergent

subsequence. This proves:

3.2.7 THEOREM. In an infinite dimensional Hilbert space H, B := {f : ||f|| < 1}, the closed unit

ball, is not compact.

3.3 The Hilbert space L*(X, M, 1)

3.3.1 L*(X,M,u) as an inner product space

So far, our only example of an infinite dimensional Hilbert space is £2. The Lebesgue theory of integration
provided a vast new range of examples. If (X, M, u) is a measure space, the vector space of square
integrable complex valued function f on X, identified under almost everywhere equivalence, has a natural
inner product making it a Hilbert space. This is the content of the Riesz-Fisher Theorem. A particular
case is that in which X = N, M = 2N_and yu is counting measure. In this case, L?(X, M, u) = (2.

Let (X, M, 1) be a measure space. As a set, L?(X, M, u) consists of the equivalence classes, under
equivalence almost everywhere with respect to p, of functions on X that are M-measurable and such
that / |f|?dp < oo. Clearly, if z € C and f € L*(X,M,pu), |2f|> = |2|?|f]? is integrable, and if

X

fr9 € L2(X, M, ),
I+l < (f1+1gD)* <2011+ 1gl?) - (3.3.1)
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is integrable. Thus, L?(X, M, 1) is a vector space under the usual rules of addition and scalar multiplica-
tion for functions. Also, for a, 8 € C, 2[ap| < |a|? + |3|? so that for L2(X, M, p), fg € LY(X, M, ).

3.3.1 DEFINITION (The L? inner product). For f,g € L*(X, M, u), we define
(fr9) = / Fodp . (3.3.2)
X

Note that (-, -) is a positive sesquilinear form on L?(X, M, p), and it is non-degenralte since (f, f) = 0
if and only if fX |f|?dpu = 0 if and only if f = 0 almost everywhere. Therefore, L?(X, M, ) equipped
with this inner product is an inner product sapce. We write ds to denote the metric corresponding to this

inner product, and refer to is as the L? metric.

3.3.2 The Reisz-Fischer Theorem

3.3.2 THEOREM (Riesz-Fischer Theorem). L?(X, M, ) equipped with the L? metric is complete, and
hence a Hilbert space. Moreover, if {fn nen 5 any Cauchy sequence in L?(X, M, p), then there is a

subsequence of {fn}nen that converges almost everywhere with respect to .

Proof. Let {fn}nen be a Cauchy sequence in L?(X, M, ). Recursively define an increasing sequence of
natural numbers {ny}ren such that ||f, — fn,ll2 < 27% for all n > ny. Since {n;}ren is increasing, it
follows that || fy,,, — fnxll2 < 27" for all k.

m—1

Now define F,, = |fn,| + Z |fn.. — frn_, |- By Theorem 3.1.5, applied iteratively,
k=1

m—1
HFmH2 < ||fn1||2 + Z ”fnk, - fnk—1||2 < ||fn1||2 +1.
k=1

Thus, by the Lebesgue Monotone Convergence Theorem, F' := lim F, is square-integrable and
m—r00

JRETEINERE
X

It follows that F' < oo a.e. u, and thus that Z(fnk — fn._,) is absolutely convergent a.e. p. But

k=1
m—1
since absolute convergence implies convergence, lim | f,, + g (fon — fr_y)| = lUm f, exists almost
m—ro0 1 m—o0

everywhere. Call this limit f. As a point-wise limit of measurable functions, f is measurable. Also,
f € L*(X, M, u) by Fatou’s Lemma.

Next, |fn,, — f|* < 4F?, and since 4F? is integrable, the Lebesgue Dominated Convergence Theorem
implies that

lim £, — fll2=0.
m—00

Thus, a subsequence of the Cauchy sequence { f,, },en converges of f in the L? metric. But then the whole

sequence converges to f. The subsequence {f,,  }men converges to f a.e. p. O
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3.3.3 Landau’s Theorem

The next result illustrates the way in which the various abstract results we have proved so far may be
combined to prove a theorem that refers only to the Lebesgue theory of integration, but is not easy to

prove using only the tools of that theory.

3.3.3 THEOREM (Landau’s Theorem). Let (X, M, u) be a measure space such that for every set B € M
with p(B) = oo, there is a set A€ M, A C B, with 0 < u(A) < co. Suppose f is a measurable function

on X such that whenever g is a measurable function on M with fX lg|2dp < oo, |fg| is integrable. Then

f X |f ‘Zdﬂ < 00.
Proof. The Riesz-Fischer Theorem identifies the set of measurable g such that [ x| g|?dp < oo with the

elements of the Hilbert space H := L?((X, M, u), and then the hypotheses allow us to define a linear
functional L on H the by L(g) = [y fgdu for all g € H, For n € N, define E, C H by

E, = {g : /Xllfgduén} .

Then E,, is closed. To see this, let {gm}men be a sequence in E, that converges to g € H. By the
final part of Theorem 3.3.2, there is a subsequence {gm, }ren that converges almost everywhere to g. By

Fatou’s Lemma,
/Ifgldu < 1iminf/ |fgmldp <.
k—oo Jx

Therefore, g € E,,, and hence E,, is closed.

By hypothesis,H = U;2; Ey,, and then by Baire’s Theorem, there exists some n such that E, has a
non-empty interior. Hence for some gg € H and some r > 0, B(r,go) C Ey; i.e., for all g € B(1,0), and
all0 < s <r, go+ sg € E,,. Therefore

L(go>+sL<g>|=] / f(go+sg)du‘§ [ oo+ saan<n

It follows that |L(g)] < (n + |L(go|)/r for all ¢ € B(1,0), and hence L is bounded. By the Reisz
Representation Theorem, there exists a unique fo € H such that L(g) = [ fogdp for all g € H, and thus,

/ o~ Dgdu =0
X

for all ¢ € H. This implies that f = fy almost everywhere. To see this, for each n € H define the set
B, ={z : |fo(x) — f(z)] > 1/n}. By hypothesis, even if u(B,) = oo, there exists a measurable set
A, C B, with 0 < u(A,) < co. Define g, by

fola) = f(@)/folz) = f(x)] =€ Ay
0 x ¢ Ay, .

gn(z) =

then g, € H and fX fo— fgndu > pu(Ay)/n, which is a contradiction. Hence u(B,,) = 0 for all n. O

The condition on the measure space is much weaker than countable additivity, but the condition
is necessary: If there exists a set B € M with u(B) = oo, and such that for all measurable A C B,
either u(A) = 0 or u(A) = oo, let f be the function 1p, the indicator function of B. Since every
g € L*(X, M, ;1) must equal zero almost everywhere on B, it follows that fg is zero almost everywhere for

all g € L?(X, M, 1), and therefore certainly fg is integrable. However, f is not square integrable.
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3.4 Bessel’s inequality and complete orthonormal sets

3.4.1 Best approximation in a Hilbert space and Bessel’s inequality

Let H be a Hilbert space space, and let {ui,...,u,} be an orthonormal set in H.

Let € =

span({uy,...,u,}) which is finite dimensional and therefore closed. Let P denote the orthogonal pro-

jection onto KC. For any f € H, by Theorem 3.1.9, the best approximation to f by elements of K is given
by Pf in the sense that || f — Pf|| < ||F — g|| for any g # Pf in K. This result will be more useful once

we have a formula for Pf in terms of {u1,...,u,}. We now derive such a formula.
n

The general element of I has the form Z aju; for some complex numbers ay, ..., a,. To determine

j=1
the choice of these coefficients that gives the best approximation to f, we compute
2

F=> auy| = <f—2ajuj, f—Zajuj>
j=1 Jj=1 Jj=1

= 12 =D 2R (@ (uy, 1) + Y eyl
j=1 j=1

= AP =D Kugy AP+l = (g, A
j=1

j=1

Evidently, the best choice is given by a; = (uj, f) for each =1,...,n, and therefore,
n
Pf =7 (uj, fyu; .
j=1

‘We summarize so far:

3.4.1 THEOREM. Let {u;};en be an onrthonormal sequence in an Hilbert sapce H.

n €N,
F=agug|| < |1 = (uy, Fuy
j=1 j=1

and there is equality if and only if a; = (uj, f) for all j.

Making the choice a;; = (uj, f) for each = 1,...,n, we have
2

F = g gl =12 =D Ky, AP
j=1 j=1

Since the left hand side is non-negative, we have that for any finite orthonormal set {uy,...

> Ky HIF < 1FI7
j=1

(3.4.1)

(3.4.2)

Thren for all

(3.4.3)

(3.4.4)

7un}a

(3.4.5)

Now suppose that H contains an uncountable orthonormal set {u;};c ». (Hence # is some uncount-

able set.) For any f € #, if |(f,u;)| > 0 for uncountably many j € ¢, there is some n € N such that

,ui)| > 1/n for uncountably many j € since
J

(Wl >0y=J : fouy)l>1/n}

n=1
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and a countable union of countable sets is countable. But then there is a sequence {uj_k}keN such
(oo}

that Z |(f,u;x)|* = oo, and this contradicts (3.4.5). Therefore, even when # contains an uncountable
k=1

orthonormal set {uj}je #- |(f,u;)] > 0 only for countably many j € #, and then we have from (3.4.4)
that
> K HP <7 (3.4.6)
i€s
Summarizing, we have proved:
3.4.2 THEOREM (Bessel’s Inequality). Let H be a Hilbert space, and let {u;}je y be an orthonormal
set in H. Then for all f € H, |(f,u;)| > 0 only for countably many j € 7, and (3.4.6) is valid.

3.4.2 Complete orthonormal sets

o
3.4.3 LEMMA. Let {c}en be any square-summable sequence of complex numbers; i.e, Z |ozj|2 < 00.
j=1

Let {u;}jen be any orthonormal sequence in a Hilbert space H. Then the sequence {Z?:1 ozjuj} 18
neN

Cauchy and therefore this sequence has a unique limit g € H so that
o0
Zajuj =g. (3.4.7)
j=1

Moreover, this sum converges to the same vector no matter how the terms are ordered.

Proof. For each n € N define f, = Z oju;. Then for n > m,

j=1
2
n n o0
o = Full® = > ajull = > laF< Y gl (3.4.8)
j=m+1 j=m+1 j=m+1
o0
Since lim Z |04j|2 =0, {fn}nen is a Cauchy sequence, and then since H is complete, there exists a
m—0o0
Jj=m+1

unique g € H such that lim, || fn — g|| = 0. This proves (3.4.7). Since the condition Z laj]? < o0
j=1
holds independent of how the terms in the sum are ordered, the convergence of the infinite sum in (3.4.7)
holds independent of how the terms in the sum are ordered. For all € > 0, let J and K be finite subsets
of N such that
D P <€e/9 and > as? < €/9. (3.4.9)

g i¢K

1 1
Then Zajuj — Z ojug|l < ge, and Z Uy — Z ojug|l < 56' Then by Minkowski’s inequal-
JjE€J jeEJUK JEK jeEJUK
. 2 . .
ity, Z U — Z ojujll < 3¢ Let J = {1,...,n} for n sufficently large that (3.4.9) is valid. By (3.4.8),

jeJ jEK

1
g— Zajuj < ge, and then ||g — Z oju;|| < e. This shows that the sequence of partial sums tends
jeJ JjeEK
to g no matter how the terms are ordered. O
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Let {u;}je # be an orthonormal set in H and let f € H. By Theorem 3.4.2, Z [(uj, f)|* < oo, and
then by Lemma 3.4.3, i
9= (uj, fu; (3.4.10)
i€t
is a well-defined element of H. Notice that for each j € ¢, (u;j,9) = (uj, f) and hence (f — g,u;) = 0 for
all j € #. This brings us to the following definition:

3.4.4 DEFINITION (Complete orthonormal set). Let H be a Hilbert space and let {u;};e » be an
orthonormal set in H. Then {u;};c ¢ is a complete orthonormal set in H in case the only vector f € H
such that (u;, f) = 0 for all j is f = 0. A complete orthonormal set in H is also called an orthonormal
basis for H.

We have shown just above that if {u;};c ¢ is any orthonormal set in H and f is any vector in H,
g:= Zj€/<uj7f>uj is a well-defined vector in H such that (f —g,u;) =0 forall j € 7. If {u;};e s is
complete, this means that f — g = 0, and hence for all f € H.

F=> (s fu; . (3.4.11)
jE€EZL
3.4.5 THEOREM (Parseval’s Theorem). Let {u; }jej be a complete orthonormal set in a Hilbert space
H. Then for all f € H, (3.4.11) is valid, and

AP = D7 Wuy O (3.4.12)
jef

Proof. Tt remains only to prove (3.4.12). Note that

D Cu Hugl| =D g O

jef jef

so if z |(uj, £)|* # || f||, then (3.4.11) cannot be valid, and this is a contradiction. O
J€S

3.4.3 Separability

A metric space is separable in case it contains a countable dense set. Hilbert spaces are, in particular,
metric spaces and hence a separable Hilbert space H is one that contains a dense sequence {f,}nen of
vectors. To avoid trivialities, suppose that # is infinite dimensional as well as separable. Let {f, }nen be
any dense sequence in H. Discard the vector f, in case f, € span({f1,..., fn—1}). Let gi denote the kth
retained vector. Then {gi }ren is linearly independent and span ({gx }xen) is dense in H.

Applying Theorem 3.2.6 to {gx}ren we obtain an orthonormal sequence {ug}ren such that
span ({ug }ren) = span ({gx }ren), and hence such that span ({uy}ren) is dense. This shows that ev-
ery separable Hilbert space H contains an orthonormal sequence {uy}ren whose span is dense in H.

Such an orthonormal sequence is necessarily complete, as we show next:

3.4.6 LEMMA. Let H be a Silbert sapce and let {u,}nen be an orthonormal sequence in H such that

span({un fnen) is dense in H. Then {u,}nen is complete.
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Proof. Suppose f € H and (ug, f) = 0 for all k£ € N. Since span ({ug ren) is dense in H, for all € > 0,

n
there exists for n € N and coefficients a1, ..., a, such that e > ||f — Z a;uj|l. Then using (??) and the
j=1
orthogonality hypothesis,

e> |If =Y aguy|| = [ f =D (Fruguy|| = I1f] -
j=1

j=1
Since € > 0 is arbitrary, || f|| = 0. O

3.4.7 THEOREM. A Hilbert space H is separable if and only if exists there exists a sequence {uy }ren

that is orthonormal and complete.

Proof. We have already proved that if H is separable, then #H contains a sequence {uy}ren that is or-

thonormal and complete. Therefore, suppose that H contains a sequence {ug}ren that is orthonormal

and complete. Then for all f € H, [ = Z(uk, fHug and

k=1
oo 2 (o ]
Hf_zakuk :Z|<Uk»f>_ak|2 :
k=1 k=1
For any € > 0, we may choose an n € N and aq, .. . a,, each of whose real and imaginary parts are rational,
such that
= 1 > 1
Z|<uk,f>—ozk|2<§e and Z |<u;€,f>|2<§e.
k=1 k=n-+1

n
It follows that with g = Z aguk, ||f — g|| < e. Thus, the set of finite linear combinations of the vectors
k=1
in {ug }ren with coefficients whose real and imaginary parts are rational is dense in . Evidently this set

is countable, and hence H is separable. O

Notice that if H is any separable Hilbert space, and {u,};en is any orthonormal basis in 7, then the
transformation that sends f € H to the sequence whose jth term is (uj, f) is a linear isometry of H onto

£2. That is, every separable Hilbert space can be mapped onto ¢2 by a linear isometry.

3.4.8 EXAMPLE (Fourier series). Let H = L?(S', Bgi,m) be the Hilbert space of Borel functions f(6)
on the unit circle that are square integrable with respect to Lebesque measure m on S' normalized so that
u(sh) = 1.

It is then readily checked that with u; defined by u,(0) = €™, {u,}nez is orthonormal. By the
Stone- Wierstrass Theorem, every continuous function on S' can be approzimated arbitrarily well in the
uniform metric by a finite linear combination of the vectors in our orthonormal set. Since for continuous

functions f,g on S*,
1/2
([ 1r=oPan) < maxtlre) - ooy

the span of {un }nez is dense in the set continous function on S' equipped with the norm metric inherited
from H.
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Since the continuous functions are dense in H, and for any f € H and any € > 0, we can find a
continuous function g such that ||f — g|| < €, and then a function p in the span of {un}necz such that
llg — pll < €/2. Then ||f — p|| < €, and hence the span of {uy}nez is dense in H. Then by Lemma 3.4.6,
{un}nez is complete: Thus, {untnez is orthonormal basis for H, called the Fourier basis. It follows that
for each f € H,

n
= nl;rr;o Z (uj, fHu, .
j=—n

The sequence {(u;, f)}jez is called the sequence of Fourier coefficients of f. By Parseval’s identiy,

£ = un, NI
nez
The map sending [ into the (doubly) infrnite sequence {{un, f)}nez is then a a linear isometry from H
into the Hilbert space of square summable sequences indexed by Z, which we can identify with € using
any bijection between N and Z. In fact this isometry is a bijection: As we have seen, if {an }tnez is any
sqaure summable sequence, then g = 3 - anuy, is a well defined element of H, and for each n € Z,

Up, = ou,. This isometric linear bijection between H onto % is the Fourier transform.
g )

3.4.9 EXAMPLE (Orthogonal polynomials). For a,b € R, a < b, let B the Borel o-algebra on [a,b],
and let u be any finite Borel measure on [a,b]. Let H = L'([a,b], B, ). Continuous functions are dense
in H, and by the Stone-Wierstrass Theorem, for every continuous function f on [a,b] and every ¢ > 0,
there is a polynomial p(x) such that max{|f(x) = p(z)| : = € [a,b]} <€, and then by the Cauchy-Schwarz
inequality, ||f — p|| < \/eu([a,b]). Without loss of generality, we may take the coefficients of p to have
rational real and imaginary parts and the set of such polynomials is countable. Therefore H is separable.

Moreover, this proves that the sequence of monomials {x"~'},en has a dense span in H, and therefore,
the orthonormal sequence {u, }nen that is obtained from {x" 1},en via the Gram-Schmidt Theorem is
an orthonormal basis for H such that each w, is a polynomial of degree n — 1. The elements of this
basis are uniquely determined up to a multiple by a unit complex number, and conventionally one chooses
the multiple so that the leading coefficient; i.e., the multiple of x™ 1, is positive. This is the canonical

orthonormal polynomial basis for H.

3.4.4 Partial isometries and unitary operators

3.4.10 DEFINITION. Let H and K be s Hilbert spaces. An isometry from H into K is an operator
U € B(H.K) such that ||Uf|lx = ||fllx for all f € H. An isometry U from H to K is unitary in case U is
surjective. Two Hilbert spaces H and K are unitarily equivalent in case there is a unitary transformation
from H onto K. A partial isometry in Z(H, K) is an operator U such that the restriction of U to (ker(U))~+

is an isometry from (ker(U))* into K.

Note that the composition of unitary operators is unitary since the composition of invertible transfor-
mations is invertible, and the composition of isometries is an isometry. It follows easily that the inverse
of a unitary transformation is also unitary, so that unitary equivalence is, indeed, an equivalence relation
on the set of Hilbert spaces. As the next example shows, all separable Hilbert spaces belong to the same

equivalence class, which is represented by £2.
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3.4.11 EXAMPLE. Let H be a separable Hilbert space, and let {un}tnen be an orthonormal sequence
in H. Define a map U from H to £2 by U({a, tnen) = Z Qnly, which is well-defined by Lemma 3.4.3.

n=1
9]

Since ||U({can }nen) | = Z ln|?, U is an isometry.

n=1
Suppose moreover that {un}nen is not only an orthonormal sequence, but that it is an orthonormal
o0

basis for H. Then by Theorem 3.4.5, f = Z(un,ﬁun = U{{tun, f)Inen) so that U is surjective, and
n=1
hence unitary. Hence H is unitarily equivalent to ¢?. Since H is an arbitrary separable Hilbert space, by

the remarks preceding the example, all separable Hilbert spaces are unitarily equivalent.

3.4.12 LEMMA. Let H and K be Hilbert spaces, and let U € B(H,K). Then U is an isometry if and
only if for all f,g € H, (Uf,Ug)x = (f,9)n-

Proof. Suppose that for all f,g € H, (Uf,Ug)x = (f,g)n. Then taking g = f, ||Uf|lx = ||f|l» so that U
is an isometry. Conversely, if ||[Uh||x = ||h||x for all h € H,

1 1
R((F.0)0) = +(1F + gl 1F ) = S(US + Uglie ~ U - Uglle) = R (U£.Ug)x) -
Replacing g by €?g, we conclude that for all f,g € H, (Uf,Ug)x = (f,9)n- O

3.4.13 THEOREM. Let H and K be Hilbert spaces, and let U € B(H,K). Then U is unitary if and
only if UU = Iy, and UU* = I.

Proof. If U is unitary, by Lemma 3.4.15, for all f,g € H,

This means that ¢ — U*Ug is orthogonal to all f € H, and so g — U*Ug = 0. Since g € H is arbitrary,
this means that U*U = Iy;. Hence U™ is the inverse of U, and so UU* = I.
Conversely, suppose that U*U = Iy, and UU* = Ix. Then for all f,g € H,

<f7g>7'l = <f7 U*Ug>7'l = <Uf7 Ug>)C )

so that U is an isometry into K, Then since for any f € K, f = UU*f = U(U*f), ran(U) = K, so that U

is surjective and hence unitary. O

3.4.14 DEFINITION. Let H and K be two Hilbert spaces, and let U € #(H, K) be a partial isometry.
Let Hy := (ker(U))* and let K; := ran(U), which is closed. Then K; is called the initial space of U, and
H1 is called the final space of U.

Let U € B(H,K) be a partial isometry with initial space H; and final space K;. Then the restriction
of U to H; is a unitary from H; onto K;. Let P be the orthogonal projection in ‘H onto Hi, and
let @ be the orthogonal projection in K onto ;. By Theorem 3.4.13, the restriction of U*U is the
identity on H;, and hence U*UP = P. Since the range of P+ is Hi = ker(U), U*UP+ = 0. Hence
U*U = (U*U(P + Pt) = P. Likewise, UU* = Q.

Now consider any U € ZB(H, K) such that U*U = P, where P is the orthogonal projection onto some
closed subspace H; of H. Then for all f € Hy, |Uf||E = (f,UUf)n = (f,Pf)u = ||f||3,- Hence U is a

partial isometry. This proves:
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3.4.15 THEOREM. Let H and K be Hilbert spaces. An operator U € B(H,K) is a partial isometry if

and only if U*U is an orthogonal projection in H, in which case UU™ is an orthogonal projection in K.

Let H and K be two Hilbert spaces. If H and K are not unitarily equivalent, then there are no unitary
operators in Z(H,K). If H and K are unitarily equivalent, let V' be any particular unitary operator in
PB(H,K). Then for all T € B(H,K), V*T € #(H), and V*T is unitary if and only if T is unitary. Thus,
the study of unitary operators on B(H,K) readily reduces to the study of unitary operators on ZB(H).
We henceforth focus on this case.

Suppose that U € (M) is an isometry, but that U is not unitary, so that UU* # I. It turns out
that UU* is the orthogonal projection onto the range of U, as we now exlain: Let V := ran(U), which is
closed since U is an isometry, and V+ = ker(U*). Let P be the orthogonal projection onto the range of
U, and f,g € H. By definition, there exists h € H such that Pg = Uh. Then

(f,Pg) = (f,Uh) = (U*f,h) = (UU*f,UR) =(UU*f,q) .
since f,g € H are arbitrary, it follows that UU* = P. We have proved:

3.4.16 THEOREM. Let H be a Hilbert space and let U € B(H) be an isometry, Then UU* is the

orthogonal prjection on the range of U.

3.4.17 DEFINITION (Partial isometry). Let H be a Hilbert space. An operator U € B(H) is a partial

isometry in case the restriction of U to (ker(U))* is an isometry into H.

3.4.18 DEFINITION (Ortogonal projection). Let H be a Hilbert space. An operator P € %(H) is an

orthogonal proejction in case P = P* and P? = P.

Let P be an orthogonal projection in %(H), and let V = ran(P). Since (ker(P))* = ran(P*) =

ran(P), the restriction of P to (ker(P))* is an isometry, and hence P is a partial isometry.

3.4.19 THEOREM. Let H be a Hilbert space. U € B(H) is a partial isometry if and only if UU* is an

orthogonal projection.
Proof. Suppose that U is a partial isometry. Then UU* is self adjoint, and
(UU*? =U(UU)U* =UU* ,

so that UU™* is an orthogonal projection. Conversely, suppose that UU™* is an orthogonal projection.

3.5 The weak topology on a Hilbert space

3.5.1 Weak topology and weak convergence

As a Banach space, a Hilbert space H may be equipped with its weak topology, and since every Hilbert
space H is a reflexive Banach space, as a consequence of the Riesz Representation Theorem, this weak
topolgoy conicides with the weak-* topology on H considered as the dual of H through the canonical

sesquilinear isometry of ‘H onto H. By the Alaoglu’s Theorem, it then follows that the norm-closed unit
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ball B in H is weakly compact, while we have seen that in an infinite dimensional Hilbert space B is never
compact in the norm topology.

Specializing the Banach space construction to the Hilbert space setting, the weak topology on a
Hilbert space H is the weakest topology for which all of the functions f — (g, f), g € H, are continuous,
and a neighborhood base of 0 is given as follows:

Let F ={f1,..., fn} be a finite subset of H, and let ¢ > 0. Define the set Vr . by

Vee={9€H : |{f,g)] <eforall feF} (3.5.1)

Note that each Vr . is convex, balanced, and absorbing. Let ¥ denote the collection of all such set Vx ,
and F ranges over the finite subsets of H and e ranges over (0,00). Since every L € H* is of the form
Ly for some f € H, by Theorem 3.2.2 once more, this is the weak topology for H considered as a Banach
space. Since H* separates points, the weak topology is Hausforff. Also, as in any Banach space, the
norm-closed unit ball B is weakly closed.

As a direct consequence of our general Banach space results, we have:

3.5.1 THEOREM. Let H be a Hilbert space. A sequence {fn}nen in H has the limit f € H under the
weak topology if and only if for all g € H,

{9, f) = lim (g, fn)- (3.5.2)

Every weakly convergence sequence { fn}nen is bounded: sup,en{|| fnll} < oco.

3.5.2 Alaoglu’s Theorem for Hilbert Space

3.5.2 THEOREM (Alaoglu’s Theorem for Hilbert Space). Let H be a Hilbert space and let B = {f €
H . |IfIl £1}. Then B is compact in the weak topology on H.

Proof. Since H is reflexive, the weak-* topology on H* coincides with the weak topology on H under the
idetification of H and H* through the canonical sesquilinear embedding. Alaoglu’s Theorem in the general

Banach space setting then yields the result. O

Sequential compactness is the same as compactness for metric topologies, but not in general. In an
infinite dimensional Banah space X, the weak topology is never metrizable, but when the dual X* is
separable, then the relative weak topology is metrizable on bounded subsets of X. This is not the case
when H is not separable, but nonethless, bounded weakly closed subsets of of a Hilbert sapce are always

weakly sequentially compact.

3.5.3 THEOREM. Let H be a Hilbert space, and let B be the norm-closed unit ball. For every r € (0,1),

rB is weakly sequentially compact.

Proof. Consider any sequence {f,}nen in a Hilbert space H such that for some f,, € B for all n € N.
Let K be the norm closure of the span on {f, }nen. The set of all finite linear combintations of vectors in
{fn}nen with coefficients that have rational real and imaginary parts is countable and dense in K. Hence
KC, as a subspace of H, is a Hilbert space in its own right, and is a separable Hilbert space. Since the

relaitve weak topology on rBNK is metrizable, there is a subsequence { f,), }ren that converges weakly to
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some f € rBNK. Then for all g € K, lim, 00(g, fn,) = (g, f) while for all g € K+, (g, fn,) = (g, f) =0
for all n. It follows that for all g € H, lim,00(g, fn,) = (g, f), and thus {f,), }ren converges weakly to
finH. O

Corollary 3.5.3 will be useful one we have useful methods for identifying weakly closed subsets of H.
We already know, from Alaoglu’s Theorem, that norm closed unit ball B is weakly compact, and therefore
weakly closed. In the next section we shall prove a significant generalization of this: Every norm closed

convex set is weakly closed.

3.5.3 Separation theorems

3.5.4 THEOREM. Let K be a non-empty, norm-closed convez set in a Hilbert space H, and let f € H
with f ¢ K. Then there exists € > 0 and go € H such that

R({go, h)) > e+ R({go0, [)) forall h € K . (3.5.3)

3.5.5 Remark. This result is an immediate consequence of the Hahn-Banach Separation Theorem. How-
ever, like everything else pertaining to the Hahn-Banach Theorem, in Hilbert space there is a simpler

method of proof that we now give.

Proof of Thereom 8.5.4. Let Ky = K — f ={h—f : h € K}. Since Ky is a non-empty closed convex
set, the Projection Lemma provides the existence of a unique element gy € K¢ of minimal norm, and since
f ¢ K, go# 0. Hence for all h € K and ¢t > 0,

[t(h = £) + (1 = t)goll* = llgoll?
The left hand side equals ||go +t(h— f —go)||* = |lgol|* +2tR({g0, h — f — go)) +t%||h — f — go||?. Therefore,
t
R((go,h = f = g0) + 5llh = f = 9l* >0

for all t € (0, 1), and hence R({go, h — f — go)) > 0. This is the same as R({go, h — f)) > ||go||?, which, for
€ =|lgol|* > 0, yields (3.5.3). -

For g € H and X\ € R, define the half-space
Hyy=1{heH : R({g,h)) > A}. (3.5.4)

since the function h — R({g, h)) is weakly continuous, H, » is weakly closed. Theorem 3.5.4 says that if
K be a non-empty, closed convex set in a Hilbert space H, and f € H but f ¢ K, there is a closed half
space Hy » such that K C Hy » but f ¢ Hg x. Therefore,

K=({Hgyx : KCHyx}.
This displays K as the intersection of weakly closed sets, and we have proved:

3.5.6 THEOREM. Let H be a Hilbert space. Every norm closed convexr set K C H is weakly closed.
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3.5.4 From weak convergence to norm convergence

Combining corollary 3.5.3 and Theorem 3.5.6, we conclude that in a closed, bounded convex subset K of
a separable Hilbert space H, one can extract a weakly convergent subsequence { f,, }xen from any infinite
sequence {gn tnen in K.

It is useful to know when such a sequence also converges in the norm topology. The next theorem,

provides a useful criterion.

3.5.7 THEOREM. Let H be a Hilbert space, and let {fn}nen be a weakly convergent sequence in H
with limit f. Then
1] < lminf [ fo ], (3.5.5)
n—roo

and if || f]] = im0 || frll, then limy, o0 || f — full = 0. That is, weak convergence, together with conver-

gence of the norms, implies norm convergence.

Proof. Suppose on the contrary that || f|| > liminf, || f»]]. Then for some e > 0, there is a subsequence

{fnx }ren such that || f,, || < ||f|| — € for all k& € N. But since the subsequence also converges weakly to f,

117 = REF, ) = Tim R(E, Fd) < DAl < AN =0

which is impossible. This proves (3.5.5).
Now suppose that || f|| = lim,— o || fn|l|- Since

1f = fall® = IAIP + Ll = 2R, fa))

T ([~ full® = 1712+ Jim (£l — 2 Tim 2R((f, f)) =0

3.6 Excercises

1. Let H be a separable, infinite dimensional Hilbert space, and let {u, },en be an orthonormal basis for
H. Let {c;},en be a given sequence of non-negative numbers, and define
Let C' C H be defined by
C={feHH : |fI<1 and [{u;,[f)| <c¢; forallj}.

Show that C is always closed and bounded, but is compact if and only if Z;il c? < 0o. Taking each

¢; =1, C' becomes the unit ball in A, and thus the unit ball is not compact.

2. For real valued square integrable functions f on [—1,1], compute

max{ 23 f(x)dm : / 2 f(x)dm =0 for j=0,1,2 and / fA(x)dm = 1}
[—1,1] [—1,1] [—1,1]

3. Show that if E is any Borel set in (0, 27] then

lim [ cos(jz)dm = lim [ sin(jz)dm =0.
j—=oo J g j—oo J g
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Next, consider any increasing sequence {n;} of the natural numbers. Define F to be the set of all z
for which

lim sin(ngz) exists .
k—o0

Show that m(E) = 0. (The identity 2sin?z = 1 — cos(2z) and the first part may prove useful.)

4. Show that in any Hilbert sapce H, there is a continuous curve ¢t — f(t) € H defined for ¢t € 0, 00) such
that for all » < s < t, (f(t) — f(s), f(s) — f(r)) = 0. That is, the curve is constantly making rangle angle
turns. Do this first wehn H = L?([0,00), %, ) where u is Lebesgue measure, and then deduce the general

case as a consequence.

5. Let H be a seperable Hilbert sapce and let {uy,}nen be an orthonormal basis for H. Let {v,}nen be

another orthonormal sequence in H.

(a) Suppose that > 7 |lu, — va|[? < 1. Use Bessel’s inequality and Parseval’s identity to show that

{Un}nen is complete; i.e., that {v, }nen is also an orthonormal basis for H.

(b) Suppose that > " | [[un — v,]|* < co. Pick N large enough that >>>° v [lun —v,||* < 1. Show that

if f € H is orthognal to u, for 1 <n < N, and is orthogonal to v, for n > N + 1, then g = 0. Then let
V denote the closed span of {vx11,Vn42,-..}, and show that V= is a subsapce of dimension N.

(c) Show that when > | |lu,, — v, ||* < o0, {vp }nen is an orthonormal basis.

Commentary: Exercise 5 is based on a result of Birkhoff and Rota who apply it to show completeness of
the orthonormal sequences of Sturm-Liouville eigenfunctions. It is known, going back to Liouville himself,
that if {v,}nen is the normalized sequence of eigenfunctions of a Sturm-Liouville operator with some
boundary considtions, and {u, }nen is the Fourier basis for the same boundaty conditions, then for some
constant C' < 00, ||u, — v,[|* < Cn~2 for all n. Hence, the condition in part (c) is applicable, and the

completeness of {v, }nen follows from the known completeness of {uy, }nen-

6. Let H be a Hilbert space, and let {u,}nen be orthonormal in H. Let {v,}nen be any sequence of
vectors in H.

(a) Prove that the following are equivalent:

(1) There exists some C € (0,00), whenever N € N and {ay,...,ay} € CV,

N
g AnUn
n=1

(2) For all f € H, Af := 7" (f,un)vy, is norm-convergent, and f — Af is a bounded linear operator
on H.

Show moreover that in this case | A|| is the least value of C for which (x) is valid.

2 N
<CY anl*. ()
n=1

(b) Prove that (x) is satisfed in case {5 }nen is norm-bounded, and >°, . [{vm, v )|? < oo

7. Let H be a Hilbert space, and let V and W be closed subspaces of H. Let Py be the orthogonal
projection onto V', and let Py be the orthogonal projection onto W. Let P denote the ortohogonal
projection onto V NW. Define T' = Py Py .

(a) Show that if @ is the orthogonal projection onto any closed subspace of H, then for all f € H,

lQf = FII = IIFI* = QLI -



81
(b) Use the telscoping sum T'f = (Py Pw f — Pw f) 4+ (Pw f — f) and part (a) to show that for all f € H,
ITf = £ < 2011l = 1T £11%) -

(c) Show that for all f € H, lim, o ||T™f] exists, and then that lim,_, ||T"(T — I)f]| = 0.

(d) Show that ker(T* — I) = V. N W, and that for g € ran(T — I), lim,, o T™g = 0. Finally, prove
that for all f € H, lim,, oo T"f = Pf. (This result is due to von Neumann; the proof suggested by
the components of the problem is due to Kakutani. This proof may be readily genralized to products of

arbitrarily many projections.)
8. Let H be a Hilbert space. The closed convexr hull of a A C H, denoted €6(A), is the intersection over
all of the closed convex sets containing A.

(a) For A C H, g € H is said to be a finite conver combination of elements of A in case for some finite
sets {f1,...,fu} CAand {t1,...,t,} C[0,1], Y7ty =1and Y ;_, txfr = g. Show that for all A C H,

c0(A) is the norm closure of the set of finite convex combinations of elements of A.

(b) Let {fn}nen be a weakly convergent sequence in ‘H with weak limit f. For each N €
N, let
Kn =0 ({fu}n>n) -
Show that each K is bounded and weakly compact, and that f € Ky for all N € N. Then show that

there exists a sequence {gy}nen such that for each n € N, g, is a finite convex combination vectors in
{fn}n>n~ and such that lim, . ||gn — f]| = 0.

9. (a) Let T be an operator on a Hilbert space H such that (f,Tf) € Rfor all f € H. Let S =T —T*,
Show that (f,Sf) =0 for all f € H.

(b) Let S be an operator on a complex Hilbert space H such that (f,Sf) = 0 for all f € H considering
f=g+hand f =g+ ih, show that (g, Sh) =0, and then that S = 0.

(c) A bounded operator T' Hilbert space H is said to be positive in case (f, Af) > 0 for all f € H. Show
that every positive bounded operator T on a complex Hilbert space is slef-adjoint; i.e., T' = T*.
10. Let T be a positive bounded operator on a complex Hilbert space H. (See Exercise 9.)

(a) For all f,g € H, define a sesquilinear form (-,-)7 on H by (f,Tg)r = (f,g). Show that (-,-)r is an

inner product on H.
(b) Define a function F on H by F(f) = 3(f,Tf) = (f,Tg)r. Show that F is convex on H.

(c) Show that the function F' is sequentially weakly lower semicontinuous on H. That is, if {f,}nen
converges weakly to f, then F'(f) <liminf, . F(f,). To do this, use part (b) and Exercise 8.

11. An operator T on a Hilbert space H is uniformly positive or coercive in case for some ¢ > 0,
(f,Tf) > €|l f||* for all f € H. Let T be coercive on H.

(a) Show that for all f € H there is a unique gy € H such that for all g # gy,

R(f,9) — F(g) <R(f,97) — F(g7) -

and that Tg¢ = f and ||gf|| < e 'f.
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(b) Show that T has a bounded inverse and that

%<g’T_lg> = sup{%<f7g> - <f7Tf>} .
fer

12. Let T € #(H) be self-adjoint. Show that T+ ¢I is invertible. Then define an operator Ur by
Ur == (T — i) (T +il)~* .

Show that Ur is unitary, and that Ur — I is invertible. Finally, show that T'= (I + Ur)(I — Ur)~!, and
that if U is unitary and U — [ is invertible, then i(I +U)(I — U)~! is self adjoint. Thus the map T — Ur
is a one-to-one map from the set of self adjoint memebers of Z(H) onto the set of unitary operators
U € #B(H) such that U — I is invertible.



Chapter 4
Compact operators on Hilbert Space

4.0.1 Norms of self-adjoint operators on Hilbert space

Let T € #(H), H a Hilbert space. Since for all f € H, there is a unit vector v such that (v, f) = || f||,
and since |(v, f)| < ||f|| for all unit vectors v, | Tu| = sup{|{v, Tu)| : ||v|]| = 1}. Therefore,

1T = sup{[(v,Tu)| :[lull =1, ||/ =1}. (4.0.1)
When T is self-adjoint; i.e., when T = T™, there is a simpler formula:
4.0.1 LEMMA. LetT € B(H), T =T*. Then
1711 = sup{|(u, Tw)| : lul =1} . (4.0.2)

Proof. Temporarily define Cr := sup{|(u,Tu)| : |lu]| = 1 }. Let u,v be unit vectors in H such that
v # tu. Since T is self-adjoint,

w+v,T(u+v) = (u,Tu)+ (v,Tv)+ 2R((v,Tu))

u—v,T(u—v) = (u,Tu)+ (v,Tv) —2R((v,Tu)) .
Therefore, )

R((v, Tu)) = 7 ((w+0,T(utv)) = (u—v,T(u=-10))) .

Defining f = u + v and g = u — v, neither of which is zero, we obtain

v, Tu = 1 2<f7Tf>_ 2(9,T9g)
wor) = 5 (PR - gt

1
< U1+ lgl*)Cr = Cr .

Replacing v by ev and varying 6, we obtain that |(v, Tu)| < Cr for all unit vectors u and v, the excluded
case v = tu being trivial. Now (4.0.2) follows from (4.0.1). O

If T € B(H), then ||T*|| = ||T||, which follows from (4.0.1) since |{(v,T*u)| = |(u, Tv)|. Also, for all
unit vectors u and all S, T € B(H), ||STu| < ||S|||Tu]l < [IS|T|| so that ||ST|| < ||S||||T]]- In particular,
|T2]| < ||T||?, and then by a simple induction, ||7"|| < ||T||" for all n € N. The inequality can be strict:
For example, if T is nilpotent of order n, so that 7™ = 0, but 7' # 0, then 0 = ||T™|| < ||T||"™.

83
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4.0.2 THEOREM. For all T € #(H), H a Hilbert space, | T*T|| = ||T|>.

Proof. Since T*T is self-adjoint, | T*T|| = sup{|(u, T*Tu)| : ||u|]| =1 }. However, (u, T*Tu) = (Tu, Tu) =
| Tu||?, so that
17T = sup{||Tul® :[lul =1} =|T*.

0
In particular, if T is self-adjoint, then ||T?|| = ||T||?, and then it follows that ||T"| = ||T||" for all
n € N. The identity ||T*T|| = |T||* is known as the C* algebra identity because of its crucial role in the

Gelfand-Naimark theory of C* algebras.

4.0.2 Compact operators

4.0.3 DEFINITION (Compact operator). An operator T € %(H), H a Hilbert space, is compact in
case whenever {f,, }nen is a weakly convergent sequence in H, {T f,, }nen is a strongly convergent sequence
in H.

4.0.4 EXAMPLE. Let (Q,.#,p) be a measure space, and let H = L*(Q,.#, ). Let K be a square
integrable function on the product space (X Q, M & M, @ 1) and define

1K= [ IKPduep.
QxQ

Then for each h € H, and each x € ,

/ K(:c,y)h(y)du(y)‘ <(/ |K<x,y>|2du<y>>l/2 1) (40.3)

By Fubini’s Theorem, the right hand side is a square integrable function of x, and hence for all f € H,
the function K f defined by

Kf(x) = /Q K (0, 9) f (v)du(y) (4.0.4)

belongs to H, and moreover, | K f|| < ||[K||||f||. Therefore, the map f — Kf is a bounded linear transfor-
mation on H.

In fact, K is compact. To see this, let {f,} be a sequence that converges weakly to f € H. By
Fubini’s Theorem, for almost every x € X, y — K(x,y) is square integrable, and thus we may write K f =
(K(x,-), f), and then by the weak convergence, K f(x) = lim, o K fn(x) for almost every x. Moreover,
since weakly convergence sequences are uniformly bounded, there exists C' < oo such that || fr| < C for all
n, and then ||f]| < C as well since ||f|| < liminf,, o || fnl|l- Therefore, by (4.0.3)

K(f — fu)(@)? < 4C? ( / |K<x,y>|2du<y>) |

Then by the Lebesque Dominated Convergence Theorem, lim, .o [|[Kf — Kfu|*> = 0. Thus, {K fn}nen
converges strongly to f. This proves that K is a compact operator.
The class of compact operators considered in this example is called the class of Hilbert-Schmidt integral

operators.
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An even simpler example is given by the class of finite rank operators on a Hilbert space H. First, we
fix a useful notational convention. Given two vectors f,g € H, let |g){f| denote the operator on H given
by

lg){(flh = (f,h)g forallheH . (4.0.5)

An operator T € Z(H) has finite rank if its range, ran(7T'), is a finite dimensional subspace of H, or

equivalently, if the orthogonal complement of its null-space, ker(T)~, is finite dimensional. If T is finite

rank and {f1,..., fm} is an orthonormal basis for ker(T)*, then we may write 7" in the form
T =Y lg){fil . (4.0.6)
j=1

where for each j, g; = T'f;. Conversely, every operator of the form (4.0.6), even without the assumption
that {f1,..., fm} is orthonormal, is finite rank. It is very simple to show that every finite rank operators

is compact; this is left to the reader.

4.0.5 THEOREM. Let T € €(H). Then T* € € (H), and for all S € B(H), ST and TS belong to
€ (H). Finally, € (H) is an operator norm closed subspace of B(H).

Proof. To show that T* € € (H) whenever T € € (H), let T € €(H) and let {f,}nen be a sequence in H
that converges weakly to f € H. We must show that lim, . ||[T*(fn — f)|| = 0. If this is not the case,
then for some € > 0, there is a subsequence {f,, }ren such that ||7*(f., — f)|| > € for all k. Passing to
this subsequence, ||T*(fx — f)|| > € for all k. Then there exists a sequence {ug}ren of unit vectors such
that

(Tur, fi = D) = [{ur, T*(f = N = T (fe = Pl = €

for all k. The norm closed unit ball B in H is weakly sequentially compact, and hence there ex-
ists a (further) subsequence {ug,}sen that converges weakly to some w € B. Since T is compact,
limg_y oo ||T(ug, — u)|| = 0 and || fr, — f|| is bounded uniformly in ¢. Therefore, for all sufficiently large ¢,
1T (uk, — Wl fx, — fll < €/2, and then for all such ¢,

|<Tu7sz_f>| > |<Tuk£’fk£_f>|_|<T(ukl_u)jfke_f>|
> [(Tug,, fio ~ Pl = TG, — )l fi, — 71> e

\%

However this is impossible since {f,}nen converges weakly to f. This contradiction shows that T is
compact.

It is evident that since S takes norm convergent sequences to norm convergent sequences, then ST is
compact for all S € Z(H) and T € €(H). Since T'S = (S*T*)*, the first part of the proof shows that T'S
is compact for all S € Z(H) and T € € (H).

Now let {T},}nen be a norm convergent sequence in € (H) and let T be the limit in Z(H). We must
show that T' € €(H). Let {fi}ren be a weakly convergent sequence with limit f. Then there is a finite
constant C such that || fx|| < C for all k, and also ||f|| < C.

Pick € > 0, and then pick N so that | T,, — T'|| < ¢ whenever n > N. Then for all k, ¢,

ITfi = Tfell < (T =Tn) fill + 1T (fr = Sl + (T = T ) fol| < Ce+ ([T (fr = fo)ll + Ce .
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Since T is compact, there is a finite M so that whenever k,¢ > M, ||Tn(fr — feo)|| < €. Altogether,
kt>M = |Tfe—Tf| <(2C+1)e.

Since € > 0 is arbitrary, this shows that {T'f} is a Cauchy sequence. Let g denote the limit. Then for all
heH,

<h7g> = nh_>H;O<h7Tfn> = nh_{I;o<T*hafn> = <T*h’f> = <h7Tf> >

and therefore Tf = g = limy, 00 T frn- O

A number X\ € C is called an eigenvalue of T € Z(H) in case there is a non-zero vector f € H such
that T'f = Af, and in this case, f is called an eigenvector of T' with the eigenvalue \.
If X is an eigenvalue of T', the corresponding eigenspace Hy is the subspace of H spanned by all of the

eigenvectors of T' with eigenvalue A. That is,
Hy=ker(A\ -T) ,
which shows that H, is always closed.

4.0.6 THEOREM. Let T be a compact operator on a Hilbert space H. If if X is an non-zero eigenvalue
of T, then dim(ker(AI — T)) < oo. Moreover, for each r > 0, there are at most finitely many X € C such
that X is an eigenvalue of T and |\ > r.

Proof. If for any non-zero A\, dim(ker(A —T)) = oo, then there exists an orthonormal sequence {uy, }nen of
eigenvectors of T', T'u,, = Apu,, such that inf,en{|An|} > 0. Then {u, },en converges weakly to zero, but
{Tu,}nen does not converge strongly. If T is self-adjoint, so that eigenvectors with distinct eigenvalues
are necessarily orthogonal, essentially the same argument can be used for the second part.

To prove the second part in general, suppose that there are infinitely many eigenvalues {\, },en with
[An| > 7 for all n. For each n, let u, be a unit vector with Tu, = A\,u,. Passing to a subsequence, we
may suppose that u, converges weakly to u € B as n — co. Define K,, = span({u1,...,u,}). Since any
set of eigenvectors with distinct eigenvalues is linearly independent, K, N K+ # {0} for any n. Define
v1 = u1, and for all n € N, choose any unit vector v,411 € Ky41 N ICf;. Since v,, converges weakly to 0
as n — oo, Then lim,_, [|Tv,| = 0. Now note that (A,I — T)v, € K,_1 for each n > 2. Hence v, is

orthogonal to (A,I — T")v,, and hence
”T’Un”2 = [T = An)vn + )‘nvn”2 =[(T - )‘n)vn”2 + ||)‘nUnH2 2.

This contradiction shows that there do not exist infinitely many eigenvalues A with |A| > r. O

4.0.3 The Hilbert-Schmidt Spectral Theorem

In an infinite dimensional Hilbert space, bounded operators, even bounded self-adjoint operators, need
not have any eigenvalues at all. For example, let H := L2([0,1], %, u) where u is Lebesgue measure.
Define T'f(t) = tf(t). Then it is easily checked that | T|| = 1 and T = T*. However, if Tf = Af, then
(t — A\) f(t) = 0 for almost every ¢, and this is impossible unless f = 0. However, for compact self-adjoint

operators, the situation is different.
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4.0.7 THEOREM. Let T be a self-adjoint compact operator on a Hilbert space H. Then either | T|| or

=T is an eigenvalue of T (or both are).

Proof. By Lemma 4.0.1, |T|| = sup{|{u, Tw)| : |lu]| =1 }. Therefore, either
1T = sup{(u, Tw) :|lull =1} or [[T||=sup{—{u,Tu) :[luf =1}, (4.0.7)

or both. Suppose first that ||T|| = sup{{u,Tu) : |jul| = 1 }. We may assume that T" # 0 to avoid
trivialities.

It follows that there exists a sequence of unit vectors {u, }nen such that lim, oo (upn, Tu,) = |7
Since every bounded sequence contains a weakly convergent subsequence, we may select a subsequence
{un, }ren that converges weakly to some u € H with |lul| < 1.

We now show that in fact ||u|| = 1 and (u, Tu) = ||T'||. Note that

(w, Tu) = (Uny,, Ttin, ) = (U — Up,, Tu) + (Up,, T(u — up,)) -

Since {4 — un, }ren converges weakly to 0, limg_yoo(t — Un,,Tu) = 0. Moreover, since T is compact,
{T(u — un, ) }ren converges strongly to zero and hence
lim sup [(tn, , T(u — up,))| < limsup ||[T(v — uy, )| =0 .
k— oo k—oo
Therefore
(0. Tu) [T = lim (. Tu) — (. Ty, )) = 0.

Hence ||T'|| = (u,Tw). By the Cauchy-Schwarz inequality, || T'|| = [(u, Tu)| < ||T||||ul|?. Since |lu| <1, we
must have [|ul| = 1.

Now that we have found a unit vector u such that (u,Tu) = ||T|| > (v, Tv) for all unit vectors v € H,
let h be any unit vector, and define the function ¢ on (—1/2,1/2) by

(u+ th, T(u + th))
t) =
o) lutth]?

and note that ¢(0) > ¢(t) for all t € (=1/2,1/2). Since T is self adjoint, and since (u, Tu) = ||T|,

(4.0.8)

(u+th,T(u+th)) = (u,Tu)+ t(h,Tu)+ t{u,Th) + t*(h, Th)

= T\l + t(h, Tu) + t(Tu, h) + t*(h, Th)

= || + 2tR((Tw, h)) + t*(h,Th) .
Therefore,
(t) = |T|| + 2tR((T'w, h) + t*(h, Th)

= 1+ 2R((u, b)) + 2 ’

Computing the derivative, we find 0 = R((Tw, h) — ||T||R({u, h)). Replacing h by ih, we see that also
S((Tu, h) = || T)S((u, h), and altogether that (T'u — ||T||u, h) = 0 for all unit vectors h, and hence for all

vectors h. Taking h = Tu — ||T'||u, we conclude that Tu = ||T||u. Thus, u is an eigenvector of T' with

eigenvalue || T||.

Now suppose that the second alternative in (4.0.7) is valid. This is the same as ||T'|| = —inf{(u, Tu) :
|lu|]| = 1}. The same reasoning proves the existence of a unit vector w such that —||T'|| = (u, Tu). Defining
o(t) exactly as in (4.0.8), we have this time that ¢(0) < @(t) for all ¢ € (—1/2,1/2). Again, this means
¢’ (0) = 0, and computing the derivative as above we find that Tu = —||T'||u. O
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The following simple lemmas will be frequently useful.

4.0.8 LEMMA. Let T be a self-adjoint operator on a Hilbert space H. Suppose that K is a subspace of
H such that K# is invariant under T, meaning that Tf € K for all f € K. Then Kt is also invariant

under T'.
Proof. Let f € V,and g € V*. Then 0 = (T'f,g) = (f,Tg) so that Tg € V*. O

In particular, if T is a self-adjoint operator on #H, and K = ker(T), then K+ is invariant under T,
and being a closed subspace of H, K+ is a Hilbert space in its own right. If T is a compact self-adjoint
operator, the restriction of T to K, T|x., is an injective compact self-adjoint operator on K=.

Next, any eigenvalues of a self-adjoint operator on a Hilbert space H are necessarily real:

4.0.9 LEMMA. Let T be a self-adjoint operator on a Hilbert space H. Suppose that f # 0 and that
Tf=M\f for some A € C. Then A € R.

Proof. Let u = ||f||~!f. Then A\ = (u,Tu) = (Tu,u) = (u, Tu) = \. O

4.0.10 THEOREM (Hilbert-Schmidt Spectral Theorem). Let T be a self-adjoint compact operator on a
Hilbert space H. Let K = ker(T). If dim(Kt) =: m < oo, define the index set # to be {1,...,m}.
Otherwise, define ¢ := N. Then there exists an orthonormal basis {un}ne # for K+ consisting of
eigenvectors of T with Tu; = Aju; for all j € N such that \; is real, |Ag| < |A;| forallj <k e 7
and |\1| = ||T||. Moreover,
T =) Nluj)uyl , (4.0.9)
ies

where, in case ¢ = N, the sum converges in the operator norm and lim, o Ay, = 0.

Proof. By restricting T to (ker(T))+, we may assume without loss of generality that ker(T) = {0}, which
we do in order to simplify the notation.

By Theorem 4.0.7, either ||T|| or —||T|| is an eigenvalue of T', or both are. Let u; be an eigenvector
of T with eigenvalue Ay, where either Ay = ||T'|| or A\; = —||T'||. If dim(H) = 1, we are done.

Otherwise, define K; = span({u;}). Then K; is invariant under 7', and then by Lemma 4.0.8, K{- is
a invariant under 7. Since the orthogonal complement of any set is closed, Ki is closed, and hence is a
Hilbert space. Since Ki is invariant under 7', the restriction of T to Ky, T’ Ko is a self-adjoint compact

operator on Ki.

Therefore, we may apply Theorem 4.0.7 to T’/CL: Either HT|ICL or — HT|ICL is an eigenvalue of
1 1 1
T‘)Ci' Choose us to be an eigenvector of T’KL with eigenvalue Ay = + HT’ICL H Evidently, ’ T’/CL < |7
1 1 1 1
and hence |Ao| < |A1]. If dim(#H) = 2, we are done. Otherwise we iterate.
Suppose we have found an orthonormal set {u1, .. ., u,, } consisting of eigenvectors of T with Tu; = Au;

and |A;| < |Ag] for all 1 < j < k < m. Suppose that dim(#) > m. Define K,, := span({ui,...,um}),
which, being spanned by eigenvectors, is evidently invariant under 7. By Lemma 4.0.8, K- is a closed
subspace of ‘H that is invariant under 7.

is an eigenvalue of

Therefore, we may apply Theorem 4.0.7 to T|KL Either T’KL or — HT}}CL

. Then Tumy =

T|ici' Choose u,,+1 to be an eigenvector of T|ch with eigenvalue A\j,41 = £ ’T|/CL

m m m
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Am41Um+1 SO that u,, 11 is also an eigenvector of T'. Evidently,

7l < [l
and hence |Am41| < [Am|- Thus, {ui,. .., un+1} is an orthonormal set consisting of eigenvectors of T' with
Tuj = Auj and |[\j| < |\ forall1 <j <k <m+1.
If dim(H) := N < oo, the inductive construction terminates in N steps producing an orthonormal

basis for H. Otherwise it continues indefinitely producing an infinite orthonormal sequence {u,, } nen with
Tu, = Au, and n — |A,| non-increasing on N. By Theorem 4.0.6, for each r > 0, there can be only
finitely many n such that |A,| > r. It follows that lim,, . A, = 0.

We now claim that {u,},en is complete. To see this, let K denote the orthogonal complement of
the span of {u,}nen, and note that since the span of {uw,}nen is invariant under T, so is K. Since
ker(T') = {0}, if £ # {0}, ||T|k|| > 0. We could then apply Theorem 4.0.7 to produce an unit vector u
that is an eigenvector of T' with Tuw = £||T|«|u, and with (u,u,) = 0 for all n. But this is impossible
since by the construction of {u,}nen, for all unit vectors v € H with (u,u;) = 0 for j = 1,...,m,
[{(u, Tu)| < |Am| and we have seen that lim,_,o [An| = 0. Hence K = {0}, which means that {uy}nen is
complete.

Since {u;}jc # is an orthonormal basis for H, we have that for all f € H, f = Zje/(uj,ﬁuj, and

hence
Tf=T| > (uj fu; | =Y (uy, HTu; = > Ajlug)(ulf -
je s JEL j€f
If ¢ is finite, this proves (4.0.9).
For the case # = N, we now show that the sum in (4.0.9) converges in the operator norm. To do

this, for each n € N, define T, = Z Ajlu;){(u;|. Then all n > m and unit vectors u,
j=1

n o0
[, (T = Tdw)l = | 37 Al )] < o] S g, )2 = [ -
j=m+1 Jj=1
By Lemma 4.0.1, |T;, — T || < [Am+1] and then since limy, 00 A, = 0, {Th }nen is a Cauchy sequence in
PB(H). This sequence therefore converges in operator norm to a limit that must agree with 7" on the dense

span of {u;};en, and must therefore be T'. This proves (4.0.9) in the infinite dimensional case. O

There are several corollaries:

4.0.11 COROLLARY. For all self-adjoint T € € (H), there exists an orthonormal basis for H consisting

of eigenvectors of H.

Proof. Let K := ker(T), which is a closed subspace of H, and therefore a Hilbert space in its own right.
Combine any orthonormal basis for this space with the orthonormal basis of K1 that is provided by
Theorem 4.0.10. O

4.0.12 COROLLARY. %(H) is the operator norm closure of the set F(H) of finite rank operators on
H.



90

Proof. We have seen that .Z# (H) C €(H), and that €' (H) is closed so that .#(H) C €(H). The formula
(4.0.9) displays every self adjoint compact operator T' as the operator norm limit of finite rank operators,
and if T is compact, so are R:=T +T* and S :=i(T* — T). As self-adjoint compact operators, R and S

can be approximated in operator norm by finite rank operators, but then since T'= R+1¢S,socan 1. [

IfTe¥(H),and T =T, and ¢ is a continuous function on defined on [—||T||, ||T"]|], then we define

P(T) =D (g luy)uyl -

JEN

4.0.4 The Fredholm Alternative

The Fundamental Theorem of Linear Algebra says that a linear transformation T between finite dimen-
sional vector spaces V and W is invertible if and only if V and W have the same dimension and T is either
injective or surjective. In other words, for linear maps between vector spaces of the same finite dimension,
infectivity implies subjectivity and vice-versa.

In infinite dimensions, this is not true in general, but there is an important case in which is is true.

4.0.13 THEOREM. Let T be a compact operator on a Hilbert space H. Then (I — T) is invertible if
and only if (I —T) is injective, and (I — T') is invertible if and only if (I —T) is surjective. Moreover

dim(ker(I — T)) = dim((ran(I — T))*) . (4.0.10)

4.0.14 Remark. The first part of the theorem can be expressed as saying that either (I —T) is invertible,
or else 1 is an eigenvalue of T'. This is the Fredholm alternative. For A # 0, (A —T) = A(I — A\7'T), and
hence (A — T) is invertible if and only if (I — A~'T) is invertible, and A™'7 is compact if and only if T

is compact. Hence if T is compact, and A # 0, either A is an eigenvalue of T or else A\I — T is invertible.

4.0.15 LEMMA. Let T be a compact operator on a Hilbert space H. Then either there exists C > 0
such that for all f € H,
(I =T)f[I = ClI.f (4.0.11)

or else ker(I —T') # {0}.

Proof. Suppose that there is no C' > 0 such that (4.0.11) is valid for all f € H. The there exists a sequence
of unit vectors {up fnen such that lim, o ||(I — T)uy,|| = 0. Since the closed unit ball B in H is weakly
sequentially compact, by passing to a subsequence, we may assume that {u,}nen converges weakly to

some u € B, and then, since T is compact, that lim,_, ||Tu, — Tu|| = 0. Then since
1= [[Tunlll = unll = 1Tunlll < llun = Tun|| = |(I = T)un]| ,

lim,, o0 || Tun|| = 1, and hence || Tu|| = 1.
Since T' commutes with (I —T'), and is bounded, the hypothesis that lim,,_, o ||(I —T)uy,|| = 0 implies
that
0= lim [ T( — T)u,|| = lim_ [[(I = T)Tu, | = (I - T)Tu] .

Since | T'u|| = 1, this means that T'u is a non-zero vector in ker(I — T'). O
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4.0.16 LEMMA. Let T be a compact operator on a Hilbert space H. If ker(I—T) = {0}, thenran(I—T)

1s closed.

Proof. Let {gn}nen be a sequence in ran(l — T') that converges in norm to some g € H. We must show
that g € ran(f — T'). Since (I — T) is injective, for each n € N, there is a unique f, € H such that
(I =T)fn = gn. Then by (4.0.11), { fn}nen is a Cauchy sequence in H, and hence there exists f € H such
that lim,_,c || fn, — f|| = 0. Then

g=lim (I =T)f, =T -T)f,

n—0o0

showing that g € ran(I — T). O
4.0.17 LEMMA. Let T € B(H) Then
(ran(T))* = ker(T™) . (4.0.12)

Proof. Let f € ker(T*). For all g € H, 0 = (T*f,g) = (f,Tg), and hence f L Tg. Thus ker(T*) C
(ran(T))*. Let f € (ran(T))t. For all g € H, 0 = (f,Tg) = (T*f,g), and hence T*f = 0. Thus,
(ran(T))* C ker(T™). O

Proof of Theorem 4.0.15. Suppose that I — T is injective. By Lemma 4.0.16, V7 :=ran(I —T') is a closed
subspace of H, and hence a Hilbert space. Since T is a continuous vector space isomorphism of H onto V7,
it has a bounded inverse: By Lemma 4.0.15, the unique f such the (I —T)f = g; i.e., (I — T)!g satisfies
(I —T) g < CYgll, showing that (I — T)~t € Z(H). (One could also invoke the Open Mapping
Theorem.)

Suppose that V; is a proper subspace of H. Then since I — T is injective, V5 := (I —T)V; is a proper
subspace of V; = (I —T)H, and it is closed since (I —T) is a topological homeomorphism. We inductively
define V41 := (I — TV, for each n € N, and then, as above, we have that each V,,,1 is a proper, closed
subspace of V,.

Then V,, N V5, is a non-zero subspace for all n € N. Choose any unit vector u,, € V,, N V,;5 ;. Since
Vi, C Vi for all n > m, {u,}nen is an orthonormal sequence. Since u,, € V,, and Tu,, — u, € Vi1, un

and Tu, — u, are orthogonal, and hence
”Tun”2 = [(Tun — un) + unH2 = ||Tun — un”2 + HunH2 >1.

However, since {up}nen is orthonormal, it converges weakly to 0, and then since T is compact
lim,, o0 || Tun|| = 0. This contradiction shows that ran(I — T) = V4 = H, and hence that I — T is
surjective onto H as well as injective, and we have already seen that (I —7T)~! € %(H). This proves that
I — T is invertible if and only if it is injective.

Next, suppose that I — T is surjective. Then by Lemma 4.0.17, I — T* = (I — T)* is injective, and
since T is also compact, what we have proved above shows that I — T* is invertible in %(H). But then
I — T is invertible in B(H), with inverse ((I —T*)~1)*.

Finally, suppose that I — T is not invertible. Then ker(I — T') and (ran(I — T'))* = ker(I — T*) are
eigenspace of the compact operators T and T*, and hence are finite dimensional. Let {u1,...,u;,} be

any orthonormal basis of ker(I — T'), and let {v1,...,v,} be any orthonormal basis of (ran(/ —T))*. Let
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P

p := min{m,n}, and define F = Z |vj)(u;|. Note that (I — T + F) is injective if and only if if p = m,
j=1

and (I — T + F) is surjective if and only if p = n. Then since T'— F' is compact, by what we have proved

above, p = m = n, and this proves (4.0.10). O

4.0.18 Remark. For S € B(H), the nullity of S is defined by nullity(S) = dim(ker(S)), and the rank
of S is defined by rank(S) = dim(ran(S)). When H = C", so that we may identity %(H) with the
n x n matrices, we have the simple identity that for any subspace K of H, dim(K) + dim(K+) = n,
and hence rank(S) = n — dim((ran(S))*). Defining T = I — S, so that S = I — T, and noting that
in finite dimensions every linear operator is compact, the identity (4.0.10) of Theorem 4.0.13 says that
nullity (S) + rank(S) = n.

By Lemma 4.0.17, and what we have said above, and equivalent formulation is that
nullity (S) = nullity(S™) . (4.0.13)

This formulation has the advantage of not referring explicitly to the dimension, and as Theorem 4.0.13
shows, it remains true in infinite dimensions when S = I — T with T compact. For A\ # 0, write
S = A"Y(\I — T). Then by (4.0.13), nullity(A\I — T) = nullity(A\*I — T*), and hence if T is compact
operator, then A is a eigenvalue of T if and only if A\* is an eigenvalues of T* and in that case, these

eigenvalues have the same (finite) geometric multiplicity, just as in finite dimensions.



Chapter 5

Convexity

5.1 Convex functions on R

5.1.1 Continuity and lower-semicontinuity of convex functions

5.1.1 DEFINITION (Convex Function). A function ¢ on defined on a real vector space X with values

in (—oo,00] is convex in case for all 2,y € C and all A € (0, 1),

p(Az + (1 = N)y) < Ap(z) + (1= A)o(y) , (5.1.1)

and ¢ is strictly conver in case this inequality is strict for all z # y and all A € (0,1). A convex function

¢ on X is proper in case ¢(x) < oo for at least one x € X.

5.1.2 DEFINITION (Epigraph). Let ¢ be a function from some set X to (—oo, 00]. The epigraph of ¢,
Epi(¢), is the subset of X x R consisting of points (x,t) such that ¢(z) > t. Note that Epi(¢) = 0 if and
only if ¢(x) = oo for all z, and that ¢ is convex if and only if Epi(¢) is a convex subset of X x R.

5.1.3 LEMMA. Let (X, 0) be a topological vector space. Then a function ¢ on X with values in (—oo, o0]
is convez if and only if Epi(¢) is convex, and is lower-semicontinuous if and only if Epi(¢) is closed in

the product topology.

Proof. This is elementary and is left to the reader. O

Let (X, 0) be a topological vector space, and let ¢ be a convex function on X. Then Epi(¢) is convex,
and since the closure of a convex set is convex, m is closed and convex. Define a convex function ¢
by

_ 0o {z} x RNEpi(¢) =0
inf{t : (x,t) € x € Epi(¢)} otherwise .
Then ¢ is a lower-semicontinuous convex function such that ¢(x) < ¢(z) for all . By construction
and Lemma 5.1.3, ¢ is the largest (in the usual ordering) lower-semicontinuous convex function that is

dominated by ¢ pointwise. The function ¢ is lower-semicontinuous reqularization of ¢.

93
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5.1.4 EXAMPLE. Define ¢ : R — (—o0, 00] by

0 ze(-1,1)
_ 0 ze[-1,1]
dlx)=4q1 wxe{-1,1} Then o(z) =
oo z¢[-1,1].
oo x¢[-1,1].

5.1.2 Convex functions on R

The special case in which the vector space X is simply R is especially important. In this case the set C

on which ¢ is finite is an interval.

5.1.5 THEOREM. Let ¢ be a real valued convex function on an interval C C R. Then ¢ is continuous

on the interior of C'. Moreover, for a,b,c,d € C
b—a=d—c and a<c = ¢0b)—¢(a) <o(d)— P(c) . (5.1.2)

That is, the increment of ¢ over an interval increases as the interval is translated to the right. If ¢ is
strictly convez, the inequality in (5.1.2) is strict. Conversely, let ¢ be any function that is continuous and

finite on an open interval C, and is such that (5.1.2) is valid for all a,b,c,d € C. Then ¢ is conver.

Proof. We first prove (5.1.2) Note that b, ¢ € [a,d], and hence for some A, 5 € (0,1), b = Aa+ (1 — A\)d
and ¢ = fa + (1 — B)d. Solving for A and 3, we find

d—b

A=1-8="—.

Since A=1—-5,b=Xa+ (1 —A)d and ¢ = Ad+ (1 — X)a. It now follows from the definition of convexity
that

¢(0) < Ap(a) + (1 =A)¢(d)  and  ¢(c) = Ap(d) + (1 = A)¢(a) .

Adding these two inequalities yields ¢(b) + ¢(c) < ¢(a)+ ¢(d), with strict inequality if ¢ is strictly convex,
and this proves the first assertion, and evidently if ¢ is strictly convex, all of the inequalities are strict.
Fix any a in the interior of C; we shall show that ¢ is continuous at a. For any b € C, b # a, use a

telescoping sum expansion to write

n

$(b) — pla) = [(;5 <a+ (b— a)i) —¢ <a+ (b— a)j ; 1)} : (5.1.3)

=1
Choose § > 0 so that a £ € C. By (5.1.2), for b = a + 0, the first term in the sum is the least,

and hence ¢(a+d/n)— ¢(a) < M Likewise, for b = a — 4, the same reasoning yields

M < ¢(a) — é(a — §/n). Again by (5.1.2), ¢(a) — p(a— 6) < ¢a+8/n) — é(a). Altogether,
A=) < (a) — o(a—3/m) < ol +/n) — oa) < XTDZA 5

Taking n — oo, we conclude lim, o, ¢(a — §/n) = ¢(a) = lim, o ¢(a+ §/n).
We now claim that lim, |, #(z) = ¢(a). Suppose that limsup,, ¢(x) > ¢(a). Then for some € > 0,

there is an infinite sequence {t,, } men contained in (a, a+9) such that lim,,—, o tm = a and ¢(t,) > ¢(a)+e
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for all m € N. Choose n so that ¢(a+d/n) < ¢(a)+e€/2. Then there exists m € N such that ¢, € (a,a+d/n)
and thus A € (0,1) such that ¢, = Aa+ (1 — A\)(a + §/n). Then ¢(t,,) < Ap(a) + (1 — X)(¢p(a) +€/2) <
#(a) + €/2. This contradiction shows that limsup, , ¢(z) < ¢(a).

Next, suppose that liminf, |, ¢(z) < ¢(a). Then for some € > 0, there is an infinite sequence {t,, }men
contained in (a,a + ¢) such that lim,, oot = a and ¢(tn) < ¢(a) — € for all m € N. Choose n so that
¢(a+d6/n) > ¢(a)—€/2. Choose n € N so that ¢p(a+d/n) > ¢(a)—e/2, and a+4/n < t;. Choose m so that
tm < a+d/n. Then a+4d/n € (ty,,t1) and there exists A € (0,1) such that a+6/n = A, +(1—A)t;. Then
dla+d/n) < Ap(tm) + (L — AN)d(tm) < ¢(a) —€/2. This contradiction shows that liminf, , ¢(z) > ¢(a).

Altogether, we have shown that ¢ is right continuous at a. We could repeat the same analysis to show
that ¢ is also left continuous at a, but observe that the function ¢ (z) := ¢(2a — ) is convex and finite on
an open interval about a. (Epi(¢) is just the reflection of Epi(¢) about the vertical line = a). By what
we have just proved, v is right continuous at a. But then since ¢ is the reflection of ¢ about z = a, ¢ is
left continuous at x = a. Altogether, the continuity of ¢ is proved.

For the converse, let z < y € C and A € (0,1). We must show that when (5.1.2) is valid for all
a,b,c,d € C, then ¢p(Ax + (1 — N)y) < Ap(x) + (1 — N)¢(y). By the continuity of ¢, it suffices to do this
when A is a dyadic rational; i.e., A = k/2™ for some k,n € N with k& < 2. For n = 1, define z = (x +y)/2
and note that

r+y
2

30) + 50 — o

because y — z = z — . That is, when (5.1.2) is valid for all a,b,¢,d € C, then

Az + (1 = N)y) < Ad(x) + (1 = A)o(y) (5.1.5)

for all z,y € C and A =1/2.

This is the first step of an inductive proof that the same is true whenever A = j27™ j, m € N and
J < 2™. We suppose that this has been shown whenever m < n.

Now fix A = j/27™ € (0,1). Let k,¢ € N such that k + ¢ = j and k,¢ < 2"~ (If j is even take
k=+¢=3j/2,and if j is odd, take k to be the integer part of j/2.) Then for all z,y,

Az + (1 =Ny

T2 =gy _ % (k:x+ (2n1 — k)g) L1 (€x+ (2! - é)y> (5.1.6)

on on—1 2 27171

Since (5.1.5) is true for A = 1/2,

p(Az+ (1 =Ny) <

k n=1_ ¢ n=1_y
¢< ﬂcﬂL(;%1 )y>+;¢< H(;ﬁ1 )y) _

By the inductive hypothesis,

kx+ (2" —k)y k n—l _k
¢( (2%1 ) ) < g @) + ——

?(y)

and likewise with ¢ in place of k. Using these inequalities in (5.1.6) shows that (5.1.5) is valid for A = j277,

completing the inductive proof. O
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5.1.3 The subgradient of a convex function

5.1.6 THEOREM. Let ¢ be a real valued convex function on an interval C C R. For all a,b,c € C,
a<b<e,
o) ~ dla) _

c—a b—a ’

(5.1.7)

If ¢ is strictly convex, the inequality in (5.1.7) is strict.

Proof. Because ¢ is continuous, it suffices to consider rational values of b — ¢ and ¢ — a. Choosing a

. . k m
common denominator n, we can write b —a = — and ¢ — a = — with m > k. Define a sequence {a;} by
n n

aj:¢<a+i>—¢<a+j;1> .

By (5.1.2), this is an increasing sequence, and hence,

pb) —¢(a) _ ¢latk/n)—¢(a) |1
b—a k B WA
j=1
m k m
Likewise, w =n nl%;aj . Since a; increases with j, ;;aj < 1711;% for m > k. This

proves (5.1.7). By theorem 5.1.5, if ¢ is strictly convex, then aji1 > a; for all j, and then there is strict
inequality in (5.1.7). O

Let ¢ be convex on R and finite on C, For each s € C°, define

ST Z0) e 98 6 h)

5.1.8
h—0t h—0t h ( )

The limit defining ai exists by (5.1.7), and then limit defining o? also exists by (5.1.7), but applied to
the convex functions ¢(—s). We refer to Jf(s) as the right derivative of ¢ at s, and to o (s) as the
left derivative of ¢ at s. If is clear from Theorem 5.1.5 that in general, af(s) > 0% (s). Evidently ¢ is
differentiable at s if and only if aﬁ(s) = 0% (s), so that in this case, ¢/(s) = af(s) = 0% (s) represents the
slope of ¢ at s. Since the left derivative of ¢ at s is minus the right derivative of ¢t — ¢(—t) at t = —s, we

may economize in the formulation of the following theorem by referring only to right derivatives.

5.1.7 THEOREM (One-sided Derivatives). Let ¢ be a convex function on R that is finite on an interval
C. for all a,b e C°, a <b.
Ui(a) <o? (b) (5.1.9)

and for all s € [0? (a),ai(a)],
o(b) > ¢(a) +s(b—a) . (5.1.10)

Moreover, if ¢ is strictly convex, then both of these inequalities are strict. Finally, for all a € C°,

Uf(a) = gnf af(b) and % (a) =supo? (b) . (5.1.11)
>a b<a

In other words, O‘i is a right-continuous non-decreasing function, and o is a left-continuous non-

decreasing function.
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Proof. By Theorem 5.1.5, for all 0 < h < b —a, ¢(a + h) — ¢(a) < ¢(b) — ¢(b — h). Dividing by h and
taking the limit h | 0 yields (5.1.9).
Next, by the telescoping sum identity (5.1.3) and Theorem 5.1.5 to obtain, for b > a,
¢(b) — ¢(a) = n(p(a+ (b—a)/n) — ¢(a)) . (5.1.12)
Multiplying by 1 = (b —a)/(b — a), yields
¢pla+ (b—a)/n) — ¢(a)

o(b) = ¢(a) + (b—a)

(b—a)/n
Taking the limit n — oo yields ¢(b) > ¢(a) + o (a)(b — a).
For b < a, (5.1.3) and Theorem 5.1.5 yield
¢(a) — ¢(b) < n(¢(a) — dla—(a—b)/n)) . (5.1.13)

Multiplying and dividing by —1 = (b — a)/(a — b), yileds
¢(a) — ¢(a —(a —b)/n)
(a—0b)/n
Taking the limit n — oo yields ¢(b) > ¢(a) + ® (a)(b— a). Therefore, for any s € [0? (a), ai (a)], (5.1.10)
is valid.
Next, for a € C°, choose € > 0, and then h > 0 so that Uﬁ(a) +e€ > (¢p(a+ h) — ¢(a))/h. By the
continuity of ¢, there is a ¢ > 0 so that (¢p(a +h) — ¢(a))/h+€> (p(a+ I+ h) — ¢(a+0))/h. Therefore,

¢(b) = ¢(a) + (b —a)

0% (a) 4+ 2¢ > (dla+ 0+ h) — ¢(a+8))/h > 0% (a +9)

The fact that for all § > 0, af(a) < O'f_(a,(s) is an immediate consequence of (5.1.9). This proves the first

identity in (5.1.11). The second is proved in the same manner. O

Theorem 5.1.7 has the following interpretation: Let ¢ be convex and finite on an interval C C R
with non-empty interior C°. Then for all 2o € C°, and all s € [0? (a), aﬁ(a)], the affine function h(z) =
s(x — xp) + ¢(xo) satisfies h(z) < ¢(x) for all z, with h(xg) = ¢(xo): The graph of h, a line, lies below
the graph of ¢ but touches it at the point (zg, ¢(xg)). Such a line is called a supporting line for the graph
of ¢.

The inequality (5.1.10) is called the “above the tangent line inequality” because it expresses the fact
that the graph of ¢ lies everywere above its tangent line at each pontxy where ¢ is differentiaible — and

more generally lies above each of its supporing lines.

5.1.8 DEFINITION (Subgradient). Let ¢ be a convex function on R that is finite on an interval C. For
x € C, the subgradient of ¢ at x, Op(x), is the set of numbers s such that

o(y) > d(z) + sy — )

for all y € R. In other words, s € d¢(z) if and only if the line with slope s that passes through (z, ¢(z))
is a supporting line for ¢. If ¢(z) = co, we define d¢(z) = . For A C R, define

06(A) = ] 0¢(x) . (5.1.14)

TEA
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5.1.9 LEMMA. Let ¢ be a convex function on R that is finite on in a interval C. Then for all x € C°,
op(x) = [0 (m),ai(w)] In particular, for x € C°, 0¢(z) # 0.

Proof. This follows immediately from (5.1.10). O

a x
5.1.10 EXAMPLE. Let ¢(x) = 0 . Then ¢ is lower-semicontinuous, and for all s,x € R,
0o T Fxp -

o(x) < d(x0) + s(x—x0) so that Op(xg) =R and for x # o, O¢(x) = 0. In this case, we have IH(R) =R,
but whole contribution to the union comes from the single point xq.

For a complementary example, consider ¥(zx) = a(x — xo) for given a,z9 € R. This is a continuous
convezx function. Since v is differentialbe at each point x with ¥'(x) = a, 0Y(x) = {a} for all z € R, and
hence 0¢(R) = {a}.

We close this secton with a simple but imprtant application of the “above the tangent line inequality”
(5.1.10):

5.1.11 THEOREM (Jensen’s Inequality). Let (2, M, u) be a measure space with u(Q2) = 1. Then for all
real valued convex functions ¢ on R, and all measurable function f, the negative part of ¢(|f|) is integrable,
so that [, ¢(|f|)du is well defined, though it may be infinite. Moreover,

¢</Q|fdu> §/Q¢(|f|)du- (5.1.15)

and if ¢ is strictly convex there is equality if and only if

|f(2)| = /Q | fldp (5.1.16)

for almost every x.

Proof. Let a := [, |f|du. By (5.1.10), ¢(|f(x)]) > ¢(a) + aﬁ(a)(|f(x)\ — a). Integrating this pointwise
inequality yields (5.1.15). If ¢ is strictly convex, this pointwise inequality is strict wherever |f(x)| # a,

and hence the inequality (5.1.15) is strict unless |f(x)| = a almost everywhere. O

5.1.4 The Legendre Transform

Let ¢ be a proper convex function. Let C' be the set on which ¢ is finite, which is not empty since ¢ is
proper. Since ¢ is convex, C' is an interval. If C' has empty interior, then C = [z, o] for some z, and
then ¢ is of the form given in Example 5.1.10; ¢(zo) = a for some a,xg € R, and ¢(x) = oo otherwise. In
this case we have seen that d¢(xo) = R. Otherwise, the set C' has a non-empty interior C°, and then by
Lemma 5.1.9, for each x € C°, d¢(z) # 0.

5.1.12 DEFINITION (Legendre Transform). Let ¢ be a proper convex function on R. The Legendre
transform ¢* of ¢ is the function defined by

¢*(y) = supfye — o(x)} . (5.1.17)

zER

which takes values in (—o0, c0].
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Notice that ¢* is lower-semicontinuous since it is the pointwise supremem of a set of lower-
semicontinuous functions (They are actually continuous, and even affine, in this case). Also, since each
affine function is trivially convex, and since the pointwise supremum of any set of convex functions is
convex, ¢* is convex. We now show that ¢* is proper.

By the remarks made at the beginning of this section, d¢(R) # . Pick some point zg such that
0é(x0) # 0, and then pick y € 9¢(x). Then by (5.1.10), for all x € R, ¢(z) > ¢(xo) + y(z — o).

Therefore,
yr — ¢(z) < ya — ((wo) — y(@ — xo)) = ywo — d(20) -

Therefore, taking the supremum over all € R, ¢*(y) < yzg — ¢(x¢) < co. Hence, ¢* is proper. We have

proved:

5.1.13 THEOREM. Let ¢ be a proper convex function on R. The its Legendre transform ¢* is a proper,

lower-semicontinuous convez function on R, and ¢* is finite at every point in Op(R).

5.1.14 EXAMPLE. For1 < p < oo, define ¢,(x) := p~!|z|P. Note that ¢, is continuously differentiable
with ¢, (x) = |x|P~ sgn(x) which is strictly monotone increasing. Hence limypoc Uf(m) = limgyoo ¢, (2) =
00, and limy|_ o? (z) = limg | ¢, (7) = —00. Thus, d¢,(R) = R and ¢}, will be defined on all of R.
To compute it, note that for all y € R, the function x — xy — ¢(x) is continuously differentiable, and
its derivative is y — |x[P~ sgn(z), and hence the unique mazimum occurs where x has the same sign as y,

and |z| = |y| @~V . Evaluating vy — ¢,(x) as this x, we find

6 (y) =y /-0~ Lypro-n P e
g p p

Hence if we define ¢ = p/(p — 1), we have that
—+-=1 and o5 =¢q . (5.1.18)

Since the relation (5.1.18) is symmetric in p and g, (gzb;)* = ¢,. We shall soon see that this is no

coincidence.

5.1.15 EXAMPLE. Now consider the two limiting functions ¢1(x) = limp 1 ¢p(z) = |z|, and ¢oo(x) =

limpy1 ¢p(z), so that
0 =ze[-1,1]

Poo () = (5.1.19)
oo xé¢[-1,1].

Both ¢1 and ¢ are lower-semicontinuous convex functions. (In fact, ¢y is even continuous.) Fizy € R,
and note that yxr — ¢(x) = (ysgn(z) — 1)|z| < (ly| — 1)|z|, with equality when sgn(x) = sgn(y). It follows
that sup,cp{yr — ¢1(2)} = dc(y) - That is, ] = ¢oo-

It is also true that ¢%, = ¢1. To see this, fit x € R, and note that xy — doo(y) = xy for |y| <1 and
Y — Poo(y) = —00 for |y| > 1. Hence

Pro(@) = sup{zy = [yl <1} = [a] = d1(2) .

We shall see below that the fact that ¢7* = ¢1 is no coincidence.
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5.1.16 THEOREM (Young’s Inequality). Let ¢ be a proper convex function, and let ¢* be the Legendre
transform of ¢. Then for all x,y € R,

zy < ¢(x) + ¢ (y) - (5.1.20)
Moreover, there is equality in (5.1.20) if and only if y € 0¢(x), and in this case, x € 0P*(y).
Proof. The inequality (5.1.20) is an immediate consequence of the definition (5.1.17). Suppose for some

Zo,%0 € R, 2oyo = ¢(x0) + ¢*(yo), so that necessarily ¢(zo) and ¢*(yo) are both finite. By (5.1.20), for
all z,y € R,

¢(x) + 0" (y) —xy = ¢(w0) + ¢"(Y0) — Zoyo -

Setting y = yo, and cancelling ¢*(yp) from both sides yields ¢(z) > ¢(zo) + yo(x — o), which shows that
Yo € 0¢(xp). Setting x = x( and cancelling ¢(xg) from both sides yields ¢*(y) > ¢*(yo) + zo(y — yo) which
shows that zo € 0¢* (o)

Conversely, if yo € d¢(xp), then by definition, ¢(x) > ¢ (x¢) + yo(x — xo) for all z, and hence

ToYo > ¢(wo) + yor — P(T) .
Taking the supremum over z, we find zoyg > ¢(x0) + ¢*(yo). Together with (5.1.20), this proves that

Toyo = ¢(xo) + ¢*(yo)- O

Suppose that ¢ and ¢* are both continuously differentiable. For instance, this is the case when

é(x) = p~ P, p € (1,00), so that ¢*(y) = ¢ |y|9, ¢ = p/(p — 1). Then for all z,y, d¢(x) = {¢'(x)} and
0¢*(y) = {(¢*)'(y)}. Then the statement about cases of equality in Young’s inequality says that

(67 (¢'(x)) =2 and  ¢[(¢") W)=y .

In other words, the functions ¢ and (¢*)’ are inverse to one another. For the dual pair in Example 5.1.14,

this can be checked by simple computations.

5.1.17 THEOREM (Fenchel-Moreau Theorem). Let ¢ be a proper, lower-semicontinuous function on
R and let ¢* be its Legendre transform. Let ¢** be the Legendre transform of ¢*. Then

P =¢ . (5.1.21)

Proof. Example 5.1.10 takes care of the cases in which ¢ is finite only at one single point. Therefore,
suppose ¢ is finite on an interval C' with C° = (a,b). Let x € (a,b) and y € d¢(x). Then ¢(z)+¢*(y) = zy,
and x € 9¢*(y). By Young’s inequality applied to the pair ¢* and ¢**, xy = ¢*(y) + ¢**(z), and

o(x) + 0% (y) = 2y = ¢"(y) + ™" (2) .

By Theorem 5.1.13, ¢*(y) < oo, so that it may be cancelled from both sides. This proves that at all points

of (a,b), ¢(x) = ¢**(x). Since both ¢ and ¢** are lower-semicontinuous. ¢ = ¢** on [a, ). O
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5.2 LP norms and their close relatives

5.2.1 The L? norm and Holder’s Inequality

5.2.1 DEFINITION (L?(Q2, M, u)). Let (Q, M, u) be a measure space. For 1 < p < oo, LP(Q2, M, i)
consists of the equivalence classes, identified under equivalence almost everywhere, of measurable functions
f such that |f|? is integrable. The L? norm is the function f — || f||, where

= ([ fl”du)l/p | (5:2.1

As we have already observed, the function ¢ — ¢ is convex on [0, c0), and hence for f, g € LP(Q2, M, u),

T € Q,
P

‘W < %|f(m)|p + %Ig(:ﬂ)l” :

This shows that |f + g|? is integrable whenever |f|P and |g|P are, and thus LP(Q, M, u) is closed under
vector addition. It is also evidently closed under scalar multiplication, and thus is a vector space over C.

The next inequality will allow us to show that the L? norm is, in fact, a norm on this vector space.

5.2.2 THEOREM (Holder’s Inequality). Let (2, M, u) be a measure space. Let 1 < p,q < oo, with

1 1
—+—=1. Let f and g be functions on (2, M, ) such that |f|? and |g|P are integrable. Then fg is

integrable, and

/Q Foldu < 1 lallgly - (5.2.2)

There is equality in (5.2.2) if and only if for almost every x,

Igllplf (@)1 = £l Glg ()P - (5.2.3)

Proof. If either [, |f|9dpu =0 or [, ]g[’dp =0, then (5.2.2) is true for trivial reasons. Therefore, suppose
that both integrals are strictly positive.

Apply Young’s inequality with the dual pair ¢, and ¢, = ¢, from Example 5.1.14. By (5.1.18), for
any ¢ > 0, and all x € €,

1 1 1
[f(@)llg(x)] = (alf(x)]) <a9($)> < aqa|f(ﬂ?)|q +a p};lg(ﬂf)\p : (5.2.4)
By Theorem 5.1.16, there is equality if and only if a|f(x)| € d¢,(a™*|g(x)|), and hence in case

alf(@)| = ¢ (a” g(@)]) = a' Plg(a)["~" . (5.2.5)

Integrating both sides of (5.2.4),

1 _ 1 1 1
PR ( / Iflqdu>+a ( / gl”du> —arlifs vt (520
Q q.Jq P Ja q p

We now choose the value of a so as to make the right hand side as small as possible. A simple calculus
exercise shows that the best choice is a = ||f||;1/p||g|\11,/q. With this choice of a, (5.2.6) becomes (5.2.2),
and (5.2.5) becomes Hg||§/q|f(x)| = || fllqlg(z)[P~1, and since ¢ = p/(p — 1), raising both sides to the gth
power yields (5.2.3). O
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Consider any non-zero f € LP(2, M, ), 1 < p < oo, and let ¢ = p/(p — 1). By Holder’s inequality,
for all h € L1(2, M, ) with ||h|, =1,

3%( / hfdu) < / Bl fldu < £,

and there is equality in the second inequality if and only if || f[|P|h(z)|? = ||h[|I| f(z)[P = |f(z)[? for almost
every x. In this case, |h(z)| = | f[l,7?|f(x)[’~". There will be equality in the first inequality if and only

if R(h(z)f(x)) = |h(x)||f(x)| almost everywhere. This forces that

g(x) = [IF[l,"1f (@)["~ sgn(f(z)) ,

almost everywhere. (The signum function, z — sgn(z) on C is defined by z € C, define sgn(z) = z/|z| for
z # 0, and sgn(0) = 0.)

5.2.3 DEFINITION. For 1 < p < 00, ¢ = p/(p — 1) define the function D, mapping LP(£2, M, x)\{0}
to the unit sphere in LI(Q2, M, ) by

Dy(f) = IF1l,7P1f P~ sgn(f) - (5.2.7)
f— D,(f) is called the gradient map for reasons that will become clear.
Altogether, we have proved:

5.2.4 THEOREM. Letl <p< oo, q=p/(p—1). For all f € LP(Q, M, 1),

I =sup{ ([ Bran) < e o Mol =1 | (5.28)
Moreover, the supremum in (5.2.8) is a mazimum, and when f # 0, the unique mazimizer is h = D,(f).
5.2.5 THEOREM (Minkowski’s Inequality). Let 1 < p < 0o, ¢ =p/(p—1). For all f,g € LP(Q2, M, u),
1f+9lle < 11+ llglls (5.2.9)

and there is equality if and only if either f =0, or else g is a non-negative multiple of f.

Proof. We may suppose that neither f = 0 nor g = 0. By Theorem 5.2.4,
I+l = [ D+ )7 + 9= [ DFw g+ [ DG+ glodu < 11l + ol -

There is equality if and only if D,(f + g) = D,(f) = D,(g). The second equality forces sgn(f) = sgn(g)
and |f|P~! = al|g|[P~* for some a > 0, and hence |f]| = a'/®=D]g]. O

It is easy to prove that for 1 < p < oo, LP(2, M, u1) is a complete metric space, and hence a Banach
space. In fact the proof is very much like the one we have already given for completeness of L?(2, M, ),

and it extends to a much wider class of norms that we now introduce.
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5.2.2 Orlicz spaces

Throughout this section, let (€2, M, 11) be a given measure space, and define L°(Q, M, 1) to be the vector

space of measurable complex valued functions f on €, identified under almost-everywhere equivalence.

5.2.6 DEFINITION. An Orlicz function ¢ is a convex lower-semicontinuous function on R such that is
symmetric (¢(—z) = ¢(z) for all ), with ¢(0) =0, ¢(1) < co with 1 € 9¢(1), and limyee ¢(z) = 0. For

any Orlicz function ¢, define
Bo={rer@mum: [ olfhan<om}

Define Ly to be the subspace of L°(Q, M, u1) spanned by By.

Every Orlicz function ¢ is non-negative: Since ¢ is convex and even, ¢(0) < 3 (¢(z) + ¢(—2)) = ¢(z),
Hence 0 is a minimizer for any symmetric convex function, and since ¢ is a Orlicz function, ¢(0) = 0.
Evidently the z-axis is a supporting line for the graph of ¢, and so 0 € 9¢(0).

We claim that ¢* is also an Orlicz function. First, ¢* is evidently convex proper, symmetric and
lower semicontinuous. By the remark above, ¢*(0) < ¢*(y) for all y. Since 0 € 9¢(0), the conditions for
equality in Young’s inequality give us 0 = ¢(0) 4+ ¢*(0), so that ¢*(0) = 0. Also, since 1 € 9¢(1), the
conditions for equality in Young’s inequality give 1 = ¢(1) + ¢*(1), so that ¢*(1) and ¢(1) are not only
finite, but both lie in [0,1], and 1 € 9¢*(1). Finally, since 1 € 9¢*(1), ¢*(y) > ¢*(1) + (y — 1), and hence

limyjoo ¢*(y) = co. Summarizing, we have:

5.2.7 LEMMA. Let ¢ be an Orlicz function, and let ¢* be its Legendre transform. Then ¢* is also an
Orlicz function and
o(1)+¢*(1)=1. (5.2.10)

5.2.8 EXAMPLE. Let 1 < p < oo, and let ¢,(z) = p~|z|P, which is easily seen to be an Orlicz function
since it is continuously differentiable at x = 1, and ¢),(1) = 1, showing that 0¢,(1) = {1}. A measurable
function f belongs to By, if and only if

1 1
7/ ‘f|pd/’[/ S )
pJa p
and hence f € By, is and only if || f|l, < 1. Thus, By, is precisely the closed unit ball in LP(2, M, ).

Therefore, Ly, = LP(Q2, M, ). As we have seen in Example 5.1.15, ¢7 = ¢oo where ¢oo is defined in
(5.1.19). Then ¢o(1) =0, and hence

/ boo(|F )t < oo (1)
Q

if and only if Poo(|f]) = 0 almost everywhere, and this is the case if an only if the essential supremum
| fllee of | f| belongs to [0,1]. The subspace of L°(Q2, M, 1) of functions with || f|ls < oo defines the space
L>(Q, M, p), and hence L®(Q, M, ) = Ly . In particular, each LP space, 1 < p < oo is an Orlicz

space. We now introduce norms which will turn out to be the LP norms on the LP spaces.

5.2.9 LEMMA. Let ¢ be any Orlicz function. Then By is a balanced convex subset of L°(Q, M, u), and
ﬂ7->0’l"B¢ = {0}
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Since By is absorbing in Ly by definition, the function f — ||f||4 in Ly given by
[fllo =inf{r >0 : ferB,} (5.2.11)

is a norm on Ly called the Luzembourg norm on Lg. Notice that
ferBy <~ ffeB = / (|f|>du<¢( ).
Therefore, an equivalent form of (5.2.11) is

||f||¢=inf{7~>0 ;/Q (|f|>d <¢()} (5.2.12)

5.2.10 EXAMPLE. Continuing with Example 5.2.8, it is clear that || - ||l¢, = || - [/

5.2.11 LEMMA. Let ¢ be an Orlicz function. For all f € Ly,

I <|f||¢) du <o) - (5.213)

and for all non-negative measurable functions f and g,

f<g = Iflls<lgle (5.2.14)
Proof. By (5.2.12), for all n € N, / 0] ('f) dp < ¢(1), and then (5.2.13) follows from Fatou’s
o \llflls+1/n

Lemma and the lower-semicontinuity of ¢.
Next, since ¢ is monotone on [0,00), for all ¢t > 0, / 1) (|{|> dp < / <9|> dp. From this and
Q Q
(5.2.12), we obtain (5.2.14). O

The next theorem shows that when ¢ is an Orlicz function, (L, || - ||4) is complete, and hence is a
Banach space. By what has been shown in the examples above, this extends the Riesz-Fischer Theorem
from L% to L? for all 1 < p < 0.

5.2.12 THEOREM (Completeness of Orlicz spaces). Let ¢ be an Orlicz function, and let (£, M, 1) be
a measure space, Let (Lg,| - ||¢) be the Orlicz space associated to ¢ and (2, M, ). Then (Lg, || - o) is
a Banach space, and from every Cauchy sequence {fn}nen in Ly, one may extract a subsequence that

converges almost everywhere.

Proof. For each k, pick ny so that j,¢ > ng = ||f; — fell¢ < 27k Without loss of generality, we may
suppose that ngi1 > ny for each k. For N € N, define the function Fy(z) by

Fy(x) = [fo, (2 |+Z|fnk+1 = fr(@)] -
By Minkowski’s inequality,

N N
1Ewllo < I faclls + D Ifnes = Farlls < farllo + D277 < I fualls +1 .

k=1 k=1
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Let ¢ = ||fn, |l +1. By (5.2.12), [ ¢ (FNC(J:)> dz < ¢(1). Define F(z) = limy_o0 Fy(x). Since ¢ is
Q

<FN($)

lower-semicontinuous, ¢ [ —— | < liminf ¢ ), and then by Fatou’s Lemma,
c

N —o0

/qu (F(cx)) da < 135“5?5/9"5 (FNC(x)) dz < ¢(1) .

Hence ||F||¢ < ¢, and since limjo ¢(t) = 00, F' is finite almost everywhere.
Next define f by
(o)
f(l‘) = klingofnk = fnl +I;(fnk+1 - fnk) ,
where the sum on the right converges absolutely wherever F' is finite; that is, almost everywhere. Since
|f| < F, f €Ly by Lemma 5.2.11.

By the definition of the subsequence {f,,}jen, for all k € N, / 10 W) dp < ¢(1). Again
Q
since ¢ is lower-semicontinuous, ¢ <f2_£"k> < ligm inf ¢ (W), and by Fatou’s Lemma once
—00

more, ||f — fa.lle < 27F.
li . — =0.
[ fo, = fllo =0

Since the sequence is Cauchy, we have this convergence along the whole sequence as well. O

5.2.3 Duality in Orlicz spaces

Let ¢ be an Orlicz function, and let ¢* be its Legendre transform. Any such pair of Orlicz functions is
called a dual pair of Orlicz functions. Associated to such a pair of Orlicz functions is the pair of normed
|- llo=)-

What is the relation between Lj and Lg-? The first step towards answering this question provided

spaces (L, | - [l4) and (Ly,

by the generalized Holder inequality:

5.2.13 THEOREM (Generalized Holder’s Inequality). Let ¢, ¢* be any dual pair of Orlicz functions.
Then for all functions f € Ly and g € Ly~, fg is measurable and

/Q Faldi < 1 lollgllsr - (5.2.15)

There is equality in (5.2.15) if and only if for almost every x, |ﬂ(a|c|)| € 0¢ <|ﬁ§cx)|),
gllg* ¢

/Q¢ <”|ff|¢> dp=¢(1)  and /ng)* (g'i) dp = ¢*(1) (5.2.16)

The following lemma will be useful here and elsewhere:

5.2.14 LEMMA. Let ¢ be an Orlicz function. Lor all a,b > 0, define the function ¢gp by Pap(s) =
bp(as). Then

oual) =0 () -
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Proof.
60(0) = supes — bo(as)} = sup { s —botas) f b0 (1)

5>0 s>0 ab ab

O

Proof of Theorem 5.2.13. By Young’s inequality applied to ¢, with a,b > 0, we have from Lemma 5.2.14
that

st < bop(as) + bo* (;)

for all s,t > 0, and there is equality only if ¢ € d¢, (s) Then for any f € Ly and g € Ly,

. |9|>
/Qlfglduéb/QQS(lafl)dqub/ﬂqﬁ (ab .

By Lemma 5.2.11, /QQS (|f|) dp < ¢(1) and /Q¢* ( 91 >du < ¢*(1). Choosing a =

d
1£llg 1glls-
b=1lllsllgl

1
——— an
[1£llo

#*, We obtain

/Qlfgldu < Ifllellglle (1) + 6" (1)) = [ fllollglls- »

where we have used the fact that 1 = ¢(1) + ¢*(1) since 1 € d¢(1). There is equality if and only if (5.2.16)
is valid and equality holds in the application of Young’s inequality at almost every z, which means that
|g(x)] € Odap(|f(x)]). Then since s € Iy (1) if and only if % € 0¢(at), there is equality in (5.2.15) if
and only if (?7?) is valid. O

Suppose that ¢ and ¢* are a dual pair of Orlicz functions. For all g € Lg-, define the linear functional
L, on Ly by
Lg(f) = /Qﬁfdu, (5.2.17)

which is well-defined by Theorem 5.2.13, and in fact, by Theorem 5.2.13,

[Lg(D < [ fllollgll o~

Therefore, L, € Ly, and
L]

Ly < llglle~ -

Thus, the mapping g — Ly is a linear contraction from Ly« into Lj. It is not hard to show that it
is injective, at least when p has the property that every measurable set with positive measure contains
a measurable set with finite positive measure. One might hope that this map would also be surjective
under these same mild conditions. In that case, by the Open Mapping Theorem, it would be a Banach
space isomorphism, and thus we would identify L with Lg-. But then the same argument would identify
L. with Ly« = Ly, and we would have that the natural injection of Ly into Lg" would be a Banach
space isomorphism, i.e., that L, would be reflexive. This is not true in general: It fails for ¢; and ¢o,
but it is the case for ¢,, 1 < p < co. A powerful key to this and other issues lies in the notion of uniform

convezity, to which we now turn.
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5.3 Uniform convexity and uniform smoothness

5.3.1 Uniform convexity

The unit ball of any normed vector space V' is convex, though it need not be strictly convex, which would

mean that for all unit vectors v and v in V,
lu—v|| >0=|(u+v)/2] <1. (5.3.1)

Indeed, strict convexity fails for L*(Q, M, ) and L% (2, M, 1), even for a two-point measure space.

To see this in L'(Q, M, u), take any two non-negative unit vectors u(z) and v(z). Then of course

= %/Q(u(x) +o(z))dp = %/Qu(x)du + %/gzv(x)du 1.

To see this in L>=(Q, M, i), take any two u(z) and v(z) to be the indicator functions of two mea-

u-+v
2

surable sets E and F respectively such that pu(E N F) > 0. Then u(z) and v(x) are both unit vectors in
L>(Q, M, i), as is their average, (u + v)/2.
In some normed spaces however, a uniform version of strict convexity holds, and this has significant

consequences.

5.3.1 DEFINITION (Uniform convexity). Let (V.|| - ||) be a normed vector space. The modulus of
convezity of (V)] -||) is the function dy defined by

v+ w

Sy (€) = inf {1 -

H Dl —w|| > 2 } (5.3.2)
for 0 < e < 1. We say that V is uniformly convez in case dy (e) > 0 for all 0 < e < 1.

U+ w v—w
S. = — ].7
mce v 5 + B s

v+ w <
5 =

v—w
2

Sy (e) <e (5.3.3)

for all € € (0,1]. In fact, we shall soon see that lim.,oe *dy(e) = 0. By definition, the function

dv : [0,1] — [0,1] is monotone non-decreasing.

5.3.2 LEMMA. Let (V,| - ]) be a uniformly conves normed vector space. Let {un}tnen and {vy}nen be

teo sequences of unit vectors. Then
Up, + Vp

lim
n—o0

=1 = lim ||u, —v,||=0. (5.3.4)
n—oo

Proof. An immediate consequence of the definition is that for any two unit vectors u and v,

zév(WZ;m>. (5.3.5)

H =1, then by (5.3.5) lim dy (Hun;UnH) = 0. If V is unifromly convex, then
n—o0

1 ||ty

v+ w
2
since € — vy (€) is strictly positve for e > 0 and monotone increasing, lim,,_, o [|tun, — v, || = 0. O

Therefore, if lim
n—oo
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Lemma 5.3.2 is the basis of many aplications of uniform convexity. Before we begin to apply uniform
convexity, we should first explain the uniformly convex normed spaces exist. By what we have seen above,
neither L'(M, M, u) nor L>(M, M, p) is uniformly convex. It turns out, however, that for 1 < p < oo,
LP(M, M, 1) is uniformly convex. This is easiest to show for L?(M, M, i), and we begin with that:

For any f and g in we have the parallelogram identity || f — g||3 + ||f + gll3 = 2||f||3 + 2] g]|3. Take f
and g to be unit vectors. Divide through by 4 to obtain

2 2
£ | - Mokt
2 ||, 2 ||, 2
2
f+gl| _ f—yg :
Therefore, =4/1-— — . For any number a with 0 < a < 1, /1 —a < 1—a/2, and hence,
2 2
2
frg| o, _L)\f-9
2 2 2

Since f and g are arbitrary unit vecotors, this gives us the exact modulus of convexity for L2(M, M, ),

namely

Or2(e) =1—+1—¢2> %62 . (5.3.6)

5.3.2 First applications of uniform convexity

5.3.3 THEOREM (Convergence of norms plus weak convergence yields strong convergence). Let V' be
a uniformly convex normed space. Let {fn}nen converge weakly to f in V. Then {fn}lnen is strongly

convergent if and only if || f|| = lmy,— oo || full-

Proof. Tf {fn}nen is strongly convergent, it must converge strongly to f, and then ||f|| = limy,— o0 || fr]|-

The converse is more subtle, and it is here that uniform convexity comes in. If f = 0, the strong
convergence is obvious. This case aside, suppose that || f|| > 0, and then, dividing through by || f]|, that
7l = 1. Since limy, o0 || fnll = || f]] = 1, we may delete a finite number of terms from the sequence to
arrange that || || # 0 so any n.

Consider the sequence {g, }nen Where

B YIAEYS

2
Since limy, oo || fnll = |l = 1, {gn}nen also converges weakly to f. By the weak lower semiconti-
nuity of the norms, liminf|g,| > ||f|| =1. By Minkowski’s inequality, 1 = I fnll /£l + £ > || gnll-
Altogether, Timy ol = 1. Then by Lemma 532, Timnon [fu/lfall — F| = 0. But
Il fn = fII < |f|nj|’|nﬂ 1 + | fu/llfnll = fIl- Hence it follows that lim,, o || fn — f|| = 0. O

Our next application is very important: It is the generalization of the Projection Lemma to general

uniformly convex spaces.

5.3.4 THEOREM (Projection Lemma for uniformly convex spaces). Let V' be a uniformly convex Banach
space, and let K be a non-empty, closed convex set in V. Then there exists a unique element of minimal
norm in K. That is, there exists an element v € K with ||v|| < ||w]| for all w € K with w # v. Moreover,

if {vn}nen is any sequence in K such that lim, o [|v,] = ||v||, limp—eo [|Jon — v|| = 0.
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Proof. Let D = inf{||w| | w € K}. Let {vy, }nen be any sequence in K with lim,_, ||v,|| = D. If D =0,
lim,, o v, = 0. Since K is closed, this means 0 € K, and this is our unique element of minimal norm.
Therefore, assume that D > 0.

Normalize the v, to obtain unit vectors, as needed for the application of uniform convexity. Let

Up = vp/||vn||. For large m, we have that wu, ~ v,/D since limy_, ||vk] = D. Indeed, adding and
subtracting,

WL, Dl

"D Dlu "

Therefore, for any m and n,

i U + U un+um7D_an”v 7-D_||Um||v
D 2 N 2 2D|lva|l " 2D|vm| ™
tn + tim || ((lonll = D) + (JJoml| = D)
- 2 2D '

Since K is convex, (v, + v )/2 € K and hence ||(v, + vp)/2|| > D. Therefore,

(enll = D)+ (loml =D) . | [[tnbm | o (0t
2D 2 2
nll — D m|| — D . .
Since lim (lonll ) + ([[om] ) =0, limy, posoo || — Um|| = 0, as in the proof of Lemma 5.3.2.

m,n—00 2D
Hence {u,}nen is a Cauchy sequence. Since V is complete, {u,},en converges in norm to u € V,

and this implies that {v,}nen converges in norm to v := Du. Since K is closed, Du € K, and since
llull =1, ||v|| = ||[Du|| = D. This proves the existence of an element v of K with minimal norm, and that
lim,, oo Uy, = .

To prove the uniqueness, let ¥ also be in K with ||0]| = D. Define v,, = n for v even and v, = ¥ for n

odd. By what we proved above {v, },en converges, and hence 0 = v. O

Recall that for any normed space V, and any v € V, there exists an f € V* with || f|l. = 1 and
f(v) = ||v||. This is a consequence of the Hahn-Banach Theorem. However, given f € V*, there may or
may not be any unit vector u in V' such that f(u) = || f]|«, as we have seen in the case of V' = C([0, 1])

with the uniform norm. If V' is uniformly convex, things are much better.

5.3.5 THEOREM (Uniform Convexity and Unit Normal Vectors). Let V be a uniformly convex Banach
space, and let L be any non—zero linear functional in V*. Then there is a unique unit vector vy, € V so
that

Lvs) = 1Ll -

Moreover, the function L — vp from V* to V is continuous at L # 0, and in fact, for all non zero
L,MeV*,
[L = M|l < |Lf[l«dv(€) = v —om| < 2e. (5.3.7)

The vector whose existence is asserted by the theorem is called the unit normal vector at L for reasons

that will soon be explained.

Proof. Let K be given by K ={ v eV : L) = ||L||« }. K is closed, convex and non-empty. By the

projection lemma, K contains a unique element v of minimal norm.
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Note that ||L||. = L(v) < ||L|l«||v|l, so ||v]]| > 1. By the definition of ||L||., and homogeneity of
L, for all € > 0, there is a unit vector u with L(u) > ||L||« — e. Then taling ¢ < ||L||« and defining
w = L] (L() . L(w) = |Lll. and [jw] < [Z].(|Lll. — €)' Hence infoerc{[[v]} < 1, Then o] = 1,
and L(v) = || L]

This proves existence and unqueness of vy,. We now show that L — v, is continuous. Let L, M € V*

be given, L, M # 0, and let v, and vy; be the corresponding unit vectors in V. Then

|L+ Mo +omll > R(L+ M) (v +vu))
= R(L(ve) + L(vm) + M(vr) + M(vn))
= 2(|ILllx + [|M]]+) + R (L(var) + M (ve) — L(vr) — M(vnr))
= 2(|[Llls + [[M]s) = R (L = M)(vr — var))

2 2L+ M. — |1 L = M|l[lvr, — varll - (5.3.8)

Dividing through by 2||L 4+ M|, snd rearranging terms,

HL—MH* v, — UM >1- v, +Uvm > 5y VL, — Vm .
L+ M|, 2 2 2
Therefore,
I|L — M||. vp — o || v — VM
0 _ . 3.
L. L - M. = || 2 A\ (5:59)

for all M € V* with ||M — L||. < ||L||«. Since in any case ||vy — var|| < 2, we also have the cruder but

simpler inequality

1L — M]. ( UL_UMH)
> oy |22 (5.3.10)
2| Ll = 1L = Ml 2
If e € (0,1), and |[L — M|« < dv(e)||L|l«, then the left side of (5.3.10) is at most dy (¢), and hence
llvy — vy < 2¢, which proves (5.3.7). O

5.3.6 Remark. Since for any two unit vectors v,w € V, there exist unit vectors L, M € V* such that
L] = |IM]| =1, L(v) = 1 and M(w) = 1, so that v = vy and w = vy, follows from (5.3.9) that

lim, o e~y (€) = 0, as mentioned earlier.

5.3.3 Uniform smoothness

Let (V, || - ||) be a normed vector space. A functional F' on V is Frechét differentiable at w € V in case

there is a linear functional Lg, € V* so that
F(u+v) = F(u) = Lpu(v) + o(||v])
or, in other words, if

o [P +0) = () = L (0)

v—0 o]

=0, (5.3.11)

where the limit is taken in the norm sense.

There is another notion of differentiability, corresponding to the usual directional derivative. A
functional F is said to be Gateauz differentiable at u € V in case for there is a linear functional Ly, € V*
so that for each v € V,

F(u+tv) — F(u) =tLp,(v) + o(t)
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or, in other words, if
lim |F(u+tv) — F(u) — tLp,(v)]

v—0 t

=0. (5.3.12)

If a functional F' is Frechét differentiable, then it is Gateaux differentiable, and the two derivatives
coincide. However, there are functionals that are Gateaux differentiable, but not Frechét differentiable.

To check differentiability from the definition, one to know the derivative Lr ,,, and this is impracticle
in many situations. There is, however, a necessary condition for differentiability that can be stated solely

in terms of F itself. If F' is Frechét differentiable at u, then for any w,
Fu+w) = F(u) = Lru(w) + of[|w]])

and

F(u—w) = F(u) = =Lpu(w) + o([w]) -
Summing, the terms involving L, cancel, and we have
Flu+w) + F(u—w) = 2F(u) = o |w]) .

In particular, a necessary condition for Frechét differentiability the norm functional on a Banach space is
that

2 2

u—&—wH

u—w’

\ =l = o)

Taking u to be a unit vector, and writing w = tv, v a unit vector, bring us to:

5.3.7 DEFINITION (Uniform Smoothness). Let V' be a Banach space with norm || - ||. The modulus
of smoothness of V' is the function py (7) defined by

u—TU

2

u -+ TV

2

pv (1) = Sup{

1l =] = 1} (5.3.13)

for each 7 > 0. Then V is said to be uniformly smooth in case py (1) = o(7), i.e., if

lim PVAT) (7)
T—0 T

=0. (5.3.14)

It is easy to see that uniform smoothness fails for L!(, M, i) and L>° (£, Mpu), even for a two-point
measure space, while L?(Q, M, i) is uniformly smooth. This is left as an exercise. In fact, it is a good

exercise to compute the moduli of smoothness for these spaces. The results are:
(1) When V = L*(Q, M, i), dv () = 0 and py (1) = 7.

(2) When V= L*(Q, M, 1), 6y (e) =1 — 1 — €2 and py (1) = V1+ 72 — 1.

(8) When V= L>®(Q, M, 1), oy (e) =0 and py (1) = 7.

There is a close relation between uniform convexity and uniform smoothness. In order to specifying

it, we introduce the notion of a dual pair of Banach spaces.
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5.3.8 DEFINITION (Dual Pairs). A dual pair of Banach spaces is a pair of Banach spaces V and W

with norms || - || and || - ||w respectively, and a bilinear form (-,-) on V' x W so that for all v € V,
[ollv = sup{ [(v,w)| : we W, |lww <1} (5.3.15)

and for all w € W
lwllw = sup{ {v,w)| : veV , |v|y <1}. (5.3.16)
The primary example is that in which W = V* and
(v, w) = w(v) .

Then (5.3.16) holds by the definition of the norm on V*, while (5.3.15) holds by the Hahn-Banach Theorem,
which asserts the existence of a w € V* with ||w| =1 and w(v) = ||v]|.

When V and W are a dual pair, there is a map from V into W* which assigns to v the linear functional
fu(:) = (v,). By (5.3.16), and the definition of the dual norm || - ||+, ||fwll+ = [[w|lw. Hence the map
w — (-, w), which is clearly linear, is also an isometry.

However, it need not be the case that its image is all of V*. In summary:

5.3.9 LEMMA. When V and W are a dual pair, W may be identified with a subspace (which may be

proper) of V* through the isometric linear transformation
w = (w) .

We now prove that when V and W are a dual pair, the moduli of smoothness and convexity of the

one space can be determined from those of the other.

5.3.10 THEOREM (Lindenstrauss-Day Theorem). Let V and W be a dual pair of Banach spaces. Then

pw (1) = Oiugl{ er — oy (e) } . (5.3.17)

Consequently, W 1is uniformly smooth if and only if V' is uniformly convez.

5.3.11 Remark. It is easy to deduce the final statement in Theorem 5.3.10 from the formula (5.3.17):
By (5.3.17), for all ,7 € (0,1), pw(7) + v (€) > Te, so that

Sv(e) > 7 (6 B pw(T)) .

If pw(7) = o(7) there is some 7 > 0 such that p(7)/7 < €/2, and then d(¢) > 7¢/2 > 0. Thus, uniform

smootness of W implies uniform convexity of V.

Now suppose that W is not uniformly smooth. By (5.3.17), pw is convex and finite on [0,1]. It
follows that lim,_,o p(7)/7 =: a exists and belongs to dpw (0). Hence pw (1) > a7 for all 7 € [0, 1]. Then
for all r,7 € (0,1), there exists €., € [0,1] nearly achieving the supremum defining pw (7), such that
rar < €. .7 — Oy (€r). Thus, dy(er) < (€ —ra)7. The right side must be positive, so that ¢, , > rA.
Since ¢y is montone and €, < 1, then 0,(ra) < 7. Thus, dy(e) = 0 for all € < a.

Before proving (5.3.17), we give three simple but important applications of Theorem 5.3.10.
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5.3.12 THEOREM (Uniqueness and continuity of unit tangent functionals). If V' is a uniformly smooth
Banach space, then for each non-zero v € V, there exists a unique unit vector L,, € V* such that L,(v) =

llv|l. Moreover, the map v — L, is continuous in the norm topologies.

Proof. The Hahn-Banach Theorem tell us that the linear functional L, exists; the points to be shown are
the uniqueness and the continuity. By the Lindenstrauss-Day Theorem, V* is uniformly convex. If L and
M are two unit vectors in V* such that L(v) = M(v) = |[v||, then

1 1 1
ol = 5L+ A)(0) < L+ MLl < ol = folov- (02 - a1l ) -

Hence L = M. This proves uniqueness.

Now that the map v — L, is well-defined, we proceed as in (5.3.8) to obtain
[ Lo + Lull]lv + wl| = 2[w + w|| = [[Ly = Lul«]Jv —w]| .

Dividing thtough by 2||v + w||, rearranging terms, and using ||v + w|| > 2||v|| — ||v — w||, all very much as

) ([ = (25)

in the proof of Theorem!5.3.5, we obtain

HU—wH (HLv_Lw
2
2||vll = o = wll 2

and this proves the continuity.

Lv_Lw
2

O

5.3.13 THEOREM (Differentiability of the Norm). Let V' be a uniformly smooth Banach space. Then
the norm on V is continuously Frechét differentiable at all v # 0 in V, and the derivative is given by

Ro L,, where L, is the unique unit vector in V* with L,(v) = ||v||

Proof. Since V* is uniformly convex, for each u € V', there exists a unique unit vector L,, € V* so that
L, (u) = ||ul|. Hence,

[v+wl| = forw(v +w) =R (forw(v +w)) = R (Low () + R (Lopw(w)) < [Jof + R (Lypw(w)) -

On the other hand,

v+ w|| =R (Lo (v +w)) =R (Ly(v) + R (Lo(w)) = [Jo] + R (Lo(w))
Altogether,
0 <lv+wl = vl =R (Lo(w)) <R (Lopw(w) =R (Ly(w)) < [[Logw = Lo |[«][w]] -
Hence |||v + w|| = ||v]| = R (Ly(w))] < | Lytw — Lo ||l«]Jw|| = o(||w]]) by Theorem 5.3.12. O

5.3.14 EXAMPLE. Let (Q, M, pu) be a measure space, and for 1 < p < oo, let LP = LP(Q, M, u). We
have seen that for non-zero f € LP, the unique unit vector u in LP/P=1) such that Joufdu =|fllp is
given by

w=If1l,7Pf P~ sen(f) -

By Theorem 5.8.13, the map f— || f|, 7| 1P~ 'sgn(f) is continuous from LP\{0} to Lr/(v=1),
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5.3.15 THEOREM (Millman). A uniformly convex Banach space is reflexive.

Proof. By the Lindenstrauss—Day Theorem, V** is uniformly convex. Fix any unit vector ¢ € V** For
each n € N, pick a unit vector L,, € V* so that ¢(L,,) > 1 — 1/n. Since V is uniformly convex, there is a
unit vector v, € V with L, (v,) = 1. Let ¢, be the image of v,, in V** under the cannonical embedding
of V into V**. Since ¢, (Ly,) = Ly (v,) =1 for all n,

1
OF v | o (St P Ly>1- L
By Lemma 5.3.2, lim,, o ||¢ — &4, || = 0. Then image of V under its canonical embedding into V** is

claosed, and hence ¢ belongs to this image. Since ¢ is an arbitrary unit vector in V**  the canonical

embedding is surjective. O

Proof of Theorem 5.3.10. We will use f and g to denote elements of W, and u and v to denote elements
of V. We will leave subscripts off the norms as this convention makes it clear which norm is intended.

On account of the remark following Theorem 5.3.17, it remains to prove (5.3.17). We first show that
pw (1) + 0v(€) > Te for all 7,¢ € (0,1). Fix any 7,¢ € (0,1). Take any u and v in V with |Ju]| = |jv|| =1
and [ju — v|| > 2e.

Since V and W are a dual pair, for any n > 0, there are unit vectors f and g in W with

(Fwro)/2y > D20 oy amd (fw0)/2) > ||
Then
pw(r) > Hf;Tg‘Jr f—27'g 1
> <(f—|—Tg>/2,U> + <(f—7’g)/2,U> -1
= (fi(u+v)/2) +7(g,(u—0)/2) = 1
U+ v uU—v u—+v
> ) +7 5 H12772H2H+T€1277
(5.3.18)
u—+v

Hence pw (1) + <1 — > 1€ — 21n. By the definition of dy, and the fact that n > 0 is arbitrary,
this proves that pw (7) + dy (€) > 7e for all 7,e € (0,1).
The second step is to prove an upper bound on py,. To do this, fix any 7 > 0 and any unit vectors f

and g in W. Fix any 1 > 0, and choose unit vectors u, and v, in V with

(f+79)ur) > |[[f +7gll—n  and  ((f —7g),v:) > f—7g] —n. (5.3.19)
Then
f+Tg f_Tg <(f+7—g)7u‘r> <(f—’7'g),1)7—>
<
H > | T2 = 2 i 2 +n
— <f’UT+vT>+T<g’UJT—UT>+77S uT+UT +r Ur — VUr +77
2 2 2
Now define €, := Ur —r so that 0 <e; <1 and HUT +Ur < 1—-9v(er). Therefore,
(5 zviorn o
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By the definition of pw, pw(7) < 7e; — dv(e-) +1n < sup { er — v (e) } +n. Since n > 0 is arbitrary,
0<e<1

this proves that pw (7) < supg<.<1{ €7 — dv () }, and together with the lower bound (5.3.20), this proves
(5.3.17). O

5.4 Uniform convexity and smoothness in L’ spaces

5.4.1 Uniform convexity in L7, 1 < p < o

In any Hilbert space, in particular L?(Q, M, 1), we have the parallelogram identity:

2
N H f=g|” _ I£I3+ llgli3
2 2 2 2

o\ 1/2
<1_1 f-9
5 - 2| 2

2

f+yg
2

If f and g are unit vectors, this yields

<[|1- Hf_g
9 2
1
and hence d0p2(e) > 3

There is a close analog of the paralleleogram law in LP(Q, M, ), p > 2: Recall that for counting

f+g
2

2.

measure, || f|l, > || fllq for p < g, while for any probability measure, ||f||, < |/f|l4 for p < g.

2\ 1/2 a2 4 b2 1/2 @ 4 b 1/p
= < .
(==5) <(%")

2+ wl? + |z —wlP < |z] + Jwl[? + ||2] = fwl][” .

f@) +g(@)|" ‘f(x) —9@)[" _ @l +|g(@)
2 2 2

Therefore, for all a,b > 0, when p > 2,

(222D (22
- 2

Next, for all z,w € C, and all p > 2,

P 2

a—2b
2

a—2>b
2

a+b
2

Combining, we obtain, . Integrating in x yields

Clarkson’s inequality:

Lao) | e < Wl
2, 2, 2
If f and g are unit vectors, this becomes
1/p
_ p _ P
o < () "o
2 1, 2 p 2 1l

Thus we see that )
O (€) > —€P .
»(€) ’

Uniform convexity for 1 < p < 2 is more subtle, and the result is somewhat surprising: It turns out

that for 1 < p <2,

p—1 2
5 .

Notice that the exponent is 2, as in the Hilbert space case. However, as p decreases towards 1, the constant

5LP (6) Z

(p — 1)/2 decreases to zero. Both the exponent 2, and the constant (p — 1)/2 are best possible, and both
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have significant implications. The result is can be obtained from a result of Hanner, who ezactly computed
Orr(€) for all 1 < p < co. The final remark in his 1955 paper is (in slightly different notation) that
p—1,

Spr(e) = € +0(%) (5.4.1)

which certinaly shows that &1 (€) is bounded below by some multiple of €2. The fact that the remainder
term is positive and may be droped, yielding the asserted lower bound, may be folklore, but appears
in work by Ball and Pisier in the 1990’s. They used Hanner’s exact computationof dz» and controlled
the sign of the remainder term in (5.4.1). However, the sharp bound may be proved directly, as we now
explain.

Let f and g be simple functions of the form

fz) = szlAj (x) and g(x) = ijlAj (),

where for each j, zjw?

T € U;;lAj, and all t € R, f(z) + tg(z) # 0. Define

is not real. This guarantees that z; + tw; # 0 for any real ¢, and thus for all

p
v =lf +tgly  ad  g=2,
so that || f + tg||120 = Y/9(¢t). Differentiating twice,
4z ) 1/1 1
t = - (Z2-1 Yl/q—2 Y’ 2 7y1/q—1y//
il = L(on) v

> lyl/q—ly//
g

A simple calculation yields Y (¢) > p(p — 1) / |f +tg|*772|g|*du. To this we apply the reverse Hélder
inequality, which says that for 0 < r <1 and s = r/(r — 1), whenever a; > 0 for j =1,...,n, and b; >0

forj=1,...,n,
1/r 1/s
n n n
i S
1 =1 =1

Jj= J

d2
The result is that, for all ¢, @Hf +tgl2 > 2(p — 1)|lgl|2. Let 3" (t) > 2c for all ¢, and define
o(t) == Y(t) +ct(l—t) .

Then ¢ is convex, and thus

0 1 0 1
0(1/2) < w , thatis,  o(1/2)+ z < w )
We conclude that with f and g as above,
1* p-1 I3+ 11 + gl
7+ 50+ ot < MR
P

The simple function approximation is now easily removed.
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Now let u and v be vectors in LP space, 1 < p <2, and let f =u and g = v — u. Then

+@-1)

p

U+ v
2

u—v

2

>l ol

p_ 2

If u and v are unit vectors, the right hand side is 1, and this implies

2
u—+v

2

u—v

2

gl_p;l
» 2

)
p

which proves that

We now have the following result:

5.4.1 THEOREM (Uniform convexity of LP, 1 < p < o0). For any measure space (M, M, pu) and any
LP (M, M, u) is uniformly convex. For 1 < p < 2, one has the bound

-1
p 2

6LP(E) Z 9

(5.4.2)

while for 2 < p < oo, one has the bound )
5LP(€) Z ]*)GP (543)

Proof. In the discussion just above, we have proved the bounds on uniform convexity, and the left halves
of (5.4.2) and (5.4.3). O

5.4.2 COROLLARY. For 1 < p < oo, LP is reflezive.

Proof. This is an immediate consequence of the uniform convexity of LP, 1 < p < oo and Millman’s
Theorem. O

The main result of the next section given an even stronger result: It identifies the dual of LP, 1 < p <

oo with L9 where ¢ = p/(p — 1).

5.4.2 The Riesz Representation Theorem in I’, 1 < p < o0

We are now give two proofs of the Riesz Representation Theorem for LP, 1 < p < co.

5.4.3 THEOREM (Riesz Representation Theorem for LP, 1 < p < 00). Let (2, M, ) be any measure
space. Let 1 <p < oo, and let ¢ =p/(1 —p). Then the map from L7 into (LP)* given by g — ¢4 where

wq(f) = /Qfgdu : felrr,

is an isometry from L7 into (LP)*.

We give two proofs. As a preface to both of them, note that by Theroem 5.2.4, or Holder’s inequality
with the cases of equality, that for every g € L, [l¢4ll(Lr)- = llgllq, and hence g — ¢, is an isometric map

into (LP)*. It only remains to be shown that this map is onto (LP)*.
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First Proof of Theorem 5.4.3. Let 1 < p < oco. Let V be the range of the mapping g — ¢4 in (LP)*.
Since the map is an isometry, and since L? is complete, V' is a closed subspace of (LP)*. If V is a proper
subspace of (LP)*, there exists a non-zero ¢ € (LP)*\V and then by the Hahn-Banach Theorem, there is
an L € (LP)** such that

L(p) = llellzey- #0, (5.4.4)

and L(pg) = 0 for all g € L1.
However, by Millman’s Theorem, since L? is uniformly convex, it is reflexive, and so there exists an
f € LP so that

L) =w(f) forall o e (L),
Therefore, for all g € L?, since p, € V, 0 = L(py) = ¢4(f) = |, 9fdp. But since

|f||p=sup{ /Q ofdp - ||g||q=1} 7

it would follow that || f||, = 0, and hence L = 0. This is contradicts (5.4.4), and hence V is not a proper

subspace of (LP)*. O

Second Proof of Theorem 5.4.3. Let 1 < p < oo. Since LP is uniformly convex, for each ¢ € (LP)*, there

exists a unique f, € L? with f, € L? and o(f,) = |¢ll(zr)«- Then, for any g € LP, the function
t

t— (W) has a maximum at ¢t = 0.

1o +tgllp
If we assume for the moment that ¢ — || f, + tg||, is differentiable at ¢t = 0, then

d fo +tg >
0= — _Jp I
ATad <||f¢ + g,

By the convexity of x — |z|P, for all 0 <t < 1 and all x € M,

[fo(x) +tg(@) [P — |fo ()
t

d
= Reo(9) = lellzry- g Ifeo +tglly

t=0 t=0

[fo(@)[P = [fo(x) — g(z)|" < < [fo(@) +9(@)|" = [fo ()" .

Then, since |f, — g|?, |f, — g|P and |f,|? are all integrable, The Dominated Convergence Theorem yields

us

du .

, [fe(@) +tg@)P — lfe@)P [ i [Fel(@) +tg(@)[” — | fo(2)]?
hrn/Q : du—/ﬂl

t—0 t—0 t
Now one easily computes that for all x,

g e @) +tg(@)P = | fo(2)I”
t—0 t

= R|f P fo(2)g() -
Thus, for all g € L9, we have
Roto) = lellen- [ Rfp P2 @la(w)dn
Substituting g by ig, we obtain the same result for the imaginary part, and hence

o(9) = llell oo /Q ol 2T () g(2) s

It is now easily checked that | f¢|p*2ﬁ is a unit vector in L9, and hence ¢ is in the range of our isometry

into (LP)*. But since ¢ is an arbitrary element of (L?)*, we see that our isometry is onto (LP)*. O
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5.4.4 COROLLARY (Riesz Representation Theorem for L1). Let (Q, M, 1) be a o-finite measure space.
The map g — ¢4 € (L*)* from L> to (L')* given by ¢4(f) = [, 9fdp is an isometry onto from L> (L')*.

Proof. Suppose first that p(2) = 1. By Jensen’s inequality, for all measurable f and all 1 <p < g,

q/p
Pqd 9dy .
(/Qm u) s/Qm 0

Therefore, L9 C LP C L', and for any f € L9, || flli < Ifllp < | fll4-

Let L be any bounded linear functional on L. Let f € L4. By the inclusion proved above, |L(f)| <
LI flln < IIL]1][ fllq- By Theorem 5.4.3, there is a unique g, € L%~ such that ||ggllq/q—1) < ||,
and such that L(f) = [, fgedp for all f € L9. By the same reasoning, for all 1 < p < ¢, there is a
unique g, € LP/P=1 such that ||gy|l,/(p—1) < ||L[|+, and such that L(f) = [, fgpdu for all f € LP. By
the inclusion of L? in LP and the uniqueness, g, = g, and hence g, is independent of p > 1. Therefore,
we drop the subscript and denote this function by g. We have that ||g||,/p—1) < |||« for all p, and since
timpy1 190p/65-1) = lglloes llgloo < 1L ]c-

For all f € L' and n € N, define f,(z) = f() if |f(z)] < n and f(x) = 0 otherwise. Then by
the Lebesgue Dominated Convergence Theorem, lim, || frn — fll1 = 0, and for each n, fn € L? for all

1 <p < 0. Hence

L(f) = lim L(f,) = lim /Q fagdu = /Q fodu

n—oo
by the Lebesgue Dominated Convergence Theorem once more. Thus, the map g — ¢4, which we know to
be an isometry from L* to (L')* is surjective.

It is a simple matter to extend this proof to the case in which p is finite, and then to the case in
which p is sigma-finite noting that if £ C €2 is any subset of 2, the restriction of L to to the subspace of
L' consisting of functions that vanish outside F has a norm that is not greater than ||L||, independent of
the choice of E. The details are left to the reader. O

5.4.3 Uniform smoothness in L7, 1 < p < oo.

As a consequence of Theorem 5.4.1 the Lindenstrauss-Day Theorem, we obtain the following result:

5.4.5 THEOREM (Uniform smoothness of LP, 1 < p < c0). For any measure space (M, M, u) and any
LP (M, M, u) is uniformly smooth. For 1 < p < 2,one has the bound

pre (1) < ﬁ# : (5.4.5)

while for 2 < p < oo and ¢ =p/(p — 1), one has the bound

1
prr (1) < =79 (5.4.6)
q

Proof. The uniform smoothness follows directly from Theorems 5.3.10 and 5.4.1. To obtain (5.4.5) use
(5.3.17) to deduce

prr(7) < sup {er —dpale) } .
0<e<1

Then by (5.4.2) and a simple calculation, one obtains and (5.4.5). The proof of (5.4.6) is similar. O
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This result has useful implications the theory of partial differential equations. Very often the solution
of a partial differential equation give rise to a curve f(¢,cdot) where for each ¢t > 0, f(t,cdot) € LP for
some LP space — ona all of R, in some bounded set €2, or soemthing else. Let is simple write f(¢) to denote
the t-dependent element of LP. That is ¢ — f(t) is a curve in LP.

5.4.6 DEFINITION. Let (2, M, ) be anty meaasure space. Let (a,b) C R, 1 < p < oo, and let
t — f(t) be a function from (a,b) to LP := LP(Q, M, n). The map t — f(t) is strongly differentiable at
to € (a,b) in case for some v(tg) € LP,

1
lim —

Jim £t + 1) = F(to) ~ (t0)hlly =0

d
In this case we define v(ty) to be the derivative of t — f(t) at t = tp, ad we write 5]”(160) =v(tp). The
map t — f(t) is strongly continously differentiable on (a,b) in case it is differentiable at each t € (a,b),

and t — v(t) is norm-continuous in LP.

5.4.7 THEOREM (The chain-rule in L?). Let (Q, M, p) be anty meaasure space. Let (a,b) C R,
1 <p<oo, andlett — f(t) be a function from (a,b) to LP := LP(Q,M,pn). If t — f(t) is strongly
differentialble at each t € (a,b), then t — | f(t)||p s differetniable at each t € (a,b). Ift — f(t) is strongly
continuously differentialble on (a,b), then t — || f(t)|lp is continuosly differetniable on (a,b).

Proof. For any ty € (a,b) and h # 0 such that to + h € (a,b), the Frechét differentiability of the L norm

that follows from the uniform smoothness of LP? means that for all € > 0, there is a §. > 0 such that

[f(to+h) = f(to)llp <dc =

1f(to +1)llp = 1F (o)llp = (Dp(f (t0)), £ (to + h) — f(t0))| < ellf(to + h) — f(to)llp -

Then since t — f(t) is strongly differentiable, for all € > 0, there is an 7. > 0 such that
1

|| <ne =
|hl

[ f(to + h) — f(to) — ho(to)| < e

Then for all h with |h| < 7, ||f(to + k) — f(to)|| < |h|(Jlv(to)]| + €). Decreasing n. as necessary, we can
ensure that the right hand side is less than .. Then for all h with |h| < 7,

\f(to )l — £ o)l — h<Dp(f(to))7U(to)>’ < elhl(lolto)] + ) + [hle

Thus,

Hﬁl\i%p |}1L|’||f(to + M)y = I1f(to)llp — h<Dp(f(to))7v(to)>‘ < €l(lv(to)ll +€) +e.
Since € > 0 is arbitrary,
i I (o + h)HZ — W)l _ i #et)), oito)) -

h—0

Therefore, if ¢ — f(t) is strongly differentiable at ¢, then ¢ — || f(¢)]|, is differentiable at ¢ = t.
By Theorem 5.3.13, it follows that since ¢ — f(¢) is continuous into LP, t — D, (f(t)) is continuous
into LP/(P=Y)_ Then if ¢ + v(t) is continuous into LP, ¢ +— (D, (f(t)),v(t)) is continuous into R. O



Chapter 6

Topics in Classical Analysis

6.1 Convolution and related operations

6.1.1 Markov kernels
6.1.1 DEFINITION. Let (2, M, 1) be a measure space. A Markov kernelon (2, M, p) is a non-negative
function K on (2 x Q, M ® M) such that for each x € Q,

/QK(J:,y)d,u(y) =1. (6.1.1)

That is, for each x, K(z,y)du(y) is a probability measure on (2, M). A Markov kernel K is doubly

stochastic in case both
/ K(z,y)du(y) =1 and / K(z,y)du(z) =1 (6.1.2)
Q Q

for all z,y. A Markov kernel K is symmetric in case K(x,y) = K(y,z) for all z,y € Q. Every symmetric

Markov kernel is doubly stochastic.

In probability theory, Markov kernels arise in the description of Markov jump process with a state
space 2. When a jump from state x occurs, the probability of jumping from x into a measurable set
E C Qs given by [ 5 K(z,y)du(y). Markov kernels play a prominent role in analysis as well; the results

in the rest of this section give a first indication of why this is the case.

6.1.2 THEOREM. Let K be a doubly stochastic Markov kernel on (2, M, un). For each p € [1,00],
define a linear operator P on LP(Q, M, 1) N L (Q, M, 1) by

P f(x /K (z,y)f(y)duly) . (6.1.3)

Then || Pk fllp < || fllp, so that Pk extends by continuity to a contraction on LP(2, M, ).

Proof. Suppose f is bounded and measurable. Then for each z, f is integrable with respect to
K(z,y)du(y), and

Prf(a —\/nyﬂ Yy ] [ K )l leti) < 51 -

© 2017 by the author.
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Now suppose that for p € [1,00), f € LP(2, M, ). Since t — |t|P is convex on R, Jensen’s inequality

| K nrwant) (/meﬂmﬂ> < [ Kewlrwray.

Then by the Fubini-Toninelli Theorem,
“uto) < [ ([ K ) 150 = 171

Hdwl/VK,y y)du(y)

Let K be a symmetric Markov kernel on (2, M, 1), and let Pk also denote the corresponding con-
traction H := L?(Q, M, u1). Tt is easy to see that Py is self-adjoint.

Convolution operators provide an important class of examples. Let p be a non-negative Borel function

implies

O

on R such that [; pdz = 1. In this case, we say that p is a probability density on (R,B,dz). Given such
a function p, define K(x,y) = p(x — y). Then it is evident that K(z,y) is a doubly stochastic Markov
kernel. Therefore, for each p € [1, c0] we may define an operator T, acting on L”(R, B, dz) by

ZJ@%:pr—yﬁ@My:p*ﬂ@- (6.1.4)

Then p * f is called the convolution of p and f, and 7), is the operator of convolution by p. As an
immediate consequence of Theorem 6.1.2 we have that for any probability density p, and p € [1, 00] and
and f € LP(R,B,dx),

o fllp < (1 fllp - (6.1.5)

If p is any probability density, then for all A > 0,
pa(@) = A" p(z/N) (6.1.6)

is also a probability density. If p has support in a compact interval [—L, L], px has support in a the
interval [-AL, AL]. Let f be a continuous compactly supported function on R. Then for all € > 0, there
isad > 0sothat |zt —y| <0 =|f(x) — f(y)| < e Then for A such that AL < 4,

o+ I |—me— )ﬂ@%éﬁm@wW@—ﬂW@S

since px(x —y) = 0 if |y — z| > §. Also note that if f is supported in the interval [—R, R], then py * f
is supported in the interval [-AL — R, AL + R] since px(y — x)f(y) = 0 if |z| > R+ AL. It follows that
|ox * f — f| is bounded by € and is supported in [-R — 1, R + 1] for all A such that AL < min{J,1}. For
such A, [|pxf — fll, < €(2R +2)'/P. We have proved an important special case of the following theorem:

6.1.3 THEOREM. For any probability density p on R, let py be defined for A >0 by (6.1.6). Then for
all p € [1,00), and all f € LP(R, M, dx),

tim Iy f = fll, =0

Proof. Define np = f[_L e p(z)dz, and note that limy_, 7y, = 0. For all L large enough that n; < 1,
Define

PP @)= (1=ne) L py(@)p(e) and (@) =g 1 e (2)p(2) -
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Then evidently both p*) and r%) are probability densities p = (1—7z)p ") +nrrL) is a convex combination
of them. Hence for all f € LP(R, M, dz), Likewise, for all A > 0, px = (1 —nz5)p) (L) 4 nLr(L) and then for
all p € [1,00), and all f € LP(R, M, dx),

pr*f—fllp = ||(1_77L)(px * f— f)"‘nL(T)\ * f— f)”p
< @=n)pE = fllp +nolrSS « £ = flp
< (=)l * £ = fllo + n2llfllp »

where we used (6.1.5) in the last step,
Now fix € > 0, and choose L sufficiently large that 12| f||, < €¢/3. Since C.(R) is dense in LP(R, B, dz),
we may choose g € C.(R) such that || f — g/, < €/3. Then using Minkowski’s inequality and (6.1.5),

L L L L
16SE 5 = Fllo < 16SE 5 (F = 9l + 1052 % g = glly + 1 — gllp < 11052 % g = gllp + 2¢/3 .

Altogether, we have that
L
lox s £ = fllp < 1657 %9 = gllp + ¢,

and since pr has support in [—L, L] and since g € C.(R), by what we have explained just before the

statement of the theorem, limy_,q ||pg\L) % g — gllp = 0. Since € > 0 is arbitrary, the proof is complete. [

6.1.2 The basic facts about convolution
Throughout this section, L? denotes LP(R, B,dz). Let f,g € L' N L>. Then the integral
9+ 5@ = [ ale =)o)y (6.7
converges for all z, and we have the point-wise inequality
lg* f(@)| < |gl *[f](z) (6.1.8)
If g # 0, so that ||g|ly # 0, p:= ||g||T|g| is a probability density. Therefore, by (6.1.5), for all p € [1, 00],

lg* fllp < llgl = [£1llp = llgllllp* £l < llglllf1lp - (6.1.9)

In particular, g * f € L' N L. Thus, convolution is a product on L' N L>, making it an algebra. By the

Fubini-Toninelli Theorem, and the change of variables w =y — «,

[ 1ot | ( / g(x—y)f(y)da:> dy = ( / g(w)dw) ( / f(y)dy> , (6.1.10)

so that when f and g are non-negative, || f * gll1 = || fll1]lg]l1-

Making the change of variables y = x — w,
g* f(z) = / g(xr — dy*/fzf w)dw = f * g(x) (6.1.11)

Thus the convolution product on L' N L> is commutative. It is also associative: Let f,g,h € L' N L>.

We have already seen that f*g € L' N L. Then making the change of variables y = u — w, and applying
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the Fubini-Toninelli Theorem,

Urgyene) = | ( / f(x—w—y)g(y)dy) h(w)du

/Rf(x —u) (/R glu— w)h(w)dw) du= fx*(gxh)(z) . (6.1.12)

There is an important complement to (6.1.9): Since L' N L>° C LP for all p € [1, ], for p € (1, 00),
g € LP/®=1) and f € LP, and then by Hélder’s inequality, for all x,

9% f(z)] < / 9z — IF@)Idy < lglloon 1l -

Therefore,

llg * flloo < Nlgllp/-1)1f1lp - (6.1.13)
For all A > 0 and all f € L', define

ax) = A" f(x/N) (6.1.14)

which reduces to (6.1.6) when f is a probability density. A simple change of variables shows that || fx||1 =
|lfll1 for all A > 0. A simple computation shows that for all f,g € L',

e ala) = A2 [ glo/X = /N Fu/ Ny = X7 g(a/3) = (g (o) (6.1.15)
Another simple computation shows that for f € L'NL>, p € [1,00) and A > 0, with fy defined in (6.1.14),

||f/\||p = Al/p_l”f”p . (6.1.16)

Now suppose that for some p, q,r € [1,00), there is a finite constant C such that for all f,g € L' N L*>,

lg * fllr < Cllgllgll.fllp - (6.1.17)

Then replacing f and g by f\ and gy, and using (6.1.15),

g * flle = A7 % Halle = A gax falle < Cligallgl fally = X271 gl £l -

Since the left side is independent of A, the right had side must be independent of A also, since if 1/¢+1/p—
1/r—1 > 0, taking A — 0, we would conclude that ||g* f||, = 0, and thus that g% f = 0 almost everywhere.
If1/g+1/p—1/r —1 < 0, taking A — oo brings us to the same conclusion. But for non-negative f, g,
llg = flli = llgll1llf]l1, and so g * f = 0 almost everywhere implies that f = g = 0.
Therefore, there is no finite constant C' for which the inequality (6.1.17) can hold in general unless
1+1:1+1. (6.1.18)
p q T
It turns out that when (6.1.18) is satisfied, then (6.1.17) is also valid in general, with a constant C' no
greater than 1. This is Young’s inequality for convolution. We have already seen several important cases,
namely the case in which r = p,¢q = 1, which is (6.1.9) and the case r = c0,qg = p/(p—1), which is (6.1.13).
There are several ways to prove the remaining cases of Young’s inequality with the constant C' = 1.
The inequality actually holds in these cases with an optimal constant C that is strictly less than 1, We
shall prove this sharp form of Young’s inequality, which is due to Beckner and Brascamo and Lieb later
in the Chapter. The main tool used in the proof that we give is the heat semigroup, our next topic. For

now, we close this section with the following lemma that summarizes our main conclusions.
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6.1.4 LEMMA. The convolution product on L'*NL> is commutative and associative, and the inequalities
(6.1.9) and (6.1.13) for all f,g € L' N L>. Moreover, since L' N L*° is dense in L™ for all 1 < r < oo,
the map (g, f) — g * f extends by continuity to a map from L* x LP to LP for which (6.1.9) is valid, and
to a map from LP/P=1) x LP to L™ for which (6.1.13) is valid.

6.1.3 The Heat semigroup

The Gaussian probability density v(x) associated to the normal distribution of probability theory is given
by

For ¢t > 0, define () = (27rt)*1/2e"’”2/2t. This is the Gaussian probability density with mean 0 and

variance t. That is,
/'yt(x)dx =1, /x’yt(x)dx =0 and /xzfyt(ac)dx =t. (6.1.19)
R R R

Note that the definition ~v,(x) = t~%/2~y(x/+/t) duffers slightly from (6.1.6) due to the square roots on the
right. In the present context, this scaling will turn out to be more natural. The following lemma explains

why.

6.1.5 LEMMA. For all s,t >0,

Yt * Vs = Vits - (6120)
1 2 2
Proof. Note that v¢(x — y)vs(y) = e l@=v)7/t4+y7/s1/2 and
f Ye(@ = y)ys(y) Sy
(x—y)? 3y t+s s 2 1,
t +s_ st \ TSt +t—&—sz ’
SHL [ (o) (y—sa/(t+5)%/(251)
Ve(® = y)7s(y)dy = Ysse(2) e v dy = Ys1e(2) -
R 2mst R
O
6.1.6 DEFINITION (Heat semigroup). For each t > 0, define an operator P; on L' N L* by
Bif=mx*f. (6.1.21)

For t > 0, define Py = I. Then the family of operators {P,};>¢ constitute the heat semigroup. The name
will be justified shortly.

6.1.7 THEOREM. Let {P;};>0 be the heat semigroup on L* N L>. Then for all s,t >0,
PP =Py, . (6.1.22)

For all p € [1,00], P, extends by continuity to an element of B(LP), and, for all f € LP, |Pif|l, < || fllp-
Moreover, for all p € [1,00) and all f € LP, lim;_o ||P.f — f|l, = 0. Finally, for all v > p € [1,00], and

all t > 0, P, extends by continuity to an element of B(LP, L") with operator norm

1—-p/r
1Pl < el - (6.1.23)
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6.1.8 Remark. Since evidently for all t > 0, v, € L' N L>°, +; € LP for all p € [1,00]. The precise value
of ||y, is readily computed for all p € [1, 00]; see the exercises. The main point that is relevant in the

next sections is the for all ¢ > 0, the range of P; acting on LP? lies in LP N L.
Proof. By Lemma 6.1.4 and the definition of the heat semigroup, and then Lemma 6.1.5, for all f €
L'n L,
PsPif =5 (vex ) = (vs x ) * f = Vst % f = Psf
This proves (6.1.22). The inequality ||P;f]|, < || f|l, is a direct consequence of (6.1.5) for f € L'NL>, and

then evidently P; extends by continuity to an element of Z(LP). The statement concerning lim;_o || P;f —

fllp is a direct consequence of Theorem 6.1.3. finally, by (6.1.13),

1P: flloo < ellp/ -0 1 £l

which proves (6.1.23) for r = co. For r € (p,00) |Pif(2)|” < |Pf(x)P||Pef]|55?, and hence

1PNl < BN AN < AIB el - L ll) "
which proves (6.1.23) in general. O

The case p = 2 will be particularly important in what follows. Since for all f,g € L?, ¢t > 0,

(f, Pug) s = /R FPig(x)dr = /R /R F@n(x — y)g(y)dady = (Pof. g1 |

it follows that P, is self-adjoint on L?2.

Theorem 6.1.7 says that for each p € [1,00] and each f € LP, P,f converges to f in the LP norm as
t — 0. as t — 0. Later in this chapter we will have the means to easily generate examples showing that
for all t,e > 0 and all 1 < p < oo, there exists h € LP, ||h||, =1 and ||P.h — h||, > 1 — €. This brings us

to the notion of the strong operator topology

6.1.9 DEFINITION (The strong operator topology). Let (X, || - ||x) and (Y, || - ||y) be Banach spaces.
For each x € X, define the map ¢, on ZB(X,Y) by ¥, (T) = ||Tx|y
The strong operator topology on B(X,Y) is the weakest topology on #(X,Y) making each of the

map ¥, continuous.

By what we have seen in our study of topological vector spaces, this topology makes Z(X,Y) a

topological vector space, an a neighborhood base at the origin is given by the sets
n
Vit = [ T € BX,Y) : ||Ta;] < e}
j=1

for € > 0 and finite sets {z1,...,2,} C X.

6.1.10 DEFINITION (Strongly continuous semigroup). Let (X, | - ||) be a Banach space. A strongly
continuous semigroup on X is a set {Py : t > 0} C #(X) such that Py = I, t — P, is continuous with
respect to the strong operator topology on #(X), and such that for all s,¢ > 0, P.P; = Ps+.

6.1.11 EXAMPLE (The heat semigroup on LP). For each 1 < p < oo, t > 0, let P, € ZB(LP) be
defined as in (6.1.23) and extended by continuity. Then by Theorem 6.1.7, t — P, is a strongly continuous

semigroup on LP. It is called the heat semigroup on LP.
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The heat semigroup gets its name from the fact that, considered as a function of ¢ > 0 and = € R,

~¢(x) satisfies the heat equation:

0 1 9

= =_—— . .1.24

2 (@) = 3 (o) (6.1.24)
Indeed, a calculation gives %%(z) = %%(I), which, as a function of x, belongs to L7 for all

1 < ¢ <1, Moreover, for all 0 < s,t, s # t,

(@) = 20(0) = [ adr == )zl + [ (o) - gt ar

Simple estimates now yield, for all 1 < ¢ < o0,

e = 7 = (¢ = ) Bl = ol sl (6.1.25)
Using (6.1.25) for ¢ = 1, we have that for all f € L? if we define f(t,z) = P, f(x),

,x) — f(t, 0

in the LP norm, making use once more of (6.1.5). We may also use (6.1.25) with ¢ = p/(p — 1) to

prove point-wise convergence of this limit. This shows that ¢ — f(¢,x) is differentiable for ¢ > 0, and

0 0
&f(t, x) = ETic x f(x). The argument can be repeated to show that for all m € N,

8m M
—f(t, ) = =— .
g/ (7 = g s f
A similar argument shows that x — f(¢,x) is infinitely differentiable everywhere on R, and in fact
o™ om

Together with (6.1.24) we have proved:

6.1.12 THEOREM. Let 1 < p < oo, f € LP, and define f(t,x) = Pif(x). Then f(-,-) is C> on
(0,00) X R, satisfies the heat equation

0 1 92

2 Ox2
on (0,00) x R, and lim;_¢ || f(¢,-) — fll, = 0.
6.1.13 LEMMA. For allt >0, and 1 < p <2, P; is injective on LP.
Proof. Suppose that f € L? and P,f = 0. Then Pyaf € L2, and by by Theorem 6.1.7, and the fact that
each P/, is self-adjoint,

0={f,Pif) = f. PryaPij2f) = (Pyaf, Poyaf) = | Prjafl5 -

Hence P;/of = 0 as well. A simple induction shows that P, o» f = 0 for all n. Then by Theorem 6.1.7,

0= lim [[Pyonf = fIl =]

so that f = 0.

Now suppose that f € LP; 1 < p < 2 and P,f = 0. By the semigroup property, for all 0 < s < t
P,f = P,_4(Psf), and by Then by Theorem 6.1.7, P, f € L. Therefore, by what was proved just above,
P,f =0forall 0 < s <t,and so f =lims_,o P, f. O



128
6.2 Hermite polynomials and the Mehler semigroup

6.2.1 Hermite polynomials

Let v be the normalized Gaussian probability measure that has the density v(x) := (27r)*1/26"1|2/2 with
respect to Lebesgue measure dz. Let H = L*(R,B,v). In this section, || - || denotes the norm on H, and
(+,-) denotes the inner product on H. Also, in this section, L? denotes L?(R, B,v).

6.2.1 DEFINITION (Hermite polynomials). For each n € N, let V,, = span({l,x,...,2"}). Let P,
be the orthogonal projection in H onto V,,. For n € N, define the polynomial p,(z) = 2™, and define
po(x) = 1. Note that ||H,|| # 0. For all n > 0, the nth Hermite polynomial H, is given by

Hn =Pn — Pn—lp'n (621)
and the nth normalized Hermite polynomial h,, is defined by

By construction H,, is orthogonal to Hy, for all k < n, and hence (H,, H,,) = 0 for all n # m. It

follows that {hy, }n>0 is an orthonormal sequence in H.
6.2.2 THEOREM. For 1 < p < oo, the set &P of polynomial functions is dense in LP(R,B,v).
Theorem 6.2.2 has the following immediate corollary:

6.2.3 COROLLARY. The normalized hermite polynomials {hy}n>0 are an orthonormal basis for
L?(R,B,dv).

Before proving Theorem 6.2.2, we prove two simple lemmas
6.2.4 LEMMA. Fory € R, define the function g, = e¥*. Then g, € LP for all p € [1,00), and defining
oo

pn(z) = x™, the point-wise series expansion g,(z) = Z ﬁy”pn(as) converges absolutely in LP(R,B,v).

n=0
That is, for ally € R, and all p € [1,00),
o0 1 .
S Ly < 00 623)
— nl

Proof.
ey P /2

1 2 -
Py(z)de = — / emYP—e7/2 — e~ (@—yp)/2 _ u'p7/2

Thus g, € LP(R, B,v). Since v is a probability measure, if ¢ > p, then ||p,||q > ||pnllp for all n. Therefore,

it suffices to prove (6.2.3) when p is an even integer. Let us consider the case p = 2k, k € N. Then
1 2
2 — | g?rem 2124 = (2nk — DN = (2nk — 1)(2mk — 3)---1
y x e x n 1! n m .
1Pnll2% %/R ( M= ) )

(See the exercises for the evaluations ation of this integral.) The crude estimate ||p,||3F < (2nk)"*. which
is true since ||pn||§’,§ is the product of nk terms each of which is less than 2nk, suffices for our purposes,
and gives us ||pn|l2r < (2nk)™/2 = (2k)™/?n™/2. Therefore,

o0 oo

n/2 n
T D Py (V.72 )
n n!

n=0 n=0
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> . n/2
n
Since the power series E ' 2™ has an infnite radius of convergence, (6.2.3) is true for all y. O
n!
n=0

The next lemma relates integration against g, with respect to dv to the action of the heat semigroup
on LP(R, B, dx).

6.2.5 LEMMA. For g € [1,00) and h € L9 and define the function h(z) = v*/9(z)h(z) so that
/ I (2)|9dz = / \h(2)[2d . (6.2.4)
R R

(2m) (-0 200y’ /2 /R h(z)g,(z)dv = Ph(qy) , (6.2.5)
where {P,}1>¢ s the heat semigroup.

Proof. Computing,
/R h(z)gy(z)dv = /R h(z)y"(x)g, (z)dx
= (27T)—1/2q/}Nl(m)e_z2/2q+rydx _ (27.‘.)—1/2,16%2/2/E(x)e_(m_qy))zpqu .
R R

Rearranging terms yields (6.2.5). O

Proof of Theorem 6.2.2. Suppose that & is not dense in LP(R, B, v). Then by the Hahn-Banach Theorem
and the Riesz Representation Theorem, there would exist a unit vector h € L1, ¢ = p/(p — 1), such that
Jghfdv =0 for all f € 2. By Lemma 6.2.4, g, is the L? norm limit of a sequence of polynomials, and
therefore / hgydv =0 for all y € R.

Then viith h(z) = /9(z)h(x), Lemma 6.2.4 says that Pqﬁ = 0. For g € [1,2], P, is injective on L?
by Lemma 6.1.13. Hence h = 0, and then by (6.2.4), h = 0, which is a contradiction. Hence for 2 € [1,2]
there is no unit vector h € L? such that [, hfdr =0 for all f € &. Since ¢ = p/(p— 1), q € [1,2] exactly
when p € [2,00], and therefore & is dense in LP for p € [2, c0].

For p € [1,2), f € LP, and € > 0, pick g € L? such that ||g — f||, < €/2. Then pick h € & such that

llg — hll2 < €/2. Then since v is a probability measure,

1f = hllp < 11f = gllp + lg = hllp < [f = gllp + lg = hll2 <€

This proves the density of &2 in L? for p € [1,2). O

6.2.2 The Mehler semigroup

The Mehler semigroup was introduced by Gustav Mehler in 1866, shortly after Charles Hermite had
introduce the Hermite polynomials in 1864. It arises very naturally in the study of the normal distribution
dv, as we now explain.

For any (z,y) € R? and any 6 € [0, 27) introduce new coordinates (u,v) on R? by
u = cos Oz + sin Oy and v = —sinfx + cos Oy

so that

x = cos Qu — sin Qv and y = sin fu + cos v .
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Since (u,v) is obtained by rotating (x,%) (clockwise) through the angle 6, u? + v? = 2 + y2 hence

1 2 2 1 2 2
— = (@ +y7)/2 —(u?+v?)/2 _
Yah(y) = 5 5 Y(u)y(v) . (6.2.6)

Now let g and f be any polynomials. Then for any 6 € [0,27), g(x) and f(cosfz + sinfy) are
polynomials in 2 and y (in the first case with a trvial dependence on y). Therefore we may integrate their

product over R? with respect to v(z)y(y)dzdy. We obtain:

/R2 g(x) f(cos Oz + sin Oy)y(x)y(y)dady = /R (g(ac) /R f(cos Oz + sin Gy)dy(y)> dv(z) . (6.2.7)

Now let us write the left side using the rotated cooridnates u, v. Since a rotation has unit Jacobian, (6.2.6)

implies

/ g(x) f(cos 0z 4 sin Oy)y(z)y(y)dedy = / g(cos Ou — sin Ov) f (u)y(u)y(v)dudv
R2 R2

/R </Rg(cos Ou — sin&v)dy(v)> Flu)dv(u)

/R (/Rg(cos 49u+sinc9v)dy(v)> Flu)dv(u)

where in the last line we have used the fact that v(—v) = v(v). Combining this with (6.2.7) and replacing

g by its complex conjugate g, we have the identitiy

/R (g(x) /R f(cos9x+sin9y)du(y)> dv(z) = /R ( /R g(cosHu—l—sin@v)dV(v)) F)dv(u) . (6.2.8)

Before porceeding further, let us simplify our notation. Consider angles § € [0,7/2) and define
A = cos 6 so that sinf = /1 — A\2. Then

/f cos Oz + sin 0y)dv(y) /f Az + V1= A2y)dv(y)

This brings us to the following definition:

6.2.6 DEFINITION (Mehler operator). For A € [0,1) S is the transformation defined on the polyno-
mials & by

Sz /f 0z + V1= Xy)y(y)dy . (6.2.9)

6.2.7 LEMMA. For all A € [0,1), if f is a polynomial of degree less than or equal to n € N, then so is
Sxf.

Proof. Let p,(x) := z™. By the definition (6.2.9),

— - n— 7rL 2\m/2yn—m n m
Sipal@) = 3 anTm(1— A2y (m> ( / ¥y >dy)

m=0
n

> [(1 — Az (n) (m — 1)!!} Pr—m(¥) , (6.2.10)

m

m=0 , m even

where we have used the fact that [;y™y(y)dy = (m — 1!l = (m —1)(m — 3)---1 for m even and is zero
for m odd. This displays Sy\p,, as a polynomial of degree n (unless A = 0 in which case Syp,, is constant),

and proves the lemma. O
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In particular, for all f € &, S\f € # C H := L*(R,B,v), and we may now rewrite (6.2.8) as

(9,53 )m = (Sxg, [)m - (6.2.11)

By Lemma 6.2.7, for each n € N, V,, :== span({1, z,...,2"}) is in the domain of Sy for each A € [0, 1),
and is invariant under Sy. Thus, Sy define a linear transformation on the finite dimensional vector space
Vi, and then (6.2.11) says that this linear transformation is self-adjoint with respect to the inner product
that V,, inherits from H as a subspace of H.

It follows that there exists an orthonormal basis of V,, consisting of eigenvectors of Sy. Since for all
neN, V,_1 CV,, both V,,_; and its orthogonal complelement in V,,, are invariant under Sy because S
is self-adjoint. However, by definition, the orthogonal complement of V;,_; in V,, is the one dimensional
space spanned by h,, the normalized nth Hermite polynomial. Hence h,, is an eigenvector of S for each
n € N. It is obvious from the definition that Sxhg = hg. We have proved the first part of the following

theorem:

6.2.8 THEOREM. The Hermite basis {hy}n>0 of H is a complete orthonormal set consisting eigenvec-
tors of the Mehler operators Sy: For each X € (0,1) and each n >0

Sxhn = A", . (6.2.12)

Moreover, for all f € 2, ||Sxfllu < |If]] so that Sy extends by continuity from its its definition on
P to a contraction in B(H).

Proof. Single out the m = 0 term in (6.2.10) to obtain
Sapn(z) = A"z™ + lower order . (6.2.13)
Then since H,(x) = p,(x) + lower order, and since S\V,,—1 C V,_1,

S\H, = S)\p, + lower order = \"p,, + lower order = \" H,, + lower order . (6.2.14)

Since {hg,...,h,} spans V,,, S\xH, = Z (hmy SAHp )y, = Z (Sxhm, Hy,), using the fact that Sy is

m=0 m=0

self-adjoint. Then since Sxh,, € Vi, for m < n, (Sxhm, Hy,) = 0. Therefore, Sy H,, is a multiple of H,,
and the lower order terms on the right hand side of (6.2.14) must all be zero.

For the final part, let f = Zg:o anh, be the expansion of f € & in terms of the Hermite basis.

N N
Then S\f = ZT]:/:O anA"hy,, and hence [|Sy f[|3; = ZA2"|an|2 < Z lon | = 1113, O

n=0 n=0

6.2.9 LEMMA. For all A\, € (0,1),
SuSx = Sxp s (6.2.15)

holds as an identity in B(H), and for all f € H,

lim ||Sxf — fllg =0 . (6.2.16)
A—1



132

Proof. For f € H, consider the expansion f =2 (hy, f)hy,. Then

SnF = (s £)Sxbn = > (i, F)N B .
n=0 n=0

Therefore 5,5\ f = Z<h"’ FY(uN) "y, = Suxf Since L? N LP is dense in LP for all p € [1, 00), this proves

n=0

(6.2.15).
To prove (6.2.16), we first consider the case in which f is a polynomial. Again let p,(x) := 2", and
combine (6.2.10) with Minkowski’s inequality to conclude
n = m n
1300 = palle < (L= Apalle+ D (1=A%) /2( )(m = DUIpn—mllu
m=0,m even m
This shows that limy_1 || Sxpn — pullx = 0. Tt follows that for all g € £, limy_,1 ||Sxg — gllg = 0.
Next fix e > 0 and f € H. Let g € & be such that ||g — f||g < e. Then since ||S,|| =1,
1S3 S = fllae < ISA(f = 9)llae + [1Sxg = glla + It = gll < 2e + [[Sxg = glla¢ -
For A sufficiently close to 1, ||Sxag — g|ln < €, and then ||Sxf — f|l% < 3e. This proves (6.2.16). O

6.2.10 Remark. One can reparameterize the family of operators {Sy : A € (0,1)} by defining M; = S, -+
and My = I, the identitiy. Then the results we have proved so far show that {M;};>¢ is a strongly
continuous semigroup on H. This is further developed in the exercises, and justifies the title of this secion,

but for our purpose, the present parameterization is more suitable.

6.2.11 LEMMA. For all f € &2, define

0? 0
N flx) = —@f(x) + x%f(x) . (6.2.17)
Then for all X\ — S\ f is left differentiable in H at A =1, and
S

where the limit is taken in H, and the same formula is valid point-wise.

Proof. Consider (6.2.10), and explicitly evaluate the terms for m = 0 and m = 2 in the sum on the right
to obtain

-1
S\Pn —Pn = (/\n - l)pn + (1 - )\2)>\n72%

+ > [(1 = Ay (ZL) (m— 1)!!} Pr—m - (6.2.19)

m=4 , m even

DPn—2

All of the terms in the second line of (6.2.19) contain at least two factors of (1 — A), and hence

. S\Pn — DPn . AT —1 —2 n(n 1)
lim ——+— =1 —pp — (1 + e J
/\1?11 A—1 /\1?11 A—1 P ( /\))\ 2 Pn—2 A b

since
2

0
mpn(2) = n(n = 1)pn-2(2) = = 5-5pn(2) + 25-pn(@) -
Since the sum has only finitely many terms, the limit may be taken in H or pointwise. By linearity, these

formulae and conclusions extend to general f € Z. O
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Applying (6.2.18) with f = h,, yields an important identity:

Sahy —hy . AT —1
A—1 im 1 fn = 1ln

N h,, = lim
M

That is, the Hermite basis {hy},>0 is an orthonormal basis if H consisting of eigenfunctions of 4.

This is the key to the proof of a number of basic identities concerning the Hemite polynomials.

6.2.12 LEMMA. For all f,g € 2,

(o gy = (1 429)4, (6.2.20)

and
(frasa)m = (= &%) .9)4 (6.2.21)
Proof. This is simply an integration by parts calculation. O

6.2.13 THEOREM. Define h_1 = 0. Then for alln >0, and all z € R,

Lh,(2) = vVih,_1(z) and (z— L) ho(2) = Vn+ 1hyia (2) (6.2.22)
Moroever,
zhy(z) = Vnhy—1(z) + Vn + 1h, 1 (x) . (6.2.23)

Proof. Since %hn is a polynomial of degree n — 1, it may be expanded in the Hermite basis using only
{ho, ceey hm_l}i

n—1

Ll =" (s -l 2l - (6.2.24)

m=1

By (6.2.21), for m < n — 1,
<hma %hn>’H = <<.’I} - %) hm7 hn>H =0

since when m < n — 1, (x — %) hp, is a polynomial of degree at most n — 1, and is therefore orthogonal
to hy,. Hence (6.2.25) simplifies to

Lhy = (hno1, Lha)rha-1 - (6.2.25)
Combining this with (6.2.20),
2
n = (hp, A hn)p = (e by 35hn) s, = (o1, f5ha)n|” (6.2.26)

Since the leading coefficient of h,, is positive for all n, combining (6.2.25) and (6.2.26) yields the first
identity in (6.2.22).
It now follows from (6.2.21) that for all m,n >0,

Vmbnm-1= (hn, shm)a = (& = 2&) P, o ), (6.2.27)
and then by the completeness of the Hermite polynomials, this means that for all n > 0,

(x — %) hpn=vVn+1hpi1 .

Combining the identities in (6.2.22), we obtain (6.2.23). O
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Theorem 6.2.13 can be used to prove a number of useful identities concerning the Hermit polynomials,
including explict expressions for the coeeficinents and, more important for us here, useful pointwise upper
bounds. The rest of this section is not needed in what follows, but illuminates it, and is a beautiful

example of classical analysis.

6.2.14 LEMMA. For all n > 0, the normalized Hermite polynomial h,, is realted to its un-normalized
parent H,, through
H, = Vnlh, , (6.2.28)

so that ||H,||3 = n!. Moreover,

H,(z) = (:r — d>n1 (6.2.29)

and
d

o Hn(2) = ni, () (6.2.30)

Proof. since hg = 1, a simple inductive argument using the inequality on the right in (6.2.22) shows that

(Jc— d> 1= \/th
dx

The left hand side is a polynomial for which the coeflicient of ™ is 1. Hence the left hand side is the
multiple of h,, in which the coeffcient of 2™ is 1, which is H,,. This proves (6.2.28) and (6.2.29). Finally,
(6.2.30) follows immediately from (6.2.28) and the inequality on the left in (6.2.22). O

6.2.15 LEMMA (Addition formula). For all z,y € R, n > 0.

W4 y) = Zn:( ) (z)y™ . (6.2.31)

m=0

|

Proof. By Taylor’s Theorem, H,,(z + y) —'H x)y™ where Hy" (™) denotes the mth derivative of
m)!
n! -
H,. By (6.2.30), H™ = ———H, .. O
(n —m)!

6.2.16 LEMMA (Kapetyn’s formula). For alln > 0,
vx Hy(z) = 2™ . (6.2.32)

Proof. We compute, using the addition formula,

v * Hy(x) = /Rv(y)Hn(x —y)dy = g_:o (Z) ™ /R Hy o (y)y(y)dy = mii:o (:1) " 0mn = 2",

where we have used the orthogonality of the Hermite polynomials and the fact that Hy = 1. O

6.2.17 LEMMA (Rodrigue’s formula). For all n > 0,

H,(z) = (—1)"e® /2 ((ij)newgﬂ . (6.2.33)
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Proof. We first prove a useful auxilary result. For each y € R, the function f,(z) = ey—y’/2 belongs to

L?(R, B,v). Therefore it has a convergent expansion in terms of the Hermite polynomials:

eV /2 = Z Br(y)Hy () . (6.2.34)

for A € (0,1), we compute
1 2 2 1 2 2
S 7) = e—y2/27/e/\3:y+\/1—>\ uy o —u /2du: T 7/6—(11,—\/1—)\ y) /2du — 7).
Afu( ) \/ﬂ 5 fAy( )m o fku( )
From (6.2.34), and SyH,, = \"H),,, we also have
Safy(a Zﬁn JA™ o ( Zﬁn Ay)H
Defining «, := 8,(1), we then have that for all A € (0, 1),
2 (oo}

N2 =N "0, N Hy () (6.2.35)

Multiply both sides by H,,(z) and integrate against vy(z) to obtain, using Lemma 6.2.14,

v * Hp(A) = g A™m!

The using Kapetyn’s formula, we conclude «,,, = 1/m!, and hence

eTAN/2 = Z H (6.2.36)
This is the generating function for the Hermite polynomials. Multiplying through by e~/ 2. we obtain
> =\ >
ei(miA) /2 = Z an(-T)eiz /2 .
= n!
Therefore,
i ne—m2/2 — (_1)n i ne—(m—)\)2/2 - H (x)e—cm/Z
dx dX A—0 " '
O
6.2.18 LEMMA (Mehler’s formula). For all n >0,
1 , 2
—(z=y)*/2(p\ndy = H 6.2.37
e i n(x) . 2.
= (i) dy = H(z) (6:2.37)
Proof.
1 , 2
—(iz—y)*/2/(,; nq _ z? / n Yo~y /2d
e i e i e
m/R (iy)"dy \/ﬂ Y) y
— ew Z n zxye y /2d
\/ 21 / ) Y

2 d )
— zé/2 [ % iy, —Yy /2
(52) (g Lo a)

where we have used Rodrigue’s formula in the last line. O
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6.2.19 LEMMA (Galbrun’s inequality). For alln > 1, and all z € R,

|hn ()] < \/569”2/2 (6.2.38)
™

uniformly in n.

Proof. By Mehler’s formula (6.2.18),

" 6:1:2/2 )2 4 6952/22 /2 S (ne1)/2 4 65132/22 /21-1 n4+1
. < — n — n n— —Uu — n .
@< S [ Plyray = ot [Tur e = © Sy (211
272 (n+1
efine o, := . en a simple calcluation shows that «,, = n — N, _2. Since
Defi N 5 Th impl lcluati h h 1 Si
n!

a1 =2 and ay = V72 < aq, it follws that o, < V2 for all n € N, Recalling that H,, = v/nlh,, the

inequality is proved. U

6.2.20 Remark. A deeper inequality due to Hille and Cramér indepndently says that there is a constant
C (explicitly given) such that |h,(x)] < Ce®*/* uniformly in n and x. This follws from an analysis
of the Sturm-Liouville equation satsified by hn(x)e_“52/ 4, and Hille actually proves the stronger result

|hn(z)| < Ce’/*n=1/12_ However, Galbrun’s simpler inequality already tells us something of interest
o0

here. The eigenfunction expansion of the operator Sy gives Sy = Z |hn){h,| and Galbrun’s inequality

k=1
sats that the series

D N (@)hn(y)
n=1

converges uniformly on compact subsets of R?, as well as in L?(R?, B,v ® v).

6.2.3 The Mehler kernel

It turns out that the Mehler operator Sy that was defined through (6.2.9) can be written in terms of a

Markov kernel:

6.2.21 THEOREM. For all A € [0,1), and all f € 2,

Sxf(z) = /RKA(x,z)f(z)fy(z)dz . (6.2.39)

where

Ky(z,2) = \/11_7)\26Xp {—2(1A_2A2) (22 + 2% — izxﬂ : (6.2.40)

Proof. We make a change of varialbles taking z to be the argunment of f in (6.2.9). Define z = Az +

T 1 0 T
1 — A2y so that = . Computing the Jacobian of the transformation, we
Vv y . Y ) puting

find dedy = (1 — A2)~Y/2dzdz. Also,

4y = X 22-1—332—2235 + 2% + 22
1-A2 A ’

Hence (@)1(y) = exp [_2(1)‘2)\2) (22 +a2%— izx)] () (2) -
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and for g, f € &, / 2)Sxf(z)y(x)de = // ) K (x, 2) f(2)y(z)v(2)dzdz where K (z,y) is given
by (6.2.40). Since the & is dense in H, this hold for all g € H and this proves (6.2.39) O

1

1 1
Note that Kx(z, 2)y(2) = —o=—r==5 exp {—M|

2z —Mz|?| = y_x2(z — Az). By (6.1.19) and
symmetry,

/KA (z,2)y(2)dz = /Rv(x)KA(%z)dx =1. (6.2.41)

This shows that K (z,y) is a symmetric (and therefore doubly stochastic) Markov kernel on (R, B, dv).

Since S is the operators associated to K, Theorem 6.1.2 immediately yields:

6.2.22 LEMMA. For all p € [1,00], all continuous polynomaily bounded functions f, and all A in(0,1),

1Sxfllp < W fllp - (6.2.42)

Combining this with the density of & in LP for p € [1,00), we have that for each A € (0,1), Sy
extends by continuity to a bounded linear operator of norm one on LP. We denote the extension also by

Sx. The LP theory is further develooped in the exercises.

6.3 The Fourier Transform

6.3.1 The Hermite functions

The map U : f + /7 [ is evidently a unitary transformation from L*(R, B,v) to L*(R, B,dz). The image
under U of the Hermite polynomial basis {h,},>0 for L2(R,B,v) is evidently an orthonormal basis for
L?(R, B,dx)

6.3.1 DEFINITION (Hermite functions). For integers n > 0, define g, = \/7h,. Then g, is the nth
Hermite function and {g, }n>0 is the Hermite function basis of L*(R, B, dx).

6.3.2 LEMMA. For alln > 0,
d

90 (2) = % (Vngn—1—Vn+1gni1) (6.3.1)
and
ggn(x) = % (Vngn—1 4+ Vn—+1gn41) (6.3.2)

Proof. We compute using (6.2.22) and (6.2.23):

@) = A+ (4 v(az)) ()
\/7fhn 1 **\/7}7,
VA@ V() - WvTx) (Vithn1(&) + VAT Thapa () |

2
and this proves (6.3.1). Even more simply, (6.3.2) follows from (6.2.23). O
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6.3.3 DEFINITION (Fourier Transform on L?(R,B,dz)). Define a unitary transformation F on
L?(R, B,dx) by and
Fgn = (—1)"gn (6.3.3)

for all n > 0. This is the Fourier transform on L*(R, B, dz)

In what follows, we write g to denote the operator of multiplication by z/2. Then by the definition
of F and Lemma 6.3.2, for alln >0

x nl N o . d
57 = (=) B (Vgn—1 +Vn+1gai1) = 5 (Va(=1)iFgn-1 — Vn+ 1(=0)iF gni1) = —iF g -

N |

In other words,

1d 1d
]-*ogo}-gn: and fOZ—Of*gnZEgn (634)

Z@gn dx 2

This identity is the primary source of the utility of the Fourier transform; it diagonalizes differentiation
in the sense that it unitarily identifies differentiation with a multiplication operator. The formulae (6.3.4)
would be more useful as a pair of identities between operators. To reformulate them as such, we have to
take into account that neither multiplication by /2 nor differentiation are defined on all of L?(R, B, dxr).

Therefore, we introduce a Hilbert space on which they are defined.

6.3.4 DEFINITION. The Hilbert space H; consists of the functions f € LQ(R, B, dx) having the Hermite

function expansion
oo
f = E AnGn
n=0

such that > .7 (n + 1)|ay,|? < co. For f,g in M1, the H; inner product is defined by

(f 90w, =D (n+1)amB, ,
n=0

where ay, = (gn, f)r2 and 8, = (gn,g)r2. We denote the norm on H; by || - ||%,. Observe that H,

considered as a subspace of L2, is dense in L2.
Consider any finite linear combination f = >""  a,g, for Hermite functions. Then

d

1 m
@f = 57;)@71 (\/ﬁgnfl Y n+ 1gn+1)

< |1l Likewise,

d
Now a simple computation shows that H f
dz” || 2

ffH < |Ifll,. Therefore, both
27 L2

d
P and g belong to B(H1, L?). Since {(n + 1)"2g,},>0 is an orthonormal basis for H1, F is unitary
- >

on H; as well as on L2. Therefore we have:

d
6.3.5 THEOREM. The operators 1 and g in B(Hi, L?) are related through the Fourier transform F
x

by
. T 1d 1d X
F O§Of— ;7dgj and Fo ;@O.F = 5 . (635)
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The Fourier transform was originally introduced in a rather different way. We now explain the
connection with the original definition. Let D be the closed unit disk in C: D:={z€ C : |z| <1}. For
z € D we define

Se =Y 2" |hn)(hn] - (6.3.6)
n=0

For z € D°, the series in (6.3.6) converges in the operator norm, while for z = e € 9D, the series
converges in the strong operator topology and Seie is unitary.

This family of operators can be transplanted from L?(R, B,v) to L?(R, B,dz) using the unitary trans-
formation U : f + /7 f. For z € D we define T, = UM_U", which is the same as

T, = Z 2" |gn){(gnl - (6.3.7)

As before, the series in (6.3.7) converges in the operator norm, while for z = ¢ € 9D, the series converges

in the strong operator topology and T,:s is unitary. Now note that F = T;.

6.3.6 LEMMA. The map z — T, is continuous from D° into %B(L?) with the norm topology on the

range, and it is continuous from D into %B(L?) with the strong operator topology on the range.

Proof. Consider z,w € D°, Then for some r € (0,1), |z|,|w| < r. Since |||gs){gn]]l = 1, Minkowski’s
inequality and the identity
n—1
2" —w" = (z —w) Z R (6.3.8)
m=0

gives us
o0 o0 r
IT: = Twll <D 12" —w"| < |z - wl <an”> = |z — w5 .
n=0 n=0 (1 _r)

This proves the norm continuity into %(L?).

Next, fix f € L?, and for n > 0, define o, = (gn, f) 12 so that ||f||3 = D" |as|?. Fix z € D, which
we may as well assume to belong to dD. We must show that for all € > 0, there exists § > 0 such that for
all w € D with |w — 2| < 8, |Twf — T.f|l2 < e. Pick € > 0, and then N such that > 07 . |on|? < €/4.

Then, using (6.3.8) once more in the last line

N 0o
ITf T3 < SO —wllanl+ S 2" = wflanf?
n=1 n=N+1
N 0o
< ABY 1t —wt+2 Y fanf?
n=1 n=N+1
N €
< Iz—wlllf\\§Z(n—1)+§
n=1

Thus we may tale § = || f||3N (N — 1)e/4.
O

For z = X € (0,1), the operator S, has the representation (6.2.40), in terms of the kernel K, (z,y)
defined there, and consequently, for any f,g € L*(R,B,dz) and \ € (0, 1),

(f,Tx9) £2(de) —//f ) Kx(z,y)v7(y)g dl‘dy—//f YM(x,y)g(y)drdy
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where Lo \
+ 2, .2
Az, y) = \ﬁm [ (17)\2)(y +w)+1)\2ym] (6.3.9)
The from (6.3.7) we obtain the identity
1 1 1+, }
————eXp |-~ +x + z A" G 6.3.10
Nor Vs v I F RS ) (y ) )\zy Z 9n ( )

By Galbrun’s Inequality (6.2.19), |g.(x)gn(y)| is bounded uniformly in n € N and z,y in any compact set
of the plane. (Bt the deeper Cramér-Hille inequality, which we have not proved but do not need, it is in
fact boundend informly in n € N and z,y € R?.) Therefore, z — Y, 2" gn(2)gn(y) converges uniformly

on the set
{(zzy) |2l <7, Va2 +y> <R}

for all » € (0,1) and all R € (0,00). In particular, both sides of (6.3.10) are equal and anlytic in A for
A € (0,1). Note that R(1 — 2?) > 0 for z € D°, and hence v/1 — 22 is analytic on D°.) Therefore, we may
replace A € (0,1) by z € D° in (6.3.10) to define M, (z,y), and then with this definition, for all f € L?,
z €D,

/M x,y)f(y)dzedy . (6.3.11)

By the previous lemma, T_;f = lim,, ; T, f in the norm topology on L% Hence if we let {z, }nen

be any sequence in D° with lim,, ,- 2, = —%, we have that

T ;f(z) = lim RMzn(x,y)f(y)dxdy

1 .
Since M_;(z,y) = 2—67”7’/2, if we formally take the limit under the integral sign, we obtain
™

Fi@) =Tif(w) = 5= [ 2 )y

If f € L' N L2, there is nothing formal: We may take the limit n — oo two ways. Using the fact
that f € L2, we have the L? norm convergence of T, f to T;f, and hence we have convergence almost
everywhere along a subsequence. Next, since f € L, and |M,(z,)| is uniformly bounded by a constant
for z in a neighborhood of i, we may apply the Lebesgue Dominated Convergence Theorem to conclude

the point-wise convergence

Jim @) = Jim, [ M () wdedy = 5o [ e )y

We have proved:

6.3.7 THEOREM. For all f € L*(R,B,dz) N L?(R, B,dx), the Fourier transform Ff of f is given by

Fi@) = 5= [y (6.3.12)

There is a one-parameter family of unitary transformations on L?(R,B,dx) by composing F with a

unitary scale transformation: For \°, and f € L?(R, B, dx), define

oxnf(z) = VAf(Az) . (6.3.13)
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Then §, is unitary, and therefore so it §yF, and we have

ONFf(x) = 2€E/Re‘“”’y/2f(y)dy (6.3.14)

The choices A = 2 and A = 47 are traditional in various fields, and the resulting operators are also
known as the Fourier transform. The latter has many advantages; For f € L?(R,B,dxz), define f by
f =64z Ff. Then for f € L'(R, B,dz) N L(R, B, dxz)

flz) = /R e~ f(y)dy (6.3.15)

6.3.8 Remark. We could have arrived directly at (6.3.15) had we used a different Gaussian density ;
to define our reference measure v, and thus the Hermite polynomials. The choice t = 1 for the density
of v makes the variance of v equal to one, so that v is what probabilists call the “normal distribution”
on R. This “normal” choice gives the “normal” formulas for the “normal” Hermite polynomials, though
of course other Hermite polynomials can be defined as the orthonormal sequence in L?(R, B,y (x)dx)
that one obtains by applying the Gram-Schmidt algorithm to the sequence of non-negative powers of x.
Then one obtains identities analogous to those found in Theorem 6.2.13, which are the basis of the key
properties of the Fourier transform given in Theorem 6.3.5. Had we use 'yte’””2/ 2tdx for t = % as our
reference measure; that is, e~ mlz? dz, we would have arrived directly at (6.3.15) as the definition of the

Fourier transform.

Partly for the reasons explained above, it is useful to record the simple interaction of F with several
other one parameter families of unitary operations on L?(R,B,dr). Another is the unitary group of

translation 7, y € R where 7, f(z) = f(x — y). Another is the group of phase transformations ¢, given

¢y f(x) = eV f(z) . (6.3.16)

In the formulation of the following lemma, we will use the physics convention of writing k& for the

variable that is the argument of F f. In this context, k ranges over R and not N or Z.

6.3.9 LEMMA. For A >0, let §x be given by (6.3.13). Then
(5,\0}—':]‘-06)\71 . (6317)

Moreover for all y € R, let 7, be the translation operator on L*(R,B,dx), 7, f(x) = f(z —y), and let ¢,
be the phase transformation defined in (6.3.16). Then

fOTy:¢y/20f. (6318)

Proof. For f € L*(R,B,dz) N L*(R, B,dxz), making the change of variables x = u/\,
v Ak v : 1
_ —iXkz /2 _ — —iXk(u/N\)/2 — = 1 .
R S K (N RO Ry Flu/N) s du = Foy f(R)
Likewise, making the change of variable u = x — y,
1 —ikx 1 —ik(u —1
Frf) = 5= [ @ —yde = gz [ M = T IE () = 0,1 E)

O
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Another way to rephrase (6.3.18) is
ForyoF" =gy, (6.3.19)

so that F “diagonalizes” translation, in the sense that it relates translation to a unitary “multiplication

operator” (multiplication by e~%*¥/2) as specified in (6.3.19).

6.3.10 THEOREM. For any function h € L' N L™ define

Fk) =/e’i2“’“f(m)da:. (6.3.20)
R
Then for f,g € L' N L,
Frg(k) = Fk)a(k) . (6.3.21)

Proof. We compute

Frglk) = /Re’iz’rk“’ (/R flz— y)g(y)dy) dz

= [ [ e o = ypemmigly)ady = Fikyath)

O

Since ;(z)e??™F* = ﬁ exp(— o (z — 2mikt)?) exp(2m2k?t)
Fi(k) = exp(2m°k°t) . (6.3.22)

In particular, taking ¢ = (2) ™! so that vy o () = e’”’Q,
Y1 /27 (k) = 7172 (k) - (6.3.23)

That is, 71 /2. is a fixed point of the map f — f, as we have seen earlier.
For f € L' N L2, recall that P,f(x) = v % f * x), where {P;}+>0 is the heat semigroup. Then by
Theorem 6.3.10,

— ~ ~

Py f(k) = 7u(k) f (k) = exp(2n?k*t) f (k) .
Since L' N L? is dense in L?, the formula f?(k) = exp(27r2k2t)f(k) extends by continuity to all f € L2.
Since f — fis unitary and P; is contractive on L2, P;f = 0 implies that ﬁ?(k) = 0 for almost every k,
and then the identity above shows that f(kz) = 0 for almost every k. By the unitarity of f — f, this means
that f = 0. This gives another proof of the infectivity of the heat semigroup operators on L2, however, it
relies on the unitarity of f — f, and in the approach to this taken her, we have relied on this infectivity

to prove the unitarity of f +— f, but there are other approaches in which the order can be inverted.

6.3.2 Higher dimensions

So far, we have discussed the Fourier transform and convolution for functions on R. It is easy to extend
our results to functions on R™. In this section, L?(R™) denotes LP(R™, B, dx).

We begin with the Fourier transform and n = 2. For integers n,m > 0 define

Im & gm(£17$2) = gm(xl)gn(af2) . (6324)
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It is then evident that {gm ® gm }m.n>0 is an orthonormal basis of L?(R?).
For a function f € L*(R%) N L?(R?) define

k) = [ e e (6.3.25)

where k - = denotes the standard inner product in R2, so that k -z = kj21 + ksxs and

e—iQﬂ'k}‘:E _ e—iQﬂ'kla:le—iQﬂ'kgmg )

< 77.271']6111 (xl)dxl) </ ei2ﬂk2129n<x2)dx2>
R

= /g\ kl)gn(k2) ( )m+ngm ®gn(k1 k?) .

Since {(—4)™ " gm @ gm }m.n>0 is also an orthonormal basis of L#(R?), the map f f defined in (6.3.25)

is unitary on L?(R"™).

It follows that

G @ gn (k1 .k2)

The same considerations extend in the obvious way to functions on R™ for arbitrary n € N. For
f € L*(R") N L2(R"™), we define

flio = [ @ (6.3.26)

and then f +— fextends by continuity to a unitary transformation on L?(R™). Even more simply,
Fwl< [ If@)ide = 17]s

so that f — fextends by continuity to a contraction from L'(R™) to L®(R™). In summary, we have two
operator norm bounds for the map f — f: It extends by continuity to an element of B(L*(R™), L2(R™))
with operator norm 1, and it extends by continuity to an element of %(L'(R™), L°>*(R")) with operator
norm 1

Likewise, if f € L*(R™), f # 0, define p(z) = ||f||7*|f(x)| so that p is a probability density on R™ and
K(z,y) == p(x —y) is a doubly stochastic Markov Kernel. It then follows directly from Theorem 6.1.2
that for all g € L(R™) N L>°(R™), that if we define

fra@= [ f@—notdy =I5l | Kb,
then for all p € [1,00], then || f*g|l, < || fll1]lg/lp- Even more simply if we assume that both f and g belong
to LY*(R™) N L*(R"), and therefore to LP(R™) for all p € [1,oc], H ”older’s inequality gives us, for each z,
and each p,
[f 9@ < 1 fllp/w-vllglly -

We may rephrase the last two inequalities as a pair of operator bounds. For g € LP(R™) de-
fine an operator T, on g € L'(R") N L>=(R") T,f = f xg, Then we have ||T,f|, < |lgll,|lfll: and
1Ty flloe < Nlgllpllfllp/p—1)- Therefore, T, extends by continuity to an element of Z(L*(R™), L?(R™)) an
its operator norm in this space is no more that ||g||,. Likewise, T, extends by continuity to an element of
B(LP/(P=D(R™), L>°(R™)) an its operator norm in this space is no more that ||g||,.

Thus for both the Fourier transform and for convolution we have operator norm bounds in
B(LP(R™), L1(R™)) for two specific pair of values of p and ¢. In the next section we shall see how to

“interpolate” between such pairs of inequalities producing a one parameter family of inequalities.
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6.3.3 The Riesz-Thorin Interpolation Theorem

6.3.11 THEOREM. Let (Q, M, u) be an arbitrary measure space, and for p € [1,00], let L? denote
LP(Q, M, ). For p1,ps € [1,00], The T be a linear operator defined on LP* N LP2. Suppose that for
q1,q2 € [1,00] there exists finite constants C1,Cy such that for all f € LP* N LP2,

||Tf||<h < Cle”Pl and ”Tquz < Cle“Pz . (6327)

Then for all A € [0,1], T extends to a bounded linear transformation from LPXN) to LI where

1 1 1 1 1 1
= (1-AN—4+A— and —— =(1—-\)—+A—, 6.3.28
p(A) ( )p1 P2 a(A) ( )ql a2 ( )
and for all f € LPOV,
1T fllar) < CLCIFllpen - (6.3.29)

This has a number of consequences; we give two of these in which the measure space is (R", B, dz)

before giving the proof.

6.3.12 THEOREM (Huassdoerff-Young-Titschmarsh). Define the Fourier transform f f on
LY(R",B,dz) N L?(R"™, B,dx) by
flk) = / e~ 2T p () dx (6.3.30)

Then for allp € [1,2], f — [ extends to a contraction from LP(R, B,dz) to L(R, B, dz) where ¢ = p/(p—1).

Proof. Tt is evident that |]?(k)\ §/ |f(x)|dx = || f]|1 so that |||,ﬂ|oo < ||f|llz- By the unitarity of the
R

Fourier transform on L2, Hﬂ|2 = || f|l2. Therefore (6.3.27) is valid with p; = 1, g1 = o0, C; = 1, and
pp=g2=1C=1
For all p € (1,2) write

1 1 1 A 1 2

- =——==(1-A)14+X-=1+4 - and hence )\:2(1—>:.

P p(A) SR 2 p) q
Then, with this value of A, 1/¢(A) = (1 — A)(1/00) + A(1/2) = 1/q. Since Cy = Cy = 1, (??) becomes
1£llg < 11f1lp- R

6.3.13 THEOREM (Young’s Inequality for Convolution). For all f,g € L*(R, B,dz)NL>(R,B,dx) and
all r,s,t € [1,00] such that

Ll (6.3.31)
s t r’ e

1= gllr < [Iflsllglle - (6.3.32)

Proof. Fix g € L' N L™ and let T denote the operator on L' N L™ defined by

Tf=gxf.

Then for ¢ € (1,00), the inequality [|g * f|l+ < ||f|l1|lgll: and be written as || T f||: < ||gllp||f|l1, while the
inequality [|g * flleo < |flle/@—1)llglle can be written as ||Tf|lc < [lgll¢llfll¢/(t—1- Therefore (6.3.27) is
valid with

=1, q=t,Ci=lgll, and p=1t/(t=1), g2 =00, Ca=||glls .
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Note from (6.3.31) that s < t/(¢t — 1) with equality if and only if » = co. Therefore, s € [p1,p2].
Define A € [0, 1] so that

1 1 t—1 1/1 1
S —(1-M4A"— andn lod==(=4-—-1).
s = Py ( )+ ; and hence ; <s+t )
Then for this A,
1 1 1 1 1 1
(A A —— o 1=
q(N) ( )t + oo s + t r
Tt follows from the Riesz-Thorin Theorem that T extends to map from L*® to L” with norm ||g||;, and this
yields (6.3.32). O

We now turn to the basic lemma upon which the Riesz-Thorin Theorem rests. For x € C™, p € [1, 00],

let ||z||, denote the ¢ norm on C". Consider the bilinear form A(z,y) on C™ given by
n
A(z,y) = Z Tja5,kYk -
Jik=1

For 1 < p,q <1, define
C(1/p,1/q) = sup{|A(z,y)| : [lzll, = llyllq =1} -
. . . 1 1 .
It will be convenient to write @« = — and 8 = —. Notice then that 0 < «, 8 < 1.
p q

6.3.14 LEMMA. [Riesz—Thorin Interpolation Lemma] The function (a, ) — In (C(a, B)) is conver on
[0,1] x [0,1].

6.3.15 Remark. Marcel Riesz proved this in 1927 for a + 8 > 1; i.e., in the upper right half of the unit
square. His method was a direct assault on the maximization problem using Lagrange multipliers. This
approach worked only in the restricted domain « + 8 > 1, and he even conjectured that this wasn’t die
to his method, but that the result wasn’t true in general except in this case. About a decade later, his
student Thorin proved the full result by a completely different method. It is the lower—left half of the

square that is of most interest to us.

Proof. Fix any two pairs of numbers (aq, 51) and (ag,f2) in [0,1] x [0,1]. Let p; = 1/ay, g1 = 1/p4,
p2 = 1/as and go = 1/82 with the obvious meaning if any of the denominators vanish. Next, any x with

lz]|p, =1 can be written as
(1,22, ..., 2n) = (9101, 1?2051, iP5 |

where each b; > 0 and Z?Zl b; = 1. Let P,, denote the set of all n—tuples (di,da,...,d,) of non-negative
numbers such that 2?21 d; = 1, so that we may express the condition on the finite sequence {b;} as

{b;} € P,. Similarly y with [|y||,, = 1 can be written as
V1,92, Yn) = (ewlcfl,e“l’?cgl, ety

where {¢;} € P,.
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Then we can rewrite the definition of C(a, 1) as

Clar,fr) =sup{ Y ;e =20b2 el o {b;}, {en} € Pu, {5} {0}

jk=1

It will be convenient to take the supremum in two parts, as follows:

C(ay, B1) = sup{C(aw, Br, {d;}, {vn}) = {d5} {n}}

where

Clou, B1,{¢;},{¥r}) = sup Z djykb;“cfl | {b;},{ck} € Pn and @ = ajykei(wr‘i’j) .
g k=1

We can do the same for (as) and (f3), and all we are changing is the exponents in the sum
n

Z dj’kb‘]?‘cf. In particular, we optimize over the same sets of sequences {b;}, {cx}, {¢;} and {¢s}
Jik=1
in each case. Thorin’s idea is now to interpolate between (o, 1) and (aw, 82) with a complex variable z

as follows: For all z belonging to the infinite strip given by
0<R(z)<1

define
Z;L)]Czl dj7kb§1—2)a1+2052 C](Cl_z)Bl'i_zﬂZ
C(ala ﬂl)li'zC(QQ, ﬂZ)Z

Now for any positive number a, a* = e ®* is an analytic function on the entire complex plane, and

f(z) =

has no zeros. For this reason, f(z) is an analytic function everywhere on its domain 0 < R(z) < 1. Also,

on the left boundary of this domain; i.e., where R(z) = 0,

Sy g e b gl

[F(2)] = Clon. BY)

where the g?)j and v, include additional phases involving the imaginary part of z. By definition, the
numerator is no more than C'(ay, 81), and hence we arrive at the conclusion that |f(z)| < 1 for all z with

R(z) = 0. That is,

sup | f(iy)] < 1.
YyER

In the exact same way, we see that |f(z)] <1 for all z with R(z) = 1. That is,

sup [f(1+dy)| <1.
yeER

Now we are in a position to apply the mazimum modulus principle of complex analysis to conclude
that |f(2)| is largest on the boundary of the strip 0 < R(z) < 1, and hence that | f(z)| < 1 for all such z.
We will come back to the maximum modulus principle argument shortly to make the proof self

contained, but let us suppose for the moment that it has been established that |f(z)] < 1 whenever
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0 < R(2) < 1. We are now done with the complex interpolation; take z = A with 0 < A < 1. Then
|f(M)] < 1 implies that

Z aj’kbgl_>‘)01+)\a205€1—)\)/@1+>\,@2 < 0(01761)17/\0(0‘2762))\ ]
jk=1

Since this is true for each {b;},{cx} € Pn, and each {¢;} and {93}, we can take the supremum to arrive

at
C((1 = N + Aaz, (1 — )1 + th2) < Clan, 51)C(az, f)*

and taking the natural logarithm, we obtain the stated convexity result.

We now return to the part of the argument involving the maximum modulus principle. First modify
f(2) by multiplying by e*’/n=1/n_ For z = z + iy with 0 < 2 < 1, the real part of 22 is 22 — y? < 1, and
so for all z with 0 < R(z) < 1, |e*/m~1/"| < 1. In fact, the real part of 22 becomes strongly negative for
y large, and so g(z) = f(z)e* /n=1/n

analytic there. In particular, it is continuous, and so there is a point z in this domain so that

vanishes as z tends to infinity in 0 < R(z) < 1, and it is also clearly

9(20)| = |9(2)] (6.3.33)

for all z with 0 < R(z) < 1. We claim that a point zy satisfying (6.3.33) lies on the boundary of the strip.
To see this, consider any point zg satisfying 6.3.33). If it is not already on the boundary, appeal to the

Cauchy integral formula

9(z0) = i /027r g(z0 + re'®)de
where r is the distance from zp to the boundary; i.e., r = min{R(z),1 — R(z)}. Then
1 /2 A 1 e
o) < 5= [ laGo+re®)ido < o [ lata)ldo = lo(eo)

where in the first inequality we simply to absolute values, and in the second one we used (6.3.33) with
2z = zg + re'®. The conclusion is that |g(zo + re®)| = |g(z0)| for almost every ¢, and then by continuity,
for all ¢. For either ¢ = 0 or ¢ = , 2 + re'® lies on the boundary, and the claim is proved. Hence |g(z)|

is maximized on the boundary, and so
2/n—1/n
l9(2)] = |f(z)e” /"M <1
for all 0 < R(z) < 1. Taking the limit in which n tends to infinity, we obtain the desired result. O

Proof of Theorem 6.3.11. Given any t with 0 < A < 1, and any simple function f, we we first observe
that f € LPr N LP2 and hence T'f is defined. By the variational characterization of the LP norms,

s llgce) :Sup{‘/Rdngdu‘ tllgllgqey = 1}

where 1/q(t)" +1/q(t) = 1.

By the density of simple functions, for any € > 0, there is a simple function g with ||g||4) = 1 so that

1T llgco) < ] / ngdu‘ e
Rd
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Now by further partitioning the subsets on which the simple functions f and g take on their various

values, we may write them in the form

f(x) = Z W].AJ (x) and Z H Ak 1/q (®) ]-Ak (CU)

j=1 k=1

with the same n and the same family of disjoint measurable sets A;. Notice that with the way the

coeflicients are defined,
1/p(t)

n n 1/4'(¢)
£l = | D 1H5PO and  [[glly @) = <Z|gk~|q (t)>
j=1 k=1

Then / gl fdp = E a;.fjgr where a;y :/ 14,T14,dp. This reduces the Corollary to the
Rd ; Rd
J,k=1
Reisz—Thorin Lemma and, since € > 0 is arbitrary, the theorem is proved. O



Chapter 7

The Reisz-Markoff Theorem and
Related Topics

7.1 Locally compact Hausdorff spaces

7.1.1 DEFINITION. A topological space (X,U) is locally compact in case every point of X has a

neighborhood with compact closure.

When (X,U) is locally compact, every neighborhood U of x contain another neighborhood of x that
has compact closure: Let V be any neighborhood of z that has compact closure, and then VNU C U and
V NU C V which is compact.

For example, R™ is compact since for each x, m is compact. Also, it is evident that any compact
space is locally compact. However, an infinite dimensional Hilbert space with its norm topology is not
locally compact: As we have seen, the closed unit ball — and thus any closed ball — in such a space fails
to be compact, and every closed neighborhood must contain a closed ball.

In a locally compact Hausdorff space, one can separate compact sets K and points y € K¢ as follows:
For each x € K, let V, be a neighborhood of z with compact closure, and let U, be a neighborhood of y
such that V, NU, = 0, which is possible since X is Hausdorff. Then {V,, : x € K} is an open cover of K
so that there exist {x1,...,2,} C K such that K C U}_,V,, = V. let U = U}_,U,,. Since V.C U}V,

which is compact, V' has compact closure, and since y ¢ VT:J for any j, y ¢ V. In summary:

7.1.2 LEMMA. Let (X,U) be a locally compact Hausdorff space. Suppose K C X is compact andy ¢ K.
Then there exists disjoint open sets V and U such that K C V, y € U, and V is compact.

The slightly more elaborate result in the next lemma is fundamental.

7.1.3 LEMMA. Let (X,U) be a locally compact Hausdorff space. Suppose K C U C X with K compact

and U open. Then there exists an open set V with compact closure such that

Kcvcvcu. (7.1.1)

© 2017 by the author.
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Proof of Lemma 7.1.3. If y € U€, then y € K¢, and using Lemma 7.1.2 we may choose for each y € U®
disjoint open sets V,, and W, such that K C V,, y € W, and 71, is compact. Since y ¢ Vy,

(UenV,=0.

yeUe

and each set in the intersection is compact. Therefore there exist {y1,...,y,} C U° such that

(| UenV, =0.

j=1,....n

Define V' = N7_;V,, which is open and contains K. Since V C ﬂ;’:le which is compact and disjoint
from U®, V is compact and V N U® = ), which is the same as V C U. O

The main feature of locally compact Hausdorff spaces that makes it possible to develop a rich theory
linking topology and integration for them is that locally compact Hausdorff spaces are rich in continuous

functions in the sense that we now explain. We shall write
K=<f

to mean that K is a compact subset of X, and that f is a continuous and compactly supported function
on X with values in [0, 1] and with f(xz) =1 for all z € K.
We shall write
f=U

to mean that U is a compact subset of X, and that f is a continuous and compactly supported function

on X with values in [0, 1] and that the support of f is contained in U.

7.1.4 THEOREM (Urysohn’s Lemma). Let (X,U) be a locally compact Hausdorff space. Suppose K C

U C X with K compact and U open. Then there exists a continuous function f such that
K<f=<U. (7.1.2)

Proof. First, pick an open G with compact closure such that K ¢ G C G C U, which we may do by
Lemma 7.1.3. In the next step we construct a sequence of open sets {V;} indexed by the dyadic rational

numbers s in (0, 1) such that for each t > s,
KcV,cV,cV,Cc@G.

We proceed inductively. By what we have shown in the first step, there exists an open set Vi /o such
that

KC%/QC‘/I/QCG.

For the same reason, there exist open sets V;,4 and V3,4 such that
K C V3,4 CV3/4 CVyipo and Vl/QCV1/4CV1/4CG.

Now an obvious induction argument provides the construction.
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Having constructed our sequence {V;}, s ranging over the dyadic rationals in (0,1), we are ready to
define f: First, set Vj := X. Next, for x € X, define

f(z) =sup{s : z€V;}.

If x € K, then x € V; for all s, and hence f(x) =1, and if x € G¢, then f(x) = 0. Hence the support
of f is contained in G, which is compact. Finally, we claim that f is continuous. It suffices to show that
for all A, f=1((\,00)) is open and that and f~1([)\, 00)) is closed.

First, we claim that
FHO0)) = U Vs
s>

which is open. To see this, note that if f(x) > X then for some s > \, z € V;, and so x belongs to the
union on the right. On the other hand, if  belongs to the union on the right, then x € V for some s > A,
and then f(z) > A

Second, we claim that

) = (Vs

s<A
To see this, note that if f(x) > A, then for all s < A, z € V,, and hence = € Vj, and so = belongs to the
intersection on the right. On the other hand, if  belongs to the intersection on the right, then for all
r < A, there is an s > r so that € V,. Since V; C V;,, x € V,. and f(z) > r. Since 7 < ) is arbitrary,
flz) >\ O

7.1.5 THEOREM (Continuous partitions of unity). Let (X,U) be a locally compact Hausdorff space.
Let K be a compact subset of X, and let {Uy,..., Uy} be a finite open cover of K. Then there exist
functions g;, 7 =1,...,n such that g; < U; for each j and such that K < Z —19j-

Proof. Each € K belongs to some Uj, and applying Lemma 7.1.3 to {«} C U;, we can choose an open
set W, with compact closure such that x € W, ¢ W, C U;. Since K is compact, we may cover K by
finitely many such sets {W,,,..., W, }. Let C; be the union of those W, that were constructed choosing
Wy C Up. Then Cy is compact, and Cy C Uy, and K C Uy, Cy.

By Urysohn’s Lemma, there exists fy such that Cp < f; < Uy. How consider the function

-5

Clearly, h is continuous and 0 < h < 1. If & € K, « € C}; for some j, and then f;(z) =1 so that h(x) =
We next claim that
_ j—1
h= f1+ZfJH 1— fr) -
j=1 k=1
To see this note that

::]:

Hl—f] =fi+(1—-hH) - Hl—f] +(1-f) 1=1]|

<.
||
N

and then apply the obvious induction argument.
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Finally, we define

j—1
g1= and gj:fj]:[(lffk) for j=1,....n—1.
k=1
Thus, h = Y77, g; and g; < U; for each j. O

7.1.1 Some spaces of continuous functions

Given a topological space (X,U), there are three natural normed vector spaces of continuous functions:

7.1.6 DEFINITION (Spaces of continuous functions). Let (X,U) be a topological space. We define:

(i) C.(X) is the normed vector space of continuous, compactly supported functions f on X with values in
C on which the norm, || - ||co, is given by || f|lcc = sup{ |f(z)| : z € X }.

(#i) Co(X) is the normed vector space of continuous functions f on X with values in C such that for each
€ > 0, there exists a compact set K.y such that |f(z)| < e for all « outside of K. ¢. The norm is once
again | - [|co, given by [|flloc = sup{ [f(z)[ : =€ X }.

(ii1) Cp(X) is the normed vector space of continuous functions f on X with values in C such that || f|jco =

sup{ |f(z)] : x € X } < oo. The norm is once again || - || co-

When X is not compact, C.(X) is not complete, but if (X,U) is a locally compact Hausdorff space,
then it is dense in Co(X) , and both Cy(X) and Cp(X) are Banach spaces.

7.1.7 THEOREM. Cy(X) equipped with the sup norm is a Banach space. If X is a locally compact
Hausdorff space, then the subspace C.(X) is dense.

Proof. If {f,} is a Cauchy sequence in Co(X), then {f,(z)} is a Cauchy sequence in C. Hence the limit
lim,, 00 frn(x) exists for each x, and we define a function f by

fl@)= lim f,(z) .

n— oo

Given the uniform convergence, it is easy to check, using an €/3 argument, that f € Co(X) so that Co(X)
is complete.

To see that C.(X) is dense, pick f € Co(X) and € > 0. Let K. be a compact set such that |f(z)] < e
for all z ¢ K.. Because X is locally compact, it is possible to find an open set U containing K, such that
U has compact closure. Then by Urysohn’s Lemma, there exists a continuous function g with K < g < U.
Then fg = f on K and and |fg — f| = |f|lg — 1| < |f| everywhere, so that |fg — f| < e on K¢. In
particular, || fg — fllec <€, and fg € C.(X). O

7.2 The Riesz-Markoff Theorem

7.2.1 Radon measures

Radon measures, are, roughly speaking, the class of Borel measures on a locally compact Hausdorff space

for which the measure theory and the topology are “nicely compatible”.
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7.2.1 DEFINITION (Inner and outer regularity). Let (X,U) be a topological space. A Borel measure

@ on X is outer regular in case for each Borel set E
w(E)=mf{ w(U) : ECU, U open } . (7.2.1)
A Borel measure p is inner regular in case for each Borel set E
w(E) =sup{ w(K) : K C E, K compact } . (7.2.2)

A Borel measure p is inner regular for open sets in case (7.2.2) holds for all open E. A Borel measure is

regular if it is both inner and outer regular.

7.2.2 DEFINITION (Radon measure). A Radon measure on a topological space (X,U) is a positive
Borel measure p on X such that pu(K) < oo for all compact sets K C X that is outer regular and inner

regular for open sets.

The next results demonstrate the compatibility of the topology and the measure theory for Radon

measures.

7.2.3 THEOREM. Let (X,U) be a locally compact Hausdorff space, and let p be a Radon measure on
X. Then C.(X) is dense in LP(X, B, u) for all p € [1,00).

Proof. Since L' N L* is dense in Lp for all p € [1,00), it suffices to deal with p = 1. We know that
integrable simple functions are dense in L!(u). Therefore, it suffices to show that whenever E is a Borel
set with u(E) < oo, for all € > 0, there exists f € C.(X) such that

X

Since p is outer regular, there exists U open with E C U such that u(U) < p(E) + €. Since p is inner
regular for open sets, there is a compact set K C U such that pu(K) > p(U) —¢€/.
By Urysohn’s Lemma, there exists f € C.(X) such that K < f < U. But then |f — 1y| < lynke, and
s0
1f = 1pll < 1 = ol + 1o — gl < p(U\E) + (U 0 K°) < 2.

O

7.2.4 THEOREM. Let (X,U) be a locally compact Hausdorff space. Let u and v be a Radon measures

on X such that
[ sau= [ sav
X b'e

Proof. Let U be open, and let f < U. For all compact K C U, Urysohn’s lemma provides g with

forall f € Co(X). Then p=v.

K < g < U, and hence
W) < [ gdu= [ gdv=v0).
X X

By the inner regularity of 1 on open sets, u(U) = sup{u(K) : K C U, K compact}. Hence u(U) < v(U)
By symmetry, v(U) < u(U) so that pu(U) = v(U) for all open U, and then by the outer regularity of u
and v, u(F) = v(E) for all Borel sets E. O
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7.2.5 THEOREM. Let (X,U) be a locally compact Hausdorff space. Every o-finite Radon measure

on X 1s reqular.

Proof. Let E be a Borel set with u(FE) < co. Pick ¢ > 0. By the outer regularity of u, there is an open
set U such that E C U and pu(U) < u(E) + €. For the same reason, there is an open set V' such that
U\E CV and u(V) < w(U\E) + € < 2e.
By the inner regularity of u for open sets, there is a compact set C' C U such that pu(U) < u(C) + e
Define K := C'N V¢ which is compact. By construction, every point x € U that is not in F lies in V,
so that CNV*¢ C E. Therefore,

w(EK) = p(C) = (V) 2 p(U) — 2¢ .

Hence pu(K) < u(E) — 2¢, and since € > 0 is arbitrary, u(E) = sup{ u(K) : K C E, K compact }.
Finally, if u(E) = oo, there is an increasing sequence of sets E,, with u(E,) < oo whose union is £

and such that lim, . u(E,) = co. By what was proved above, within each F,, there exists a compact

K, with u(K,) > n(E,) — 1. Each K, is contained in E and lim, . u(K,) = oo O

7.2.2 The Riesz-Markov Theorem for locally compact Hausdorff spaces

Throughout this section, let (X,U) be a locally compact Hausdorft space. The spaces C.(X), Co(X) and
Cp(X) are more than topological spaces: They contain a distinguished cone of non-negative elements: We
say that a function f on X is non-negative in case for each x, f(x) € R, and f(z) > 0. In this case we
write f > 0.

Let L be a linear functional on C.(X). We say that L is a positive linear functional on C.(X) in case
=20 = L(f)=0.

Evidently. if f is real, L(f) is real, and |L(f)| < L(|f]). If f = g + i¢h where g and h are real, |L(f)| =
|L(g) +iL(h)| < L(|f])-
There is a close connection between the topology on C.(X) and the partial order structure on C.(X)

induced by its cone of positive elements.

7.2.6 THEOREM. Let L be a positive linear functional on C.(X). Then for each compact K C X, there

exists a finite constant C'x such that
fI<K = LN <Cklflls -

Proof. The uniqueness is immediate from Theorem 7.2.4, and we turn to existence. By Lemma 7.1.3,
there exists an open set U with compact closure U such that K C U C U, and then by Urysohn’s Lemma,
there exists a continuous function ¢ on X such that K < ¢ < U.

Then evidently || f|lcc — |f| > 0, and hence L(|| f|lcop — |f]) > 0. Thus,

IL(AI < LA < L[ flloot) = L(@) | flloo -

Thus,
sup{|L(f)] : [fI < K, |[fllc <1} < L(@)||flloo -
We may take Cx = L(f), or, better yet, Cx = inf{L(f) : K < f }. O
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To construct an example of a positive linear functional on C.(X), let y be a Borel measure on X
that is finite on every compact set K C X. If f € C.(X), let K denote the compact support of f. Then
0 <|f] €< Iflloclk, and since u(K) < oo, f is integrable. Thus, we may define

Lu(f)=a/;fdu,

which is therefore a linear functional on C.(X), and evidently it is positive.
The Reisz-Markov Theorem asserts that every example is of this type. Moreover, we shall show that
one consequence of the Reisz-Markov Theorem is that every Borel measure on X such that p(K) < oo for

all compact K automatically has certain regularity properties:

7.2.7 THEOREM (Riesz-Markov Theorem). Let L be any positive linear functional on Co.(X). Then

there exists a unique Radon measure p such that

L(f) :/ fdu forall feC.(X). (7.2.3)
b'e
Moreowver,
p(U) =sup{ L(f) : f<U,feC(X)} (7.2.4)
for all open sets U, and
p(K) =inf{ L(f) : K <[ ,f€C(X)} (7.2.5)

for all compact sets K.

Proof. Step 1: Use L to construct an outer measure p*. We define a set function p* on open subsets of
X by
p (U) =sup{ L(f) : f<U,feC(X)}

for open sets U, and then on arbitrary subsets E of X by
p (E)=inf{ p*(U) : ECU, U open }.

It is clear that p*(@) = 0, and that if A C B, then p*(A) < u*(B). Therefore, to show that p* is an

outer measure, we must show that for any sequence {E, },en of subsets of X,
o0 o0
R (U E> <> B
n=1 n=1

Let E denote U2, E,,. It suffices to consider the case in which p*(E,) < oo for all n.
Pick any € > 0. Then by construction, there exists an open set U, with E, C U,, and p*(U,) <
p*(En) + 2 ™e. But then

EcU:= OUn and iu*(Un)giu*(En)+e.
n=1 n=1

n=1

It therefore suffices to prove that

IRCEDINCAR (72)
n=1
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To do this, consider any f € C. such that f < U. Let K denote the support of f. Then {Up,}nen is
an open cover of K, and so there exists a finite sub cover, which we may take to be {Uy,...,Un}.

Let {h1,...,hn} be a partition of unity on K, subordinate to the open cover {Uy,...,Un}. Then

N
f=> fhy, and fh, <U, n=1,.. N.It follows that
n=1

N N o)
L(f) =Y L(fha) <3 5" (Ua) <> p*(Un) -

Since, f € C. such that f < U is arbitrary, we obtain (7.2.6).

Step 2: Caratheodory o-algebra contains all open sets, and hence all Borel sets.

Let U be open, and let E C X be arbitrary. We must show that
w(E)>p (ENU)+u (ENU°) . (7.2.7)

Since p*(E) is the infimum of p*(V), V open with E C V, it suffices to prove (7.2.7) when E =V,
where V' is open. We may also suppose that p*(V) < oo. Note that U NV is open. Hence for any € > 0,
there is an f < V. NU so that L(f) > p*(V NU) —e. Let K denote the support of f. Since K C U,
Uc C K¢ and so VNU® C VN K which is open. Choose g < V N K€ so that L(g) > p*(V N K¢) —e.
Then f 4+ g has compact support contained in V' and since the supports of f and g are disjoint, f+g < V.

Therefore,
w' (V) 2 L(f +9) = L(f) + L(g) 2 p* (VN U) + p*(V N U) = 2¢ .

At this point, we know that the Caratheodory o-algebra contains the Borel o-algebra B(X), and that
the restriction of p* to B(X) is countably additive. We define p to be this restriction.

Step 3: Compact sets have finite measure

Let U be any open set containing K such that U has compact closure. Such sets exist by Lemma 7.1.3.
By Urysohn’s Lemma, there exists an f € C.(X) such that U < f. Thus, if g < U, g < f, and so
L(g) < L(f), and hence pu(U) < L(f) since g < U is arbitrary. Therefore, u(K) < u(U) < oo.

Step 4: p is inner reqular for open sets

Let K be compact. We claim that for K compact,
p(K) =inf{L(f) : K< f} (7.2.8)

Fix € > 0. Then there exists an open set U so that K C U and p(K) > u(U) — e. By Urysohn’s Lemma,
there exists a function f with K < f < U. Then L(f) < u(U) < u(K) + €. Since € > 0 is arbitrary,

p(K) > inf{L(f) : K <f}.

Next, suppose that K < f. Then for any 0 < e < 1, Let U = {z : f(z) > 1 = €}. Then U, is open
and has compact support, and K C U..
There exists a function g such that ¢ < Ue and L(g) > p(Ue) — e. Note that f > fg > (1 — €)g.

Therefore
L(f) = (1 —e€)L(g) = (1 — €)[u(Ue) — €] = (1 — €)[u(K) — €] .
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Since 0 < € < 1 is arbitrary, u(K) < L(f) whenever K < f. This completes the proof of (7.2.8).

Now let V' be open. Suppose u(V) < co. Then for every € > 0, there exists a function f < V such
that (V) —e < L(f). Let K be the support of f. By (7.2.8), there is a function g with K < g such that
L(g) < w(K) +e€ Butsince f <1 < g,

(V) —e < L(f) < L(g) < p(K) +e .

The same sort of reasoning shows that if u(V) is infinite, we can find compact sets in V' of arbitrarily
large measure.
Step 5: For f € Co(X), [y fdu = L(F).

It suffices to treat the case in which f takes values in [0,1]. For each t € (0,1], define K; = {x
f(x) > t}. Since f € C.(X), each K; is compact Let K, denote the support of f.

For any 0 < a < b <1, define fi,4 = (f —a)+ Ab. Then for all 0 <t < a,

1
K —_— <1 .
b < b_af[a,b] <lk,

1
Therefore, for all open U with K, C U, u(Kp) < mL(f[a’b])u(U). By outer regularity,

%QL(f[a,bD < M(Ka> .

pI) < 3

Then for any n € N, f = Z fiGi—=1)/n,j/n)> and so L(f) = ZL (f[(j,l)/nyj/n]). Therefore,
, e

j=1

n

Z l'“(Kj/n) <L(f) < Z %M(K(jﬂ)/n) )

j=1 j=1

Since lim,,_ o0 (2?21 %M(Kj/n)) = limy, 00 (Z;’:l %M(Kj/n)) = [y fdpu, the proof is complete. O

7.2.8 DEFINITION (Radon space). A topological space (X,U) is a Radon space in case every Borel

measure on X that is finite on all compact sets is regular, and hence a Radon measure.

7.2.9 DEFINITION (Polish space). A topological space (X,U) is a Polish space in case it is separable

and homeomorphic to a metric space.

The term “Polish space” recognizes the work of a group of Polish mathematicians including Kura-
towski, Sierpinski and Tarski, who proved a number results pertaining to the concept. Note that a Polish
space is necessarily Hausdorff. Therefore, a locally compact Polish space is, in particular, a locally compact

Hausdorff space. For example, R™ is a locally compact Polish space, as is any Riemannain manifold.

7.2.10 LEMMA. Let (X,U) be a locally compact Polish space. Then every open set U in X is the

countable union of compact sets in X. In particular, X is the countable union of compact sets.

Proof. Let p be a metric that induces the topology on (X,U), and let B(r,x) denote the open ball of
radius » > 0 about € X. Since (X,U) is locally compact, for each z € X, there exists some r > 0

B(r,x) is compact . (It is not excluded that B(r,x) is compact for all » > 0; this is the case in R™, for
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example.) Define 7, = sup{r >0 : B(r,z) is compact}. If 0 < § < r, and p(y,z) < d, then for all r with
§ <r <ry, B(r—234,y) C B(r,z) and B(r,z) is compact. Hence r, > r, — d.

Likewise, given the open set U and x € U define d, = sup{s >0 : B(s,z) C U}. That is, d, is the
distance from x to U°. Just as above, one shows that if p(y,z) < 6 < dg, then d, > d; — 4.

Let {z,}nen be a dense sequence in the open set U. For n € N, define

Kn = B(min{dwn + 7"1”}/2;1:71) .

Then K, is compact and contained in U. For any x € U, there is some n such that p(x,,z) <
imin{d,,r,}. Then r,, > 3r, and d,, > 3d,, so that min{d,, + ry,}/2 > p(zn,x). It follows that
x € K,,, Since x € U is arbitrary, U = U2, K,,. O

n=1
7.2.11 THEOREM. Let (X,U) be a locally compact Polish space. Then (X,U) is a Radon space.

Proof. Let p be any Borel measure on X that is finite on every compact set. Then each f € C.(X) is
integrable with respect to u, and hence f — [ « fdu =: L(f) is a well-defined positive linear functional
on C.(X). By the Riesz-Markov Theorem, there exists a Radon measure v such that for all f € C.(X),

/deu=/xfdv. (7.2.9)

Since by Lemma 7.2.10, (X, B,v) is o-finite, Theorem 7.2.5 then says that v is regular. We next show
that p and v agree on all open sets U.

Let U be open and write U = UJ2; K,, where K,, is compact, which is possible by Lemma 7.2.10.
By Uryson’s lemma, for each n € N there exists f,, € Cc(X) such that U7_; K, < f, < U, Then define
gn :=max{f1,..., fn}. Then g, 1 1p.

We have seen that there is a monotone increasing sequence {gn tnen With g, T 1y. By the Lebesgue

Monotone Convergence Theorem and (7.2.9),
p(U) = lim gndp = lim gndv =v(U) .
X n—oo X

Hence 1 and v agree on all open sets.
Now let K be compact. By Lemma 7.1.3, there is an open set V such that K € V and V is compact.
It follows that v(V) = u(V) < co. Then since K = V\(V\K), and since V and V\K are both open

w(K) = p(V) = p(VAK) = v(V) —v(VAK) = v(K) .
Hence p and v agree on all compact sets. Let E be any Borel set. Since v is regular,
v(E)=sup{v(K) : K CE,K compact } =sup{u(K) : K C E,K compact } < u(E) .

Hence if v(FE) is infinite, so is u(F). Suppose that v(F) < oo, and pick € > 0. By the regularity of v, there
exist K compact and U open such that K C E C U and v(U) — v(K) < e. Then because p(K) = v(K)
and p(U) =v(U), both u(E) and v(E) lie in the interval [v(K),v(K) + €], and hence |u(E) — v(E)| <e.
Since € > 0, u(E) = v(E). Hence pu and v agree on all Borel sets. O
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7.2.3 The Hahn-Saks Theorem

Throughout this section, (X,U) is a locally compact Hausdorff space, C.(X) denotes the real normed space
of continuous compactly supported real valued functions on X, and Co(X) denotes the real Banach space
consisting of all uniform limits of functions in C.(X).

The real vector spaces C.(X) and Co(X) are ordered vector spaces: Wesay f > g in case f(z)—g(x) > 0
for all z. Let C;(X) and Cg (X) denote the sets of point-wise non-negative functions in C.(X) and Co(X)
respectively. Then f > g in C.(X) if and only if f — g € CF(X), and likewise for the order in Co(X).

Our goal is to concretely identify the elements of the dual space (Co(X))™ in terms of measures on
X. An element of (Co(X))" is positive in case L(f) > 0 wherever f is a non-negative function in Co(X).
Restricting such a functional L to C.(X), yields a positive linear functional on C.(X), and then by the

Riesz-Markoff Theorem, there is a Radon measure 7, on X and such that

L(f) = /X fdur (7.2.10)
for all f € C.(X).

7.2.12 LEMMA. Let L be a positive linear functional on Co(X), and let uy, be the Radon measure on
X such that (7.2.10) is valid for all f € C.(X). Then pur(X) < ||L||, and hence (7.2.10) extends by
continuity to all of Co(X).

Proof. Since py, is inner regular on open sets, there exists an increasing sequence {K,},en such that
prn(Ky) 1T pr(X). By Urysohn’s Lemma, for each n there exists f, € V.(X) such that K, < f,. Then

pa(K) < [ fodis = L(F) < L. .
X
Suppose that L € (Co(X))" can be written as the difference of two positive linear functionals,
L=1L— L. (7.2.11)

Then by Lemma 7.2.12, there are finite Radon measures p1 and po such that for all f € Cy(X),

L(f):/deulf/deuz. (7.2.12)

Define v = u1 + p2, which is also a finite Radon measure. Evidently 1 and ps are absolutely continuous
with respect to v, and hence there exist non-negative functions hy, he € L'(X, B,v) such that du; = hydv
and dug = hodw. Define by == hy — hy A hy and hy := hy — hy A ha. Let A= {x : hy A ho(a) = hy(z)}
and observe that El(l') =0 for all x € A, while EQ(LL‘) = 0 for all x € A°. Then since h; — hy = El - ﬁg,
(7.2.12) becomes

L(f):/thldy—/xfhzduz/xf@—E2)dy. (7.2.13)

Define measures dpi; := Eldu and iy := ngdy. Then f11(A) = 0 and fi2(A°) = 0 so that iy and [y are
mutually singular. Since any Borel measure that is absolutely continuous with respect to a Radon measure
is itself as Radon measure, i1 and jio are also Radon measures.

In summary, if there exists a decomposition of L € (Co(X))" as the difference of two positive elements
of (Co(X))", then there exists a pair of mutually singular finite Radon measures p, and p_ such that for
all f e Co(X),

L(f) = /X fduy /X fdu_ . (7.2.14)
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Such a decomposition is necessarily unique: Let A be a Borel set such that 4 (A) = 0 and p_(A°) = 0.
Pick € > 0, and then h € C.(X) such that such that ||h—14| 11 (x,8,, +_) < €. Without loss of generality,
we may assume that 0 < h < 1. Then for any 0 < g < f in Cy(X), by the choice of h,

L(g) = L((1—h)g)+ L(hg)
h)gdpuy — /X (1—h)gdu— + /X hgdpy — /X hgdp—

/ Mgy + | floce

X

IN
><

IN

/ (1= B)fdpig + || flloce < / Fdpig + 2]l
X

This shows that
sup{ L) : 0= 9= 7)< [ fdus . (7.2.15)
X

On the other hand,

L((l_h)f):/X(l—h)fd;u—/x(l—h)fd,uf Z/deu+—2|\f||oo€-

Since 0 < (1 — h)f < f, equality holds in (7.2.15) and therefore, the linear functional f |—>/ fduy is

X
uniquely determined by L under the assumption that (7.2.14) with gy and p— mutually singular. Then
by Theorem 7.2.4, uy is then uniquely determined by L. We have proved:

7.2.13 LEMMA. Let L € (Co(X))" have a decomposition as the difference of two positive linear func-
tionals as in (7.2.12). Then there is a unique pair of mutually singular Radon measures p4, pi— such that
(7.2.14) is valid for all f € Co(X), and moreover, j1y is determined through L by (7.2.15).

It is now a simple matter to show that, in fact, every L € (Co(X))" can be written as the difference of
two positive linear functionals as in (7.2.12). The identity (7.2.15) gives us a candidate for the components

of the decomposition:

7.2.14 LEMMA. Let L € (Co(X))". For f € Cf (X), define

Li(f)=sup{ L(g) : 0<g<[}. (7.2.16)

For general f € Co(X), define
Lo(f) = Lo(f) ~ Lo(f ) - (7.2.17)

where f and f_ are, respectively, the positive and negative parts of f. Then Ly (f) € (Co(X))*, and both
Ly and L_ := L — Ly are positive, so that L = Ly — L_ is a decomposition of L into the difference

between two positive linear functionals.

Proof. We first show that for f1, fo € Cf (X), Ly (f1 + f2) = Ly (f1) + Ly (f2). First, let 0 < g1 < fy and
0<gs<fo. Then 0 < g1 + 92 < f1 + fo so that L (f1 + f2) > L(g1 + g2) = L(g1) + L(g2) Taking the
supremum over ¢; < f1 and go < fo yields Ly (f1 + f2) > Li(f1) + Ly (f2).
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Fix € > 0, and choose g € Cq (X) with 0 < g < f1 + fa so that Ly(f1 + f2) < L(g) + e. Define
gu=fingand go=g—g1. Then 0 < g1 < f1,0< g2 < fo and g1 + g2 = g. Therefore

Li(fi+ f2) <L(g)+e<L(g1) + L(g2) + ¢ < Ly (f1) + L+(f2) + €.

Since € > 0 is arbitrary, Ly (f1+ f2) < L4 (f1) + L+ (f2). Together with what we proved above, this shows

Li(fu+ f2) = Ly (f1) + Ly (f2)-

To see that Ly as extended to all of Cy(X) by (7.2.17), is additive, we observe that if f = g1 — go
and f = hy — hy are two ways of writing f € Cy(X) as a difference of two elements in C; (X), then
g1 + he = h1 + g». By what was proved above,

Li(g1) + Ly(ha) = Ly(g1+h2) =Li(h1+g2)=Li(h1)+ Li(g2),

and hence
Li(91) = Li(g2) = Ly (h1) — Ly (h2) - (7.2.18)

Therefore, one can replace the specific decomposition f = fi — f_ in (7.2.17) by any other decomposition
of f into the difference between elements of Cyf (X), and the result is the same. Then for f,g € Co(X),
f+g=(fr+9+)— (f- +g_) is one way of f + g as the difference of elements of Cg (X),

Li(f+9)=Li(f++9+) = Li(f-+9-) = (L+(f+) = L (f-)) = (L(9+) — L+ (9-)) = Ly (f) + L+(9) -

This together with the evident fact that Ly (af) = aL4(f) for all @ € R and f € Co(X) shows that L is
a linear functional.

By (7.2.17) and then (7.2.16) that
[l = sup{Lo(f) : 0< F <1} <sup{L(g) : 0<g <1} < L] .

Thus, Ly is a bounded linear functional and It is evident from (7.2.16) that L (f) > 0 for all f € Co(X),
so that it is also positive.

Finally, defining L_ = L, — L, we have that for all f € CJ(X), L_(f) = Ly (f) — L(f) > 0 since
Li(f) > L(f). Hence L_ is a positive linear functional. Since L = L — L_, this shows that every

element L of (Co(X))" can be written as the difference of two positive linear functionals on Co(X). O

7.2.15 LEMMA. Let L € (Co(X))", and let py,pu_ be the unique pair of mutually singular Radon
measures on X such that (7.2.14) is valid for all f € Co(X). Then

JLI| = g (X) + i (X) - (7.2.19)

Procf. For all ] € Co(X) with £l < 1, (LIS [ Aldps + [ 17ld <04 () + - (X). On the
X X
other hand, let A be a Borel set such that pi(A) =0 and p_(A°) = 0. Pick € > 0, and then h € C.(X)

such that such that [|h — (1ac — 14)|l21(x,B,u, +n_) < €. Without loss of generality, we may assume that
—1 < h <1. Then

LIz 2 = [ hds [ hae
X X

\Y]

/ (Lae — La)dpy */ (Lae = La)dp— = 2€ = puy (X) + p— (X) — 2 .
X X
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Collecting results from the lemmas, we have proved:

7.2.16 THEOREM (Riesz Representation Theorem for ((Co(X))*). Let (X,U) be a locally compact
Hausdorff space. Then for each L € ((Co(X))* there exists a unique pair of mutually singular finite
Radon measures py and p— such that (7.2.14) is valid for all f € Co(X) and such that the norm |L|| of
L is given by (7.2.19).

A number of consequences of this theorem deserve further discussion. We begin with a definition:

7.2.17 DEFINITION. A signed measure on X is a real valued function p on the Borel o—algebra of

X such that there exist two positive finite Borel measures p; and pg such that for all Borel sets E,
W(E) = p1(E) — pa(E).

The set of signed measures is evidently a real vector space. (Complex measures are defined in the
analogous way, and would constitute a complex measure space.) We denote the real vector space of signed

measures on X by M(X).
For a bounded Borel function f, define the integral fX fdu by / fdu :/ fdu —/ fdus. This
X X X

gives us a continuous linear functional L on Co(X) where L(f) = [ fdu. Theorem 7.2.16 then gives us

the existence of uniquely determined positive Borel measures ;4 and p— that are mutually singular — i.e.,

supported on disjoint sets — and such that
w(E) = py(E) — p—(E)
for all Borel sets E in X.

7.2.18 DEFINITION. For any signed measure p, the positive measure || given by

lul = pt + p

is called the total variation measure of p, and and the function p +— ||u||Tv where

[l = pe(X) + p—(X)
is called the total variation norm of p.

It is easy to see from our analysis above that

||u||Tv=sup{/deu \ JeCX), —1<f< 1} 7

and from this the Minkowski inequality is easily seen to hold, so that || - |7y is actually a norm, as the
name indicates.

We know that the dual of a Banach space is complete in the dual norm, and so M(X) is complete
in the total variation norm. Moreover, the map L — p4 — p— where py and p— are related to L as in
Theorem 7.2.16 is evidently an isometric isomorphism of (Co(X))" onto M(X).

The Banach space Cy(X) is not reflexive expect when X is very simple. As long as there exists a

single Borel set E that is not both open and closed, we may define a linear functional on M by

Ap) = u(B) = /X Lpdy
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Clearly A is linear and
IAE)| < [pl(E) < |pl(X) = [plv ,

so A is indeed bounded, and so is an element of (M(X))". But if there were a function g € Co(X) for
which A(u) = [ gdu for all 4 € M, we would have g(x) = 1g(x) for all = since the point mass d, that
concentrates unit mass at « belongs to M for each x € X. But since E is not both open and closed, 1g

is not continuous.

7.2.4 Wiener measure

In this section, 2 denotes the set of continuous functions w : [0,00) — R such that w(0) = 0. We equip
Q with the topology of uniform convergence on compact subsets of [0, 00). This makes it a Frechét space,
and in particular, a Hausdorff space. However, €2 is not locally compact. For each ¢ € [0,00), let X}
denote the evaluation functional Xi(w) = w(t). Let F be the o-algebra on € generated by the X, t > 0.
Wiener measure is a probability measure vy on (2, F) such that if Fy,..., E, are Borel sets in R, and
0 <t <--- < ty, a particle performing “Browninan motion” starting from x at time ¢ = 0 is in E; at

time t; for each j =1,...,n with probability
vw({we : wt)eE;, j=1,...,n})=

n
/ H Ve, —t;—1(xj—1 — xj)dwy - - -dw,  (7.2.20)
Bix-xEy ;.
where «y;(z) is the Gaussian probability density used to define the heat semigroup, ¢ty := 0 and xy := 0.
(We restrict ourselves to one dimension only to keep the notation simple. Everything we say in this section
about “Brownian motion” in R extends readily to Brownian motion in R™ for any n € N.)

The formula on the right side of (7.2.20) for the probabilities of such events follows from Einstein’s work
on Browninan motion in 1905, in which he related Brownian motion to diffusion and the heat equation.
Einstein’s precise explanation for Brownian motion in terms of molecular collisions — at a time when
the very existence of atoms and molecules was still a matter of dispute — made it possible to determine
Avogadro’s number, the number of atoms of hydrogen in one gram of hydrogen, by making observations
through a microscope of pollen-sized particles undergoing Brownian motion. This was actually done in
1908 by Jean Baptiste Perrin, and he was awarded the Nobel prize in 1926 for his experimental work.
Einstein received the prize in 1921 for his theoretical work. A simplified version of Einstein’s formulae,
leaving out the constants that make it possible to determine Avogadro’s number by looking though a
microscope, says that the probability that a Brownian particle starting at 0 at time ¢t = 0 is in F; at time

t; is given in terms of the heat kernel v;(z — y) by
/ H'Ytj—tj—l(mj—l —xj)dxl---dxn (7221)
E1x-xE, j=1

where ty := 0 and xg := 0, which is the formula on the right side of (7.2.20). For example if n = 2, this

reduces to, using the Fubini-Tonelli Theorem,

/El 71 () (/E2 g G y)dy) da .
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The inner integral gives the probability of the Brownian particle making a transition from z to E5 in time
to — t1, and ~y, () is the probability density for the Brownian particle making a transition from 0 to x in
time ¢1. The composite formula is justified on account of the increments of the motion being “statistically
independent”.

We shall not go further into the physical origins of the formula on the right side of (7.2.20), but turn
to the mathematical question of whether or not there exists a probability measure vy on 2, the infinite
dimensional “path space” for the Brownian particle, such that (7.2.20) is valid.

The sets of the form {w € Q : w(t;) € E;, j=1,...,n } are very special in F, and the existence
of a countably additive probability measure (€2, F) that assigns the specified probabilities to these sets is
far from trivial. It is therefore somewhat amazing that Norbert Wiener constructed the measure vy, on
(Q, F) in 1923, well before Kolmogorov had even given his measure-theoretic formulation of probability
theory.

In this section we give a proof of Wiener’s Theorem due to Edward Nelson that makes use of the
Riesz-Markov Theorem, and the regularity of the measures that it provides. There are two main parts to
the proof: In the first part, we embed 2 into a compact Hausdorff space, and use the formula on the right
hand side of (7.2.20) to define a positive linear functional on C(X) = C.(X). The Riesz-Markoff Theorem
then provides a regular Borel probability measure px on X. In the second second part, we show that 2
is a Borel set, and that puw (2) = 1. We then obtain vy by restricting pw to Q. It is in the course of the
proof that puw (2) = 1 that we make essential use of the inner regularity of uy to deal with the fact that
continuity of a function w from [0, c0) into R depends on the behavior of w at uncountably many points.

This is not the only way to construct Wiener measure, and indeed Wiener’s paper predates the work
of Markoff on which this approach depends. However, it is flexible and powerful, and can be used to
construct many other measures on “path spaces”. It will be clear that very little specific information
about the heat kernel is used in the proof.

Our first task, which is essentially notational, is to recast the formula (7.2.21) in terms of a probability
measure on R”™. Let S be an arbitrary finite subset of distinct elements ¢; of (0, c0) arrange in increasing
order: S ={t1,...,t,} witht; <tj4, forj=1,...,n—1.

Given such a set S, define a measure y,; s on R™ by
n
dptz,s = H Ve, —t;,—1(xj—1 — xj)day - - - day, (7.2.22)
j=1
where tp := 0 and xg := x. (We need the more general formula in which xq is arbitrary and not set equal

to 0 for reasons that are explained below.) For example, if S = {t1,2}, then

dptz, 1, .3 = Vo2 (& — 21))y(21 — 22)d21ds (7.2.23)

Integrating first in x2, and then in z; and using the fact that fR vi(z)dz = 1 for all ¢, one readily sees
that i (¢,,4,} is a probability measure. The same reasoning shows that for all S, u, s is a probability
measure. For Borel set Ey and Ea, fiy (4, +,1(F1 X E3) is the probability that the particle, initially at x,

is in F; at time t1, and then in Fs at time t5. Likewise,

fa (tr,...tn) (E1 X oo X Ep)
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is to be thought of as the probability the particle, initially at z, is in Ej; at time ¢; for j = 1,...,n. Notice
that if some E; = R, the condition that the particle is in £} is vacuous given that the particle must be
somewhere in R. This corresponds to an important consistence condition of the family of measures {y, s}
indexed by the finite ordered sets S Let S = {t1,...,t,} and for some j = 1,...,n, let S’ := S\{¢;}
ordered as above.

Let E1,...,E, be n Borel sets in R. Let £ = F; X - X E,, and let E’ be the Cartesian product of
{E1, ..., E,}\{E;} taken in the order induced by the subscripts. Then since

/ %—tj,l(l’j—l - y)%j_s(y - Ij)dy = Vty—t; 1 (Ij—l - xj) )
R
doing the integration over the x; first on the left we find that in case F; =R,
fiz,s (B) = pos0 (E') (7.2.24)

There is another important relation satisfied by these measures, this times with = and S both being
variable. Let S = {t1,...,t,} be given, n > 2. Let 1 < k < n — 1 be given and let f be a bounded
Borel function on R¥ and let g be a bounded Borel function on R*7*. Let S’ = {t1,...,t;} and let

S :={tk+1,-..,tn}. Then doing the integral over zyy1,..., 2, first, we find that

flx1, o 2k)9( @ty - - Tn)dpg, s = /k flz, ... xp) (/ ) 9(Xps1,- - ,Uﬂn)dﬂzk,S“) dps,sr

" " " (7.2.25)
In probabilistic terms, one may regard the functions X; : (z1,...,2,) — z;, j = 1,...,n as “random
variables” on the probability space (R™, B, tiz,s). The product structure in (7.2.25) can then be interpreted
as saying that “given Xy, the future variables Xyi1,...,X,, are statistically independent of the past
variables’ X1, ..., Xi_1.” This is the Markov property. In what follows we do not need to know precisely
what “given Xj” means; it involves the notion of conditional probability. We shall only make direct
analytic use of the factorization identity (7.2.25). However, it would be a grave injustice not to at least
mention mention in passing the Markov property at this point. For our purposes, the Markov property

of the measure p, g is precisely the factorization formula (7.2.25) relating it to the measures p, g and

[y, 57 -

7.2.19 THEOREM. There exists a unique probability measure vy on (2, F) such that if ¢ is any
function on R™ and S = {t1,...,tn}, 0 <tg < - - <ty,, then

n

/ p(@(tr), - (b)) dow (@) = / D@12t st -
Q

Proof of Theorem 7.2.19. Let R denote the one-point compactification of R, and let X denote the Cartesian
product (R)[O*OO) with the product topology. Then by Tychonov’s Theorem, X is a compact Hausdorff
space. The general element w of X is an arbitrary function from [0, co) into R.

Let A denote the set of all functions f on X of the form

fw) =d(w(tr),...,w(tn)) (7.2.26)

for some n € N, some S = {¢1,...,%,}, and some bounded continuous function ¢ : R® — R. Then A is
an algebra consisting of continuous functions on X which contains the constant function 1 and separates

points. By the Stone Wierstrass Theorem, it is dense in C(X).
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We now define a linear functional L on A by

L(f) :=/R (@1, Tn)dpto {1y, ) (7.2.27)

where f and ¢ are related by (7.2.26). Any given function in A has many different representations of
the form (7.2.26) since one can always enlarge the set {¢1,...,t,} but then have ¢ depends trivially on
the inserted coordinates. Because of the consistency relation (7.2.24), the right hand side of (7.2.27) is
independent of the choice of the representative. Hence f — L(f) is a well-defined linear functional on A,
and evidently when f € A is given by (7.2.26), f(w) > 0 for all w if and only if ¢(z1,...,z,) > 0 for
all z1,...,2,. Therefore, since each p, g is a probability measure, L is positive on A, and for all f € A,
|L(f)| < || flloo- Thus L has a unique extension by continuity from the dense sub algebra A to all of C(X),
and evidently this extension, still denotes by L, is positive with ||L|| = 1.

We may now invoke the Riesz-Markov Theorem to assert the existence of a unique regular Borel
measure puy on X such that L(f) = / f(w)dpw (w) for all f € C(X).

The proof will be completed by slfowing that € is a Borel set in X, and that pw (2) = 1. Whether
w € X is continuous or not depends on the behavior of w at uncountably many values of t. The fact that
pw is regular, specifically inner regular, will be crucial for estimating the probabilities of sets depending
on the behavior of w at all of the uncountably many points in an interval [a, b] in terms of sets depending
on the behavior of w at only finitely many points in [a, b].

For €,6 > 0, define

pe,6) == sup / () dy = / 2s(y)dy (7.2.28)
0<t<é J|z|>e |z|>e

It is easy to see that as § | 0, p(e,d) = 0(d). In fact, p(e,d) = o(6™) for any n € N, and even that is not

all. However, all we shall use is that p(e,d) = o(d). The rest of the proof is broken into several steps.

Step 1. Let €, > 0. Let 0 <ty < --- < t, with t,, —t; < J. Define
A={w : |w(t1) —w(tj)] >€ forsomej=2,...,n}

We show in this step that puw (A4) < 2p(e,6/2), independent of n. This is based on the Markov property.
Define
B :={w : |w(t1) —w(ty)| > €/2}
and then for j = 2,...n, define
Cj={w : |wlt1) —w(t;)| >€ and |w(t1) —w(t;)| <e for <j—1}

and
Dj:=A{w : |w(t;) —w(ts)] >€/2} .
Note that if w € A, there is some least value of j such that |w(t1) — w(t;)| > €, and then, if w ¢ B,

j<n—1,and |w(t;) —w(t,)| > €/2. That is,

n—1

A:BU (CjﬂDj) .

j=2

Note that 1¢; can be written in the form 1¢,(w) = @(w(t1),...w(t;—1)) where ¢ is the characteristic

function of an open set on R7~!, and that 1¢, can be written in the form 1¢; (w) = ¢ (w(t;), w(t,)) where



167

¢ is the characteristic function of an open set on R2. Then by the Markov property (7.2.25) and the

definition of uy,
pw (C5 N Dj) = /R L elen e wia) (/Rz ¢($ja$n)dﬂa:j,{tntj}> dfto (e, t;} (7.2.29)

Since

[ vtwaddi ooy = [ @) < ple/2.)
R2 |z|>e/2

(7.2.29) yields pw(C; N D) p(€e/2,8)uw (C;).  Then since the sets C; are mutually disjoint,
pw (Uj—C5) < 1. Thus, pw (A) < pw (B) + p(e/2,0) < 2p(€/2,6).
Step 2. Fix €, > 0. Fix a < b € [0,00) with b — a < §. Define the set

<
<

E(a,b,e) :={w :|w(s) —w(t)| > 2¢ for some s,t € [a,b] }.

In this step we show that uw (F(a,b,€)) < 2p(e/2,0).
To do this, let S be a finite subset of [a, b], and define

E(a,b,€,5) :={w :|w(s) —w(t)| > 2¢ for some s,t€S5}.

Note that each E(a,b,€,S) is open, and E(a,b,¢€) is the union of all of the F(a,b,¢,S) as S ranges
over all finite subsets S of [a,b]. Since uw is regular, for all > 0, there is a compact set K C E(a, b, €)
such that pw (K) >C E(a,b,e) —n. Since the sets of the form E(a,b,¢,S), S C [a,b] finite, are an open
cover of K, there exists a finite sub-cover. But any finite union of sets of the form E(a,b, ¢, S) is again
of this form. Hence there exists a finite S,, C [a,b] such that pw (E(a,b,€,Sy,) > pw(E(a,b,€). It follows
that

uw (E(a,b,e) = sup{puw (E(a,b,e,S) : S C [a,b| finite } . (7.2.30)
Now for any finite set S = {t1,...,t,} if for some 1 < i < j < n, |w(t;) — w(t;)| > 2, then either
lw(t1) —w(t;)] > € or |w(t1) —w(t;)| > e. Hence the bound proved in Step 1 implies that pw (E(a,b,€,S) <
2p(e/2,0).
Step 3. Fix €,0 > 0 with 1/6 € N. Let k € N. Define

F(k,e,0) :={w : |w(t) —w(s)| >4e for some ¢t,s€[0,k]}.

In this step we show that uw (F(k,€,8)) < 2kp(e/20)/4.

To do this, write [0, k] as the union of &/ subintervals of the form [(j — 1)4,54], 5 = 1,...,k/0. If
w € F(k,e0), |w(t) —w(s)] > 4e for some s,t in the same or adjacent intervals. But that means that
|w(u) —w(v)| > 2¢ for some u, v belonging to one of these intervals. Thus, w belongs to E((j — 1)4, jd, €),
as defined in Step 2, for some j =1,...,k/d. This proves the desired bound.

Step 4. We complete the proof. A function w : [0, 00] — R is continuous with w(0) € R if and only if its
restriction to each [0, %], k& € N is uniformly continuous, meaning that for for all € > 0, there is a 6§ > 0

so that |w(s) — w(t)| < 4e whenever |s — t| < §. That is, w is continuous if and only if for each k € N, w

(U F(k,e.6)

€e>06>0

belongs to
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and F'(k,¢,0) is defined as in the previous step. Moreover, we can restrict ¢ and J to be the reciprocals

on positive integers so that the intersection and union are countable. Since each F(k,e€,d) is open, in X,

Q= UFkeo),

keENe>06>0

is a Borel set. It follows that Q¢ is a countable union of sets of the form ﬂ F(k,e,0) and
>0

Hw (ﬂ F(k?€76)> = %}BMW(F(kvea(s)) =0

6>0

by the estimate of Step 3 since p(e,d) = o(d). Thus Q is a Borel subset of X, and pw (2) = 1. We define

vy to be the restriction of pw to Q. O

7.3 Functions of Bounded Variation

7.3.1 The classical definition

The class of functions of bounded variation on an interval I C R was introduced by Camile Jordan in 1881
in an investigation of the point-wise convergence of Fourier Series. The notion turns out to be quite useful
in many contexts, and we shall give a modern development of the theory that readily admits generalization
to functions on open sets in R™, which is crucial for many modern applications. However, first we recall

the classical definition:

7.3.1 DEFINITION (Bounded variation). Let I be an interval in R. Let P; denote the set of all ordered
sets {xo,z1,...,2n} CI,n €N, withz;_1 < x; forall j =1,...,n. For any real valued function h defined

on I, define

n
TV (h; I) = sup Z |h(x;) — h(zj—1)| : {=o,z1,...,zn} €Pr p . (7.3.1)
j=1
A function h : I — R is of bounded variation on I in case TV (h;I) < co.
7.3.2 EXAMPLE. Let h be continuously differentiable and such that the derivative h' is integrable on
an interval (a,b). Then for any {xo,71,...,Tn} € Py,

z;
[ Wy
JL’j71

and hence TV (h; (a,b)) < ff |0/ (x)|dz. In fact, it is not hard to show that actually equality holds in this

inequality.

n

Z |h(x;) = h(x; 1) =

j=1

b
< [ Wa)s.

However, functions of bounded variation need not be continuous. Consider for example the function

f on R defined by
0 <0
h(z) =
1 2>0.
Evidently TV (h,R) = 1. More generally, any monotone non-decreasing function has bounded variation on

any interval on which it is bounded.
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We shall soon we that every bounded variation function on any interval [a,b] is the difference of two
monotone non-decreasing functions; this is the Jordan decomposition. The Jordan decomposition is closely
related to the Hahn-Saks decomposition of a signed Borel measure into its positive and negative parts.
This means that any function of bounded variation is measurable, and in fact, has left and right limits
(which need not be equal) at every point. In particular, functions of bounded variation are measurable. In
the modern development presented here, we shall deduce the Jordan Decomposition from the Hahn-Saks
decomposition, but we need to know from the outset that functions of bounded variation are at least

measurable, which we show after proving a simple lemma that will be useful again.

7.3.3 LEMMA. Let ¢ > 0. Let h be a real valued function defined on the interval [c,d] such that
TV (h,[c,d]) <e. Let h be the linear interpolation of h between ¢ and d, That is, for any A € [0,1] define
zx = (1= A)c+ M, and h(zy) = (1 — Nh(c) + Ah(d). Then |h(z) — h(z)| < € for all z € [c, d).

Proof. By hypothesis, for any z € (¢,d) |h(z) — h(c)| + |h(z) — h(d)| < TV (h,[c,d]) < e. By the convexity
of t — |t],

[h(zx) = (1= Mh(e) = A(d)] < (1 = N)[h(zx) = h(e)| + Alh(zx) = h(d)] <€ .
O

Then next simple observation to make is that if b < ¢ < d, TV (h; [b,d]) = TV (h; [b,c]) + TV (I; [c, d]).

This may be iterated in the obvious way.

7.3.4 LEMMA. Let m denote Lebesque measure on R. Let h be a real valued function defined on
the interval [c,d] such that TV (h,[c,d]) < oco. For each € > 0 there is a piecewise linear function h.
and a Borel set E C [c,d] with m(E) < e such that for all x € [c,d] N E°, |h(z) — he(z)| < € and
|h(z) — he(z)| < TV (h,[c,d]) for all € [a,d]. Moreover, TV (he, [c,d]) < TV (h,[c,d])

Proof. Choose k € N such that +7V (h;[c,d]) < e. Then choose n so large that k(d — ¢)/n < e. Divide
[c,d] into n closed intervals {I; : j=1,...,n} of equal length, with consecutive intervals overlapping at
endpoints only. Since ZTV(h; I;) =TV (h;[c,d)), TV (h; I;) > TV (h; I;) for at most k values of j. Let

j=1
E be the union of any such intervals, and then by the choice of n, m(E) < e. On each I; not included in

E, h is uniformly within e of its linear interpolation between the endpoints {x, ..., z,} of the intervals of
I; according to Lemma 7.3.3. Thus if we define h. be the linear interpolation of h at the endpoints of the
intervals I;, j =1,...,n, |h(z) — he(z)| < € for o ¢ E. Finally, it is clear that since h. is linear between

zj—1 and x; for each j =1,...,n,
TV (he) = |h(x; — h(zj—1)] < TV (h,[c,d]) .
j=1

O

7.3.5 Remark. Given any real valued function h on [c¢,d] such that TV (h,[c,d]) < oo Lemma 7.3.4
provides a sequence of continuous functions converging to h in measure on [c, d], and hence h is measurable

on [e,d].
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In what follows, (a,b) denotes any open interval in R. In particular, it is not excluded that either
a = —00, b= 00, or both. Let C}((a,b)) denote the set of continuously differentiable real-valued functions
with compact support in (a,b). Then Cl((a,b)) is dense in C.((a,b)). This is easily shown by convolving
f € C.((a,b)) by a smooth probability density supported in some sufficiently small interval [—¢,4]. In
fact, the same argument shows that C°((a,b)), the set of infinitely differentiable real-valued functions
with compact support in (a,b), is dense in C.((a,b)). For f € Cl((a,b)), let f denote the derivative of
f. Throughout the rest of this section, B denotes the Borel og-algebra of (a,b), and m denote Lebesgue
measure on (a,b), though we shall often write integrals with respect to Lebesgue measure using dx in
place of dm.

Now let h be a real-valued function on (a,b) with TV (h; (a,b)) < co. In particular, h is uniformly
bounded on (a,b), and so if both a and b are finite, h is integrable with respect to Lebesgue measure m
since it is also measurable by the remark following Lemma 7.3.4. If either ¢ = —oo or b = oo this need
not be the case, and then we further suppose that A is integrable. The next lemma leads to the modern

characterization of functions of bounded variation.

7.3.6 LEMMA. Let h be an integrable real-valued function on (a,b) with TV (h;(a,b)) < co. Let u
denote the finite Borel measure on (a,b) that is absolutely continuous with respect to Lebesgue measure on
(a,b) with Radon-Nikodym derivative h. That is, du = hdx. Define L € (Co((a,b)))” by

b
) :/ fdp . (7.3.2)
Then for all f € C}((a,b)),
LU < TV (Bs [a, B[ flloo - (7.3.3)

Proof. Let f € CL((a,b)), and let [c,d] contain the support of f. Let € > 0. By Lemma 7.3.4, there exists
a piecewise linear function h. on [¢,d] such that |h.(x) — h(x)| < TV (h,[c,d]) for all x € [e¢,d] and such
that |he(x) — h(z)| < € outside a set F with m(E) < e. Therefore,

b b
:/f@mmm+/fmmequ

and hence
b d
- [ F@hias] < [IF@IR - hel(@)de
SIUMA%@M—M@MMWHmLh—MWMI
S 6HfI”oo(d —c+ TV(h7 [07 d])) .

Then if {x,...,r,} denotes set in P 4 such that h. is the linear interpolation of i through {xo, ..., z,},
integration by parts yields

x)dx

—Z ) %1/ f@<wm2m% W) -

e i Ti-1

Combining the last two estimates, |L(f")| < TV (h;[a,b])]|flloo(1 + €(d — ¢) + TV (h,[c,d])). Since
€ > 0 is arbitrary, (7.3.3) is proved. O
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7.3.2 The modern characterization

The construction in the previous lemma show how integrable functions of bounded variation give rise to
a special class of linear functionals L on Cy((a,b)): Those for which there exists C' < oo such that for all
feci((a,b)

LU < Cllflls (7.3.4)
We show in this section that every such functional L Cy((a,b)) arises in this way: There is a unique
integrable function h of bounded variation on (a,b) such that L(f) = f(a,b) fhdx for all f € Co((a,b)).
In the course of proving this, we shall obtain further information about the class of functions of bounded

variation. We begin with a lemma that provides a crucial “generalized integration by parts” formula.

7.3.7 LEMMA. L € (Co((a,b)))" be such that for some C < oo and all all f € CL((a,b)), (7.5.4) is valid.

Then there exists a unique pair of signed Borel measures (1 and v on (a,b) such that for all f € Cy((a,b))
L(f) = fdp (7.3.5)
(asb)
and for all f € Ct((a,b))
L(f)=— fdv . (7.3.6)
Moreover, ||v|rv < C, and for all f € CL((a,b)),
fldu = — fdv . (7.3.7)
(a,b) (a,b)

Proof. Direct application of the Riesz Representation Theorem for (Co((a,b)))”, provides the signed mea-
sure p such that (7.3.5) is valid. Next, note that Cl((a,b)) is dense in Cy((a,b)) in the uniform norm,
and the functional f — L(f’) is linear since differentiation and L are both linear. It is bounded on the
dense subspace Cl((a,b)) by (7.3.4), and hence it extends by continuity to a linear functional M on all of
Co((a,b)) and ||[M||. < C. Now a second application of the Riesz Representation Theorem for (Co((a,b)))"
provides the signed measure v such that (7.3.6) is valid. Finally, (7.3.7) follows directly from (7.3.5) and
(7.3.6). O

7.3.8 EXAMPLE. Let h be a continuously differentiable function on (a,b) such that f; |h/ (z)|de = C <
oco. Define

L(f) = / h(z) f(2)da (7.3.8)

for all f € C.((a,b)). Then, integrating by parts, for f € C}((a,b)),
b b
L(f" :/ h(z)f'(z)dx = —/ f(x)h (z)dz (7.3.9)

b
and hence |L(f)| < C||f|lo so that (7.3.4) is satisfied with C' = / |W/ (z)|dx. Moreover, in this case the
measure v is evidently given by ‘

dv = —h/(z)dz .

We may regard —v as the “generalized derivative” of the bounded variation function h even when h is not
differentiable.
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7.3.9 LEMMA. Let L, C, i and v be as in Lemma 7.3.7. If b < oo, then the limits

lclg)l - c,u(c, b) =: h(b) and lclﬁll - a,u(c, b) =: h(a) (7.3.10)
exit and
1
B(@)l, [h(0)] < g—lullrv +C . (7.3.11)

Proof. Let f be a C' function that monotonically increases from 0 to 1 such that f’ has support contained
in [a’,b'] C (a,b). For each ¢ € (V/,b) define

foe) = f(x) r<c
l—z/(b—c) e<xz<b.

While f. does not belong to C!((a,b)), it is easy to approximate f. by a sequence {gex}ren of such
functions that converge uniformly to f. and whose derivatives converge at each x to

F@) -

—C

1(c,b) (.17)

and are uniformly bounded in absolute value by max{||f'|ls, (b — ¢)™'}. Applying (7.3.7) to g.x and
taking the limit k — co, we obtain

)f’du _ulled) fudv (7.3.12)

(a.b b—c (a,b)

By the Lebesgue Dominated Convergence Theorem,
lim fedv = fdv, (7.3.13)
1t J(a,b) (a.b)

and since the integral on the left hand side of (7.3.12) is independent of ¢, the first limit in (7.3.10) exists.
Moreover, for each ¢ and k, |L(g;, ;)| < C||gnkllcc = C, and hence for all c,

fldp— @ <C. (7.3.14)

(a;b)

Moreover, f can be chosen so that || f’||« is arbitrarily close to (b’ —a)~!, and we may take b’ arbitrarily

close to c. In particular, if a = —oco, we can choose f with ||f’||o is arbitrarily close to 0. Then (7.3.14)
yields
c,b _
D] < (e 0y ey +C
—c
and this proves (7.3.11) for h(b). The statements involving h(a) are valid by symmetry. O

7.3.10 LEMMA. Let L, C, u and v be as in Lemma 7.8.7. If b < oo let h(b) be defined as in (7.3.10),
and if b = oo, define h(b) = 0. Let f be any C*((a,b)) function with f'(x) > 0 for all z and lim,, f(z) =0
and || flloo = limggs f(x) < 00. Then

/ fwz—/ v+ h(®)[foo - (7.3.15)
(a,b) (a,b)
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Proof. Note that || f'|| 1) = || ]| Lo (m)- Since f(z) = [ f'(y)dy, making a change in f’ that has a small
L'(m) norm results in a change in f that is correspondingly small in the uniform norm. We may therefore
suppose without loss of generality that f’ has compact support in [a’,b'] C (a,b). By homogeneity, we
may assume that || f||ec = 1. In case b < co, we may then proceed as in the last lemma, and then (7.3.10),
(7.3.12) and (7.3.13) yield (7.3.15).

In case b = oo, pick € > 0. Since v is a finite Radon measure, by increasing b’ as necessary, we
may suppose that v((0/,b)) < e. Let g € C}((a,b)) be such that ¢'(z) = f'(x) for x < b, and such that
lg'(z)| < € for & > b/, which is easy to do since (b',b) = (b, 00). Define g(z) = [ ¢'(y)dy, and note that
for z <V, g(x) = f(x), and we may arrange that ||g — f|lcc = ||f|lcc- Then by (7.3.7),

fldp = / g’du—/ g'du
(a,b) (a,b) (b',b)
= — / gdv — / g'dp
(a,b) (b',b)

S ka+/‘ ﬁ—gmu—/' gy
(a,b) (b',b) (b',b)

/ g'dv
(b',0)

fldp + / fdv
(a,b) a

,b

Now note that < || flleov (b, b) and < ¢|lv||Ty. Thus, recalling that ||v| v <

/ (f —g)dv
(v/,b)

c,
S e(lflle +C) -

Since € is arbitrary, the identity (7.3.15) is proved. O

7.3.11 THEOREM. L € (Co((a,b)))" be such that for some C < oo and all all g € CL((a,b)), (7.5.4) is
valid. Let 1 and v be the unique signed Borel measures on (a,b) such that (7.3.5) and (7.5.6) are valid
for all f € Co((a,b) and all f € CL((a,b) respectively.

Then p is absolutely continuous with respect to Lebesque measure. Let h denote the Radon-Nikodymn
derivative of p with respect to Lebesgue measure so that by the Lebesque Differentiation Theorem, at almost
every x,

h(z) = liin M;(f’xy) . (7.3.16)

Then there is a preferred representative of the a.e. equivalence class of h such that (7.8.16) is valid for

every x € (a,b), and with this version of h,
TV (h; (a,b)) < C (7.3.17)

and for alla <z <y <b,
h(z) — h(y) = v((z.y)) - (7.318)

In particular, h is right continuous and has a left limit at each point x € (a,b).

Before giving the proof, we recall a basic measure theoretic result that we shall use. Let A denote
the half-open interval algebra which consists of all finite disjoint unions of sets of the form (c,d] with
a < c¢<d<bor of the form (¢,b) where a < ¢ < b. By a standard application of the Monotone Class
Theorem, for every positive Radon measure A on R and every Borel set E, for each € > 0, there is a set
A € A such that A(FAA) < e.
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Proof. Let i = py — p— be the unique decomposition of p into a different of mutually singular finite
(positive) Borel measures, and let |u| = py + p—, and likewise define v; and v_ in terms of v. Let m
denote Lebesgue measure and note that |u| +m is a Radon measure.

Let E be a Borel set such that u_(E) = 0 and py (E€) = 0. Then for any € > 0, there exists A, € A
such that

(|| + m)(FAAL) < €.

Now let F' be any Borel subset of E and suppose that u4 (F) > 0. For € > 0, let B € A be such that
w(FAB) <€ Thensince F C E, 1pls, = (1p —1p)la, + 1p(la. — 1g) + 1p. It follows that

(gl +m)(BNA. — F) < 2e. (7.3.19)

n
Since BN A, € A, it can be written in as BN A, = Z(Cj7dj]’ where ¢; < dy < cg < --- < d,. At the cost
j—1
of another €, we may assume that ¢; > —oo and d,, < oo, which is automatic in case a and b are finite.

Now for j =1,...,n choose disjoint open intervals U; such that [¢;,d;] C U; and such that

n

Dl +m)(U;) < (lul +m)(BN Ao + e (7.3.20)

j=1
which is possible by the outer regularity of || + m. For each j, choose [c;j,d;] < g; < Uj, and define
g:= -, 9;- Define f(z) = /a > gi(y)dy.
Then =
[ flloo < im(Uj) <e+m(BNA) < 3e+m(F). (7.3.21)
j=1

Also, with U := N}_, Uy,

Tz (B0 A) - (0)

a,b
By (7.3.20), u—(U) < p—_(Ac) + € < 2e. By (7.3.19), pr (BN A) > py(F) —e. Altogether, using
Lemma 7.3.10 together with the positivity of f,

py(F) < 3e+ fldp

< 3et fdv_ 4+ h(D)]| flloo
(a7b)

< 3e+ (C+hb)|fllso -

Combining this with (7.3.11) and (7.3.21), we have
pi (F) < 3e+ (2C + (b—a) 1)(3e + m(F)) .

Since € > 0 is arbitrary, py(F) < (2C + (b — a)7!||p|lrv)m(F). and then since F is arbitrary, this
proves that p4 is absolutely continuous with respect to Lebesgue measure, and then using the Lebesgue
Differentiation Theorem that the Radon-Nikodymn derivative h satisfies ||h]|co < 2C + (b —a) ™| u||Tv-
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For the final part, given any a < x < y < b, for n sufficiently large that and y — 1/n > z, define the

“ramp function” f,, approximation of 1, ,) by

n(t — x) r<t<z+1/n
n(t) =41 r4+1/n<t<y
1-n(t—-y) y<t<y+1/n

and f(t) = 0 for all other ¢. Notice that lim, o fn(t) = 1(5,)(t) for all £. Though f is not in CZ((a, b)),
a simple approximation argument such as we made in the proof of Lemma 7.3.9 shows that (7.3.7) is

nonetheless valid and therefore

nu((z — 1/n,2)) — np((y — 1/, ) / Fudv

Takmg the limit n — oo, we obtain h(y)—h(z) = v((z,y]). It now follows that when a < xg < x1 - @, < b,

Z|h xj) = h(xj—1 \—Z| (zj-1,25]) < [lv[|lTv- O

7.3.12 COROLLARY. Let h be integrable on (a,b) and suppose that TV (h; (a,b)) < co. Then in the a.e.
equivalence class of h there is a preferred representative, also denoted by h, such that h is right continuous
and has a left limit at each point x € (a,b). Moreover, h is the difference of two monotone non-decreasing

right continuous functions h = hy — h_.

Proof. The first part is a direct consequence of Lemma 7.3.6 and Theorem 7.3.11. Let v be the signed
measure associated to h as in Theorem 7.3.11. Let v = nu; — v_ be the Hahn-Saks decomposition of v
into its positive and negative parts. Then since for all a < = < b, h(z) — h(a) = v_((a,2]) — v+ ((a, 2]).
Define hy(x) = h(a) + v_((a, z]) and define h_(z) = v4((a, z]). O

7.3.3 The Banach space BV ((a,b))

7.3.13 DEFINITION (BV((a,b))). The real normed space BV ((a,b)), called the space of BV functions
on (a,b) is the vector space of real integrable functions h on (a,b) such that TV (h;(a,b)) < oco. For
h € BV((a,b)), let u = hdz, so that by Lemma 7.3.6 and Lemma ??, there is a signed Borel measure v
with ||v||rv = TV (h; (a,b)) < oo, and such that (7.3.7) is valid for all f € C1((a,b)). Then we define the
BV norm of h as

[hllsy = l[AllLrm) + Iwlley = lpllvv + [[v]lvv (7.3.22)

By the uniqueness in Lemma 7.3.7 and the linearity of (7.3.7), the map h — v is linear, and so it is
evident that || - ||y is a norm on BV ((a,b)). To see that BV ((a,b)) is complete in this norm, Let {h, }nen
be a Cauchy sequence in BV ((a,b)). Then {h,}nen is also a Cauchy sequence in L!((a,b), B,m) and so
there exist h € L*((a,b), B, m) such that lim,, o ||hn, — k|11 (m) = 0. For each n € N, let i, be the signed

/ f'hydz = — / fdv,,
(a,b) (a,b)

Borel measures such that

for all f € Co((a,b)).
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Since the space of signed Borel measures on Cy((a,b)) is, like every dual space, complete, and since
by the definition of the BV norm {v, }nen is a Cauchy sequence in the total variation norm, there exists

a signed measure v such that lim, s ||n — v||Tv = 0. Tt follows that

f'hdx = — fdv
(a,b) (a,b)

for all f € Co((a,b)), and hence h € BV ((a,b)) and lim,,_,o0 ||hn — by = 0.
There is in fact a better way to see that BV ((a,b)) is a Banach space: It turns out the BV ((a, b)) is
the dual of another Banach space. Let Y be the Banach space of of all pairs (f1, f2) with f1, fo € Co((a, b))

and with the norm

1(f1s f2)lly = I filloe + 1 f2loo -

The dual space Y* is the space of all pairs (p1, 12) of signed Borel measures on (a,b) with the norm

(11, p2)lly = llpallev + lp2llTv -

Now let Z be closure of the subspace of Y consisting on (fi, f2) with fi, fo € CL((a,b)) and f; = —f3.
The annihilator of Z is the subspace of Y* consisting of pairs (u, ) such that

fldu = fldv (7.3.23)
)

(a,b (a,b)

for all f € Cl((a,b)). By Theorem ??, (u,v) belongs to the annihilator of Z precisely when p = hdz
where h € BV ((a,b)), and then p is the unique signed measure associated to h such (7.3.23) is valid for
all f € Cl((a,b)), and in this case

Ay = [lpllrv + [[vlTv = (s v)]ly -

Since Z is a closed subspace of a Banach space Y, the annihilator of Z in Y* is the dual of Y/Z by a general
result in the theory of Banach spaces. Therefore, BV ((a,b)) is the dual of Y/Z. By the Banach-Aloglu
Theorem, the unit closed ball in BV ((a,b)) is compact in the weak-* topology induced on BV ((a,b)) by
Y/Z.

The space BV ((a, b)) is not separable: For each y € (a,b), let h, be the step function with h,(z) =1
for y > 2 and h,(z) = 0 otherwise. Then for y # z, ||hy, — h.|Bv > 2.



