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Chapter 1

Essential Results form Topology

1.1 Introduction

The basic strategy in real analysis is approximation. In particular, one often tries to approximate general

elements of some infinite dimensional vector space of functions by elements of a subspace consisting of well-

behaved functions, or one tries to construct solutions to equations as limits of solutions to “approximate”

equations. The basic framework for making mathematical sense of “approximation” is provided by the

theory of metric spaces, and more generally the theory of topological spaces. Methods of approximation

are especially effective in a metric space that is complete and rich in compact sets, as we explain in this

introductory chapter.

In the next chapter, we study the Lebesgue theory of integration. A fundamental advantage of it

over previous integration theories is that it permits the construction of many complete metric spaces in

which compact sets can be concretely described. This provides an extremely useful framework for solving

a wide variety of equations. First, we introduce the fundamental topological theory, and illustrate it with

examples that do not require the Lebesgue theory of integration.

1.2 Metric Spaces

1.2.1 DEFINITION (Metric Space). A metric space (X, d) consists of a set X and a function d :

X ×X → [0,∞) satisfying:

(1) d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0 ⇐⇒ x = y.

(2) d(x, y) = d(y, x) for all x, y ∈ X.

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

The inequality in (3) is called the triangle inequality, and a function d satisfying (1), (2) and (3) is

called a metric on X.

1.2.2 EXAMPLE. For real numbers a < b, let C([a, b],R) denote the set of of continuous real-valued

c© 2017 by the author.
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functions on [a, b]. Given any two f, g ∈ C([a, b],R). Define

d∞(f, g) = sup
t∈[a,b]

|f(t)− g(t)| .

It is easy to check that d∞ is a metric on C([a, b],R), called the uniform metric. Since C([a, b],R) has

an obvious vector space structure, it is our first example of a metric space that is also a vector space of

functions.

1.2.1 Continuity in metric spaces

A function f from X to Y is continuous if a sufficiently small change in the input results in a small change

in the output. In other words, f(x) will be a close approximation of f(x0), if x is a sufficiently close

approximation of x0. Here is the precise version of this in the metric space setting:

1.2.3 DEFINITION (Continuous functions from one metric space to another). Let (X, dX) and (Y, dY )

be two metric spaces. Let f be a function from X to Y . Then f is continuous at x0 ∈ X in case for every

ε > 0, there is a δε > 0 such that

dX(x, x0) < δε ⇒ dY (f(x), f(x0)) < ε . (1.2.1)

The function f is continuous in case it is continuous at each x0 ∈ X.

1.2.4 THEOREM (Continuity and sequences). Let (X, dX) and (Y, dY ) be two metric spaces. Let f be

a function from X to Y . Then f is continuous at x0 ∈ X if and only if for every sequence {xk} in X

lim
k→∞

xk = x0 ⇒ lim
k→∞

f(xk) = f(x0) . (1.2.2)

Proof. Suppose that f is continuous, and that limk→∞ xk = x0. Pick any ε > 0, and let δε be as in (1.2.1).

Choose N so large that for all k > N , d(xk, x0) < δε. Then, for all k > N , d(f(x), f(x0)) < ε. Since ε is

arbitrary, this shows that limk→∞ f(xk) = f(x0).

Next suppose that f is not continuous at x0. Then there exists some ε > 0 so that for every δ > 0,

there is at least one point x satisfying dX(x, x0) < δ such that dY (f(x), f(x0)) > ε. Define a sequence

{xk} as follows: For each k, choose xk so that dX(xk, x0) < 1/k such that dY (f(xk), f(x0)) > ε. Then

limk→∞ dX(xk, x0) = 0, but it is not the case that limk→∞ f(xk) = f(x0). Thus, when f is not continuous

at x0, (2.1.5) does not hold true. Hence, whenever (2.1.5) does hold true, it must be the case that f is

continuous at x0.

There is another characterization of continuity involving the notion of open sets, which we now define:

1.2.5 DEFINITION (Open sets in metric spaces). Let X be a metric space with metric d. Given a

number r > 0, and a point x ∈ X, let Br(x) be defined by

Br(x) = { y ∈ X : d(y, x) < r } .

This set is called the open ball of radius r about x.

A subset U of X is open in case either:
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(1) It is the empty set ∅, or else

(2) For each x ∈ U , there is an r > 0, depending on x, such that

Br(x) ⊂ U .

It is possible, and as we shall see, useful to characterize the continuity of functions between two metric

spaces simply in terms of open sets, without explicit reference to the the specific metrics themselves.

1.2.6 THEOREM (Continuity and open sets). Let X and Y be metric spaces with metrics dX and dY

respectively. Let f be a function from X to Y . Then f is continuous if and only if for every open set U

in Y , f−1(U) is open in X.

Proof. Suppose that f is continuous, and let U be an open set in Y . If f−1(U) = ∅, then f−1(U) is open

by (1). Otherwise, if f−1(U) 6= ∅, consider any x ∈ f−1(U). Then f(x) ∈ U , and since U is open, there

exists a ε > 0 such that Bε(f(x)) ⊂ U . Then, since f is continuous at x0, there is a δ > 0 so that

dX(x̃, x) < δ ⇒ dY (f(x̃), f(x)) < ε .

Hence

f(Bδ(x)) ⊂ Bε(f(x)) ⊂ U .

But this means that

Bδ(x) ⊂ f−1(U) .

Since x was any point in f−1(U), we have shown that f−1(U) contains an open ball about each of its

members, and hence is open.

Conversely, suppose that f has the property that whenever U is open in Y , f−1(U) is open in X. Fix

any x ∈ X and any ε > 0. f−1(Bε(f(x))) is open and contains x. Therefore, there is some δε > 0 such

that

Bδε(x) ⊂ f−1(Bε(f(x))) .

But then

f(Bδε(x)) ⊂ Bε(f(x)) ,

which is just another way to write (1.2.1). Since ε is arbitrary, f is continuous at x. Since x is arbitrary,

f is continuous.

1.2.2 Complete metric spaces

The metric space (C([a, b],R), d∞) has another feature that is desirable for analysis: It is complete.

1.2.7 DEFINITION (Complete metric space). A metric space (X, d) is complete in case whenever

{xk}k∈N is a Cauchy sequence in X, there exists an x ∈ X such that

lim
k→∞

d(xk, x) = 0 .

1.2.8 THEOREM. (C([a, b],R), d∞) is complete.
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Proof. Suppose that {fk}k∈N is a Cauchy sequence in (C([a, b],R), d∞). Then for any ε > 0, there is an

Nε so that

k, ` ≥ Nε ⇒ d∞(fk, f`) ≤ ε .

Fix any t ∈ [a, b], Since |fk(t)− f`(t)| ≤ d∞(fk, f`),

k, ` ≥ Nε → |fk(t)− f`(t)| ≤ ε , (1.2.3)

and hence {fk(t)} is a Cauchy sequence in R. By the completeness of the real numbers, it has a limit

which we denote by f(t). This defines a real valued function f on [a, b], and it remains to show that

f ∈ C([a, b],R), and that limk→∞ d∞(fk, f) = 0.

By the definition of f(t), |fk(t)− f(t)| = lim`→∞ |fk(t)− f`(t)|. For any s, t ∈ [0, 1],

|f(t)− f(s)| ≤ |f(t)− fk(t)|+ |fk(t)− fk(s)|+ |fk(s)− f(s)| ,

and so

k ≥ Nε → |fk(t)− f(t)| ≤ ε . (1.2.4)

For k = Nε, this becomes

|f(t)− f(s)| ≤ |fNε(t)− fNε(s)|+ 2ε .

Since fNε is continuous, there is a δ > 0 so that |s− t| ≤ δ ⇒ |fNε(s)− fNε(t)| ≤ ε. Therefore,

|s− t| ≤ δ ⇒ |f(s)− f(t)| ≤ 3ε .

Since ε > 0 is arbitrary, this proves that f ∈ C([a, b],R). Finally, since (1.2.4) is valid uniformly in t,

lim
k→∞

dk(fk, f) = 0 .

The next theorem provides an example of the importance of completeness.

1.2.9 THEOREM (Banach Contraction Mapping Theorem). Let (X, d) be a complete metric space. Let

Φ : X → X have the property that for some λ < 1, d(Φ(x),Φ(y)) ≤ λd(x, y) for all x, y ∈ X. Then there

is a unique x0 ∈ X such that

x0 = Φ(x0) . (1.2.5)

Moreover, for all x ∈ X, let the sequence {xk}k∈N be defined by x1 = x and for xk+1 = Φ(xk). Then

lim
k→∞

d(x0, xk) = 0 . (1.2.6)

Proof. Pick any x ∈ X, and construct the sequence {xk}k∈N as described in the theorem. Define R :=

d(x2, x1) = d(Φ(x), x)). By the hypothesis

d(x3, x2) = d(Φ(x2),Φ(x1)) ≤ λd(x2, x1) = λR .

Then by a simple induction,

d(xk+2, xk+1) ≤ λkR
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for all k ∈ N. By the triangle inequality, for all ` > k,

d(x`, xk) ≤
`−k−1∑
j=0

d(xk+j+1, xk+j ≤
∞∑
j=0

λk+j−1R =
λk−1

1− λ
R .

Since limk→∞ λk = 0, this proves that {xk}k∈N is a Cauchy sequence. Since (X, d) is complete, this

sequence has a limit x0. Clearly

Φ(x0) = lim
k→∞

Φ(xk) = lim
k→∞

xk+1 = x0

so that x0 is a fixed point of Φ. Finally if y0 is any fixed point of Φ, then

d(x0, y0) = d(Φ(x0),Φ(y0)) ≤ λd(x0, y0) .

The only t ∈ [0,∞) satisfying t ≤ λt is t = 0. By property (1) in the definition of a metric, this implies

that y0 = x0 which proves the uniqueness.

1.2.10 EXAMPLE. The previous theorem is the basis of the basic existence and uniqueness theorem

for ordinary differential equations; we now sketch the main points in the simplest case. Let v(x, t) be a

continuous function of R× R such that for some L <∞,

|v(x, t)− v(y, t)| ≤ L|x− y|

for all x, y, t. For x(·) ∈ C([0, (2L)−1],R) and x0 ∈ R define

Φ(x(·))(t) = x0 +

∫ t

0

v(x(s), s)ds .

Note that x(·) is a fixed point of Φ is and only if for all t,

x(t) = x0 +

∫ t

0

v(x(s), s)ds .

Suppose that such a fixed point exists. Then, since the right hand side is continuously differentiable, x(t)

is continuously differentiable, and differentiating both sides,

x′(t) = v(x(t), t) (1.2.7)

for all t, and moreover, x(0) = x0. Conversely, any solution of (1.2.7) with x(0) = x0 is a fixed point of

Φ. Hence, proving existence and uniqueness of fixed points of Φ is tantamount to proving the existence

and uniqueness of solutions of the ordinary differential equation (1.2.7), at least on this time interval.

To apply the Banach Contraction Mapping Theorem, consider the complete metric space C([0, (2L)−1],R)

equipped with the d∞ metric.

Let x(·), y(·) ∈ C([0, (2L)−1],R). Then for all 0 ≤ t ≤ (2L)−1,

|Φ(x(·))(t)− Φ(y(·))(t)| =

∣∣∣∣∫ t

0

[v(x(t), t)− v(y(t), t)]dt

∣∣∣∣
≤

∫ t

0

|v(x(t), t)− v(y(t), t)]|dt

≤ L

∫ t

0

|x(t)− y(t)|dt

≤ Lt sup
0≤s≤t

|x(t)− y(t)| ≤ 1

2
d∞(x(·), y(·))
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Thus,

d∞(Φ(x(·)),Φ(y(·))) ≤ 1

2
d∞(x(·), y(·)) ,

and the Banach Contraction Mapping Theorem yields the existence of a unique fixed point of Φ. This

yields the existence and uniqueness of a solution to (1.2.7) on the interval [0, (2L)−1]. The basic idea

explained here can be used to prove much more.

We have just explained how completeness can be applied to solve equations. We shall do the same

for compactness after developing more of the theory.

1.2.3 Compactness in metric spaces

Alongside completeness, the other fundamental concept pertaining to approximation in analysis is that of

compactness:

1.2.11 DEFINITION (Sequentially compact subset of metric space). Let (X, d) be a metric space,

and A ⊂ X. Then A is sequentially compact in case every sequence {xk}k∈N in A contains a subsequence

converging to an element of A. A metric space (X, d) is sequentially compact in case X itself is sequentially

compact.

Note that if (X, d) is a metric space, and A ⊂ X, and dA denotes the restriction of d to A × A, the

(A, dA) is itself a metric space, and A is sequentially compact subset of X if an only if (A, dA) is a compact

metric space. Thus, characterizing compact subsets of a metric space reduces to a question about whether

or not a metric spaces is compact.

Later in this chapter we shall prove the Arzela-Ascoli Theorem which characterizes compact sets in

(C([a, b]), d∞), and we shall give an example of the application of this to solving equations. There is

an equivalent formulation of sequential compactness in a metric space that will be useful in proving the

Arzela-Ascoli Theorem and other theorems characterizing compact sets.

1.2.12 DEFINITION (Totally bounded). A metric space (X, d) is totally bounded if and only if for

every ε > 0, there is a finite set Uε consisting of finitely many open balls of radius ε; i.e.,

Uε = {Bε(x1), . . . , Bε(xnε)} ,

that covers X; i.e, X =
⋃nε
j=1Bε(xj).

1.2.13 THEOREM (Sequential compactness and total boundedness). A metric space (X, d) is sequen-

tially compact if and only if it is complete and totally bounded.

Proof. Suppose that (X, d) is not totally bounded. We shall show that then it is not sequentially compact.

To do this, we construct a sequence that has no convergent subsequence. By hypothesis, for some ε > 0,

there does not exist any finite cover of X by open balls of radius ε. Thus given any set {x1, . . . , xn} of X,⋃nε
j=1Bε(xj) 6= X, and so we can select xn+1 so that

d(xn+1, xj) ≥ ε , for all j = 1, . . . , n .

Thus, starting from an arbitrary choice of x1, using a simple induction we can construct an infinite

sequence {xk}k∈N such that

d(xk, x`) ≥ ε
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for all k 6= `. Clearly, such a sequence has no convergent subsequence.

Next, suppose that (X, d) is totally bounded and complete. Let {xk}k∈N be any infinite sequence in

X. For each m ∈ N, there exists a set {B1/m(x1), . . . B1/m(xnm)} of open balls of radius 1/m such that

X =

n1/m⋃
j=1

Bε(xj) .

By the pigeon-hole principle, at least one of these balls contains infinitely many elements of any infinite

sequence in X.

By what we have explained above, there exists an infinite subsequence {x(1)
k }k∈N of {xk}k∈N such

that all elements of this subsequence lie in some open ball of radius 1. Next, for the same reason, exists

an infinite subsequence {x(2)
k }k∈N of {x(1)

k }k∈N such that all elements of this subsequence lie in some open

ball of radius 1/2. Continuing the obvious induction, we obtain a sequence {x(j)
k }k∈N of sequences such

that each {x(j+1)
k }k∈N is a subsequence of {x(j)

k }k∈N, and all elements in {x(j)
k }k∈N lie in some open ball

of radius 1/j.

Now we use Cantor’s “diagonal sequence” construction: define yj = x
(j)
j . Then {yj}j∈N is a subse-

quence of {xk}k∈N, and for all m,

j, k ≥ m⇒ d(yj , yk) ≤ 1/m .

Thus, {yk}k∈N is a Cauchy sequence. Since (X, d) is complete, it is also convergent. We have thus shown

the existence of a convergent subsequence of an arbitrary sequence of X.

Many important theorems can be proved by using the fact that real valued continuous functions on

a sequentially compact metric space have maxima and minima. That is, if f is a real valued continuous

function on a sequentially compact metric space, the there exist x0 and x1 such that

f(x0) ≤ f(x) ≤ f(x1)

for all x ∈ X.

While most often in the chapters that follow, we shall be working with the notions of continuity and

compactness in a metric space setting, this is not always possible, and it is not always convenient even

when it is possible. It is advantageous to develop these notions in a more general setting, that of topological

spaces. We now introduce this more general setting.

1.3 Topological spaces

Since by Theorem 1.2.6 we can characterize continuous functions from one metric space to another in

terms of open sets, without explicitly mentioning either metric at all, it is sometimes useful to “strip

away” the metric structure, and only refer to the open sets.

1.3.1 DEFINITION (Topological Spaces, Hausdorff Topological Spaces). Let X be any set, and let O
be any collection of sets in X satisfying:

(1) The empty set ∅ belongs to O, as does X itself.
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(2) The union of any arbitrary set of sets in O belongs to O.

(3) The intersection of any finite set of sets in O belongs to O.

In this case, O is said to be a topology on X, and the sets belonging to O are called open sets in X

(for the topology in question). A subset A of X is closed in case its complement, Ac is open.

The pair (X,O) is said to be a topological space. It is a Hausdorff if whenever x, y are any two distinct

elements in X, there exists disjoint open sets sets U and V with x ∈ U and y ∈ V .

Note that by De Morgan’s laws, the intersection of any arbitrary set of closed sets in X is itself closed.

1.3.2 EXAMPLE. It is left as an easy exercise to show that if X is any metric space, and O is the

collection of all open sets in X, as defined above in terms of open balls, O does indeed constitute a topology

on X.

If (X, d) is any metric space and x, y are distinct in X, then r := d(x, y) > 0. If w ∈ Br/3(x) and

z ∈ Br/3(y), then

r = d(x, y) ≤ d(x,w) + d(w, z) + d(z, y) < d(w, z) + 2r/3 ,

so that d(w, z) > r/3, In particular, Br/3(x) ∩ Br/3(y) = ∅. Since Br/3(x) and Br/3(y) are open sets

containing x and y respectively, this proves that every metric space is Hausdorff.

Not every topology is Hausdorff. If X is an set, the trivial topology on X is given by O = {∅, X}.
This is evidently a topology, and when X contains more than a single element, it cannot be Hausdorff.

1.3.3 EXAMPLE (Relative topology on a subset). Let (X,O) be a topological space. Let A be any subset

of X. The relative topology on A induced by O is denoted by OA and is given by

OA = { U ∩A : U ∈ O } .

It is readily checked that this is a topology.

1.3.4 DEFINITION (Metrizable Topology). Let (X,O) be a topological space. The topology O is

metrizable if there exists some metric d on X ×X such that the set of open sets for this metric is exactly

O.

The remarks in Example 1.3.2 show that non-Hausdorff topologies are never metrizable. We shall be

(almost) exclusively concerned with Hausdorff topologies, but as we shall see, there are useful Hausdorff

topologies that are not metrizable.

The next definitions introduces some more useful terminology

1.3.5 DEFINITION (Interior, closure and neighborhoods). Let (X,O) be a topological space, and A a

subset of X.The interior of A, Ao, is the union of all of the open sets contained in A. The closure of A, A,

is the intersection of all of the closed sets containing A. Finally for any x ∈ X, the set Nx of neighborhoods

of x consists of all sets B such that x ∈ Bo.

1.3.1 Continuity in topological spaces

1.3.6 DEFINITION (Continuous functions between topological spaces). Let (X,OX) and (Y,OY ) be

two topological spaces. A function f from X to Y is continuous at x ∈ X in case for every neighborhood

V of f(x), there is a neighborhood U of x such that f(U) ⊂ V .

A function f from X to Y is continuous whenever U is open in Y , f−1(U) is open in X.
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It is easy to see that f : X → Y is continuous if and only if it is continuous at each x ∈ X.

1.3.7 Remark. By Example 1.3.2 and by Theorem 1.2.6, the definition of continuity that we make next

is consistent with our existing notion of continuity in the metric space setting.

We now turn to the notion of approximation in topological spaces. The following definition is the

starting point.

1.3.8 DEFINITION (Limit points in a topological space). Let (X,OX) be a topological space. If A is

any set in X, a point x ∈ X is a limit point of X in case every for every open set U that contains x,

A ∩ (U\{x}) 6= ∅ .

That is, every open set U that contains x also contains some point in A other than x. Note that x

itself may or may not be in A.

Note that if (X,OX) is Hausdorff, and x is a limit point of A ⊂ X, with x /∈ A, then not only is

A∩U non-empty for every neighborhood U of x: A∩U must contain infinitely many points. To see this,

suppose y ∈ A ∩ U . Let Vx and Vy be disjoint open sets containing x and y respectively. Then Vx ∩ U
is another neighborhood of x, contained in U , so A ∩ (Vx ∩ U) 6= ∅. Since A ∩ (Vx ∩ U) ⊂ A ∩ U , and

is missing at least y. Repeating this procedure, it is clear that we can repeatedly remove elements from

A ∩ U without ever emptying it, and so it must contain infinitely many points.

1.3.9 DEFINITION (convergent sequence). Let (X,O) be a topological space. Let {xk} be a sequence

of elements of X. Then {xk}k∈N is convergent to x in case every open set U containing x also contains

all but finitely many terms in the sequence {xk}k∈N.

Note the differences between the notions of limit point the notion of the limit of a sequence. One

difference is that a sequence {xk}k∈N is a function from N to X, though it is common practice to identify

the sequence with its range, which is a subset of X. Apart from this, there is the essential difference

between “infinitely many” and “all but finitely many”.

In particular, in a Hausdorff space, a sequence can have at most one limit, but (identified with its

range, and considered as a set), but it may have more than one limit point, since x is a limit point of

{xn}n∈N if and only if every open set U containing x also infinitely many terms in the sequence {xk},
while limn→∞ xn = x if and only if every neighborhood U of x contains all but finitely many terms in the

sequence.

In a metric space, there is of course a characterization of limit points in terms of sequences; x is a

limit point of A if and only if there is a sequence {xn}n∈N of elements in A such that limn→∞ xkn = x.

1.3.10 EXAMPLE (The right order topology on R). Let Or be the set of all subsets of R of the form

(a,∞), a ∈ R, together with ∅ and R. It is readily checked that this is a topology, called the right order

topology. Conisder the function from R to R defined by

f(x) :=

1 x > 0

0 x ≤ 0 .
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Then

f−1((a,∞)) =


∅ a ≥ 1

(0,∞) 0 ≤ a < 1

R a < 0 .

Therefore, if we equip the range with the right order topology and the domain with the usual topology,

f is conitnuous, though it is not continuous if both the domain and range are equipped with the usual

topology.

Let (X.O) be a topological space. A functions that is continuous from (X.O) to (R,Or) is called lower

semicontinuous. The left order topology and upper semicontinuous functions are defined in the analogous

way using the sets (−∞, b).

We are now ready for the theorem that justifies the terminology “closed”:

1.3.11 THEOREM (Closed sets and limit points). Let (X,O) be any topological space. A subset A of

X is closed if and only if A contains all of its limit points.

Proof. Suppose that A is closed, and x ∈ Ac. Since Ac is open, there is an open set U containing x that

has an empty intersection with A. Thus, x is not a limit point of A. Since x was an arbitrary point outside

A, A must contain all of its limit points.

On the other hand, suppose that A contains all of its limit points. We must show that A is closed,

or, what is the same thing, that Ac is open. Consider any point x ∈ Ac. Since it is not a limit point of x,

there is an open set Ux containing x that has empty intersection with A. For each x ∈ Ac, chose such a

Ux. But then, since Ux contains x,

Ac ⊂
⋃
x∈Ac

Ux

On the other hand, since each Ux ⊂ Ac, ⋃
x∈Ac

Ux ⊂ Ac

Thus, A =
⋃
x∈Ac

Ux, and by (2) in the definition of topological spaces,
⋃
x∈Ac

Ux is open.

We close this subsection with one more definition:

1.3.12 DEFINITION (Density). Let (X,O) be a topological space. Let A ⊂ B ⊂ X. Then A is dense

in B in case the closure of A contains B.

By Theorem 1.3.11, A is dense in B if and only if every point in B is a limit point in A; i.e, if every

point in B can be approximated arbitrarily well by points in A.

1.3.2 Compactness in topological spaces

1.3.13 DEFINITION (Compact Sets). Let (X,OX) be a topological space. A subset K is called compact

in X in case for open cover U of K; that is, for every collection U of open sets such that

K ⊂
⋃
u∈U

U ,
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there is a finite subset G of U that also covers K:

K ⊂
⋃
u∈G

U .

G is called a finite subcover of A. The topological space (X,O) is called compact in case X itself is

compact.

1.3.14 THEOREM. Let (X,O) be any compact topological space. Then every closed subset K of X is

compact. Conversely, if X is Hausdorff, every compact subset of X is closed.

Proof. Let U be any open cover of K. Then U ∪ {Kc} is an open cover of X. Thus, there exists a finite

set of the sets in sets in U ∪ {Kc} that covers all of X, and Kc is not needed to cover K. Hence K is

compact.

Conversely, suppose K is compact and (X,O) is Hausdorff. Suppose that y /∈ K, but that y is a limit

point of K. For each x ∈ K, there exist open sets Ux and Vx such that Ux ∩ Vx = ∅, x ∈ Ux and y ∈ Vx.

Then {Ux : x ∈ K} is an open cover of K, so there exists a finite subcover {Ux1
, . . . , Uxn} that covers

K. However,

y ∈ V :=

n⋂
j=1

Vxj

and V is open. Since y is a limit point of K, K ∩V 6= ∅. But this is impossible since V ∩Uxj = ∅ for each

j, and K ⊂ ∪nj=1Uxj .

Our first example of a convergence theorem involving compactness is the classical result known as

Dini’s Theorem. In proving this, we shall make use of the following fact: If U is any set of open subsets

of X, then by De Morgan’s laws, ( ⋃
U∈U

U

)c
=
⋂
U∈U

U c ,

Thus U is an open cover if and only if { U c : U ∈ U } is a set of closed subsets of X with empty

intersection.

Therefore, X is compact if and only if whenever K is a set of closed subsets of X such that⋂
K∈K

K = ∅ ,

there is a finite subset {K1, . . . ,Kn} ⊂ K such that

n⋂
j=1

Kj = ∅ .

This analysis is often summarized by saying that X is compact if and only if X has the “finite intersection

property”.

1.3.15 THEOREM (Dini’s Theorem). Let (X,O) be a compact topological space, and let {fn}n∈N be

a sequence of real valued continuous functions on X, and suppose that there is a continuous real valued

function f on X such that for each x ∈ X, the sequence {fn(x)}n∈N is monotone non-decreasing, and

lim
n→∞

fn(x) = f(x) .
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Then

lim
n→∞

fn = f

uniformly.

In other words, pointwise convergence, together with compactness and monotonicity, imply uniform

convergence. Also note that replacing each fn by −fn, one converts a monotone non-decreasing sequence

into a monotone non-increasing sequence, and so the theorem remains true if one replaces “monotone

non-decreasing” by “monotone non-increasing”.

Proof. Fix ε > 0. Define the sets K`, ` ∈ N, by

K` := { x ∈ X : f(x)− f`(x) ≥ ε } .

Since f and f` are continuous, K` is closed. Since {fn(x)}n∈N is monotone non-decreasing,

` ≥ k ⇒ K` ⊂ Kk . (1.3.1)

Also, since for each x, lim`→∞ f`(x) = f(x),

∞⋂
k=1

K` = ∅ Then, by the compactness of X, there is some

n ∈ N such that
n⋂
`=1

K` = ∅. (1.3.2)

Combining (1.3.1) and (1.3.2), we see that K` = ∅ for all ` ≥ n. Hence, for all ` > n, and all x,

|f`(x)− f(x)| < ε. which proves the uniform convergence.

Next, we turn to one of the main theorems on compactness.

1.3.16 THEOREM (Compactness, Continuity, and Minima). Let (X,O) be any topological space, and

let K be a compact subset of X. Let f be a function from X to R that is continuous when R is equipped

with its usual metric topology. Then there exists and x ∈ K so that

f(x) ≤ f(y) for all y ∈ K . (1.3.3)

Proof. Consider the open sets (−n,∞) in R, since f is continuous,

U = { f−1((−n,∞)) : n ∈ N }

is an open cover of X, and hence K. Since K is compact, there exists an open subcover. But for n > m,

f−1((−m,∞)) ⊂ f−1((−n,∞)), so there is an n with K ⊂ f−1((−n,∞)). In particular, f is bounded

from below on K.

Now let a be the greatest lower bound of the numbers f(y) for y ∈ K. We claim that there exists an

x ∈ K with f(x) = a. If so, then plainly (1.3.3) is true.

To prove this, let us suppose that there is no such x. Then

U = { f−1((a+ 1/n,∞)) : n ∈ N }

is an open cover of K. This means that there is a finite subcover, and again, since the sets in the open

cover are nested, a single one of them, say f−1((a + 1/n,∞)), covers K. But this would mean that

f(y) ≥ a+ 1/n for each y in k, which is not possible since a is the greatest lower bound.
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Any point x for which (1.3.3) is true is called a minimizer of f on X. Likewise, any point x for which

f(x) ≥ f(y) for all y ∈ K . (1.3.4)

is called a maximizer of f on X.

There are several important conclusions to be drawn from this proof. First, if f is continuous, so

is −f , and a minimizer of −f is a maximizer of f . Hence the theorem implies the existence of both

minimizers and maximizers for continuous functions on compact sets.

Now suppose we have a real valued function f defined on a sets K, and we want to know if f has a

minimizer in K. If we can find a topology on K that makes f continuous, and makes K compact, then

we can apply the previous theorem.

However, the demands of continuity and compactness pull in opposite directions when we look for

our topology: The topology has to have sufficiently many open sets in it for f to be continuous, since we

need f−1(U) to be open for every open set U in R. On the other hand, the more open sets we include in

our topology, the more open covers we have to worry about when showing that every open cover has a

finite subcover.

Very often, one is stuck between a rock and a hard place, and there is no topology that both makes

f continuous, and K compact. Indeed, there are many very nice functions f – such as the exponential

function of R – that simply do not have minimizers or maximizers. While R is compact under the trivial

topology O = {∅,R}, and while the exponential function is continuous under the usual metric topology

on R, the fact that the exponential function does not have either a maximizer or a minimizer shows that

there is no topology on R under which R is compact and the exponential function is continuous.

A situation that is frequently encountered in applications is that a function f on X does have, say, a

minimizer, but not a maximizer. Also in this situation, it is impossible to find a topology for which f is

continuous and X is compact, since them both minima and maxima would exist.

However, if we are just looking for minima, it is worth noticing that in our proof of Theorem 1.3.16,

we did not use the full strength of the continuity hypothesis. The same proof yields the same conclusion

if we assume only the property that f−1((t,∞)) is open for each t in R.

1.3.17 DEFINITION (Upper and lower semicontinuous function). Let (X,OX) be a topological space.

A function f from X to R is called lower semicontinuous in case for all t in R, f−1((t,∞)) is open. It

is called upper semicontinuous in case for all t in R, f−1((−∞, t)) is open. As has been explained in

Example 1.3.10, lower semicontinuity of f is the same as conitnuity of f from (X,OX) to (R,Or), where

Or is the right order topology on R.

Summarizing the discussion above, we have the following variant of Theorem 1.3.16:

1.3.18 THEOREM. Let (X,O) be a topological space, and let K ⊂ X be either compact or sequentially

compact. Let f be a lower semicontinous real valued function on (X,O). Then there exists x0 ∈ K such

that f(x0) ≤ f(x) for all x ∈ K.

Thus, we can prove existence of minimizers for f on X by finding a topology that makes f lower

semicontinuous, and K compact. This turns out to be a very useful strategy, as we shall see.

Still, to use either Theorem 1.3.1 or Theorem 1.3.16, we need criteria for compactness. How can we

tell if a set X is compact? In metric spaces, we can reduce this to a question about sequences.
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1.3.19 DEFINITION (Sequential compactness). A topological space (X,O) is sequentially compact in

case every sequence {xn}n∈N has a convergent subsequence {xnk}k∈N.

1.3.20 THEOREM (Compactness and subsequences in a Metric space). Let (X, d) be any metric space,

and let K be any subset of X. Then K is compact if and only if every infinite sequence {xk} of elements

of K has an infinite subsequence {xkn} that converges to some x in K.

In other words, a metric space is compact if and only if it is sequentially compact. In the broader

setting of topological spaces, there is no relation between compactness and sequential compactness. There

are topological spaces that are compact, but not sequentially compact, and there are sequentially compact

spaces that are not compact.

The notion of compactness as we have defined it in terms of open covers is a 20th century notion. In

the 19th century, mathematicians thought about compactness issues in terms of sequential compactness.

It is important to note that this theorem is not true in the general setting of topological spaces; it is

important that the topology be a metric topology. Likewise, in the general topological setting, it is not

true that a function f is continuous if and only if it takes convergent sequences to convergent sequences.

The close connection between sequences and continuity and compactness that one has in metric spaces

does not carry over to the more general topological setting at all. Fortunately, almost all of the topologies

that we shall encounter are metric topologies.

Proof of Theorem 1.3.20. The fact that compactness implies sequential compactness in a metric space is

relatively easy. Suppose there exists a sequence {xn}n∈N that has no convergent subseqeunce. Then there

is no y ∈ K such that for all r > 0, Br(y) contains xk for infinitely many k, since otherwise there would

be a subsequence converging to y. (Consider the balls B1/n(y), and apply Cantor’s diagonal sequences

argument to the sequence of subsequences coinained in these balls.) Hence, for each y ∈ K there exists an

open set Uy that contains y, but which cointains xk for at most finitely many k. Then {Uy : y ∈ K} is

an open cover of K. Since K is compact, there exists a finite subcover {Uy1 , . . . , Uyn}. Thus, every k, xk

belongs to Uyj for some j, but each Uyj contains xk for only finitely many k, which is impossible. Hence

a convergent subsequence exists.

Fot the other implication, we assume sequention compactness, and shall prove compactness in four

steps.

Step 1: K is bounded: We first show that K is bonded, which means that

sup
x,y∈K

d(x, y) <∞ .

This supremum is called the diameter of K.

To see that the diameter is finite, suppose that it is not. Under this hypothesis, we construct a

sequence {xn}n∈N as follows. First, fix any x ∈ X. Now for each n ∈ N , choose some xn ∈ K\Bn(x).

The set K\Bn(x) is not empty when the diameter of K is infinite.

Then, by hypothesis, there is a subsequence {xnk}k∈N and some y ∈ K such that

lim
k→∞

xnk = y . (1.3.5)
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Then by the triangle inequality, we would have

d(x, xnk) ≤ d(x, y) + d(y, xnk) .

But this cannot be: By construction, d(x, xnk) > nk, while d(x, y) is some fixed, finite number, and for

all sufficiently large k, d(y, xnk) ≤ 1, by (1.3.5). This contradiction shows that K must be bounded.

Step 2: K contains a dense sequence: We next show that there is a sequence {xn}n∈N that is dense in K;

i.e., that for every ε > 0, and every x ∈ K, there is some n such that d(xn, x) < ε.

In other words, the sequence {xn}n∈N passes arbitrarily close to every point in K. Here is how to

construct it:

Pick the first term x1 arbitrarily. We then define the rest of the sequence recursively as follows:

Suppose that {x1, . . . , xk} have been chosen. For each y ∈ K, define

dk(y) := min
1≤j≤k

{d(y, xj)} .

This is, by definition, the distance from y to the set {x1, . . . , xk} ⊂ K, and of course, this is no greater

than the diameter of K, which is finite by the first step.

Therefore, dk, defined by

dk := sup
y∈K

dk(y)

is no greater than the diameter of K.

Armed with this knowledge, we are ready to choose xk+1: We choose xk+1 to be any element of K

with

dk(xk+1) ≥ 1

2
dk .

We now claim that limk→∞ dk = 0. It should be clear that {xn}n∈N is dense if and only if this is the

case. So, to complete Step 2, we need to prove that limk→∞ dk = 0.

Towards this end, the first thing to observe is that {dk}k∈N is a monotone decreasing sequence,

bounded below by zero: Indeed, for any sets A ⊂ B ⊂ K, the distance from y to B is no greater than the

distance from y to A. Therefore, we only have to show that some subsequence of {dk}k∈N converges to

zero.

To do this, let {xkn}n∈N be a convergent subsequence of {xk}k∈N, and let y be the limit; i.e.,

lim
n→∞

xkn = y .

Then of course since by the triangle inequality

d(xkn , xkn+1
) ≤ d(xkn , y) + d(y, xkn+1

) ,

and since lim
n→∞

d(xkn , y) = lim
n→∞

d(y, xkn+1
) = 0,

lim
n→∞

d(xkn , xkn+1
) = 0 .

But since

xkn ∈ {x1, . . . , xkn+1−1} ,
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d(xkn , xkn+1
) ≥ dkn+1−1(xkn+1

) ≥ 1

2
dkn+1−1 .

Therefore,

lim
n→∞

dkn+1−1 = 0 ,

and then, since the entire sequence is monotone decreasing, limk→∞ dk = 0. Hence, the sequence we have

constructed is dense.

Step 3: Given any open cover of K, there exists a countable subcover. To prove this, consider any open

cover G of K. Consider the set of open balls Br(xk) where r > 0 is rational, and {xk}k∈N is the dense

sequence that we have constructed in Step 2. This set of balls is countable since a countable union of

countable sets is countable.

The countable subcover is constructed as follows: For each rational r > 0 and each k ∈ N, choose Ur,k

to be some open set in G that contains Br(xk) if there is such a set, and otherwise, do not define Ur,k.

Let U be the set of open sets defined in this way; clearly U is countable by construction.

We now claim that U is an open cover of K. Clearly the sets in U are open. To see that they cover,

pick any x ∈ K. Since G is an open cover of K, x ∈ V for some V ∈ G. Then, since V is open, for some

rational r > 0, B2r(x) ⊂ V .

Then, since {xk}k∈N is dense, there is some k with xk ∈ Br(x). But then x ∈ Br(xk) and

Br(xk) ⊂ B2r(x) ⊂ V ,

(where the first containment holds by the triangle inequality). This shows that for the pair (r, k), there is

some V ∈ G containing Br(xk). Therefore, by construction, Ur,k ∈ U contains Br(xk), and hence x ∈ Ur,k.

Since x is an arbitrary element of K, U covers K.

Step 4: Some finite subcover of the countable cover is a cover. Now order the sets in our countable cover

U into a sequence of open sets {Uk}k∈N that covers K.

Suppose that for each n, it is not the case that

K ⊂
n⋃
k=1

Uk . (1.3.6)

Then we can construct a sequence {xn}n∈N be choosing xn ∈ K\

(
n⋃
k=1

Uk

)
.

Let {xnj}j∈N be a subsequence with limj→∞ xnj = y ∈ K. Then, since U is an open cover of K, there

is some Uk with y ∈ Uk. But then all but finitely many terms of the sequence {xnj}j∈N lie in Uk, and so

the whole sequence lies in some finite union of the sets in U . This is a contradiction, and so (1.3.6) is true

for some n ∈ N.

Part of the proof made use of a dense sequence in our sequentially compact metric space. The existence

of a dense sequence is often useful, and so we make the following definition.

1.3.21 DEFINITION (Separable topological space). A topological space (X,O) is separable in case it

contains a countable dense subset.

We have seen the a compact metric space is always separable, but also many non-compact spaces are

separable. We shall se examples shortly.



17

We shall soon prove two powerful theorems on approximation and compactness in an infinite dimen-

sional vector space, C(X,R), the space of real valued continuous functions on a compact Hausdorff space

X, equipped with the uniform metric

d∞(f, g) = sup
x∈X
{|f(x)− g(x)|} .

Note that by Theorem 1.3.16 and the fact that X is compact, there exists an x0 ∈ X such that

|f(x0)− g(x0)| = sup
x∈X
{|f(x)− g(x)|} .

It is then very easy to see that d∞ is indeed a metric on C(X,R), called the uniform metric. It is left as

an exercise to generalize Theorem 1.2.8 and show that (C(X,R), d∞) is complete.

1.3.3 Generated topologies

When working a class of functions F on a set X with values in a topological space (Y,U), it is often useful

to introduce a topology that makes every function f ∈ F continuous, but which contains the minimal

number of open sets for this purpose. given two topologies O1 and O2 on a sets X, we say that O1 is

weaker than O2 in case O1 ⊂ O2. In the case at hand, there is a unique weakest possible topology OF on

X with respect to which each f ∈ F is continuous, and such that OF is weaker than any other topology

with this property.

The weaker a topology is, the more compact sets there will be, and so such topologies are useful when

we wish to apply theorems requiring both continuity and compactness.

1.3.22 THEOREM (Generated topologies). Given a class of functions F on a set X with values in a

topological space (Y,U), define

E = {f−1(U) : f ∈ F , U ∈ U },

and define Ê to be the set of all finite intersections of sets in E. Finally define OF to be the set of arbitrary

unions of sets in Ê. Then OF is a topology, and it is the weakest topology with respect to which each f ∈ F
is continuous.

Proof. Since each x ∈ X lies in f−1(Y ) ∈ E for any f ∈ F , it is clear that X ∈ OF , and taking the

empty union, ∅ ∈ OF . Evidently OF is closed under arbitrary unions. Thus, if OF is closed under finite

intersections, is is a topology. Let E,F ∈ OF . If x ∈ E ∩ F , then, by definition, there exist Ex, Fx in

Ê such that Ex ⊂ E and Fx ⊂ F . Since Ê is closed under finite intersections, x ∈ Ex ∩ Fx ∈ Ê , and

Ex ∩ Fx ⊂ E ∩ F . Making such a construction for each x ∈ E ∩ F , we have

E ∩ F =
⋃

x∈E∩F
Ex ∩ Fx ,

showing that E ∩ F ∈ OF . Thus, OF is a topology.

Now let O be any topology with respect to which each f ∈ F is continuous. Evidently, O must

contain all of the sets

E = {f−1(U) : f ∈ F , U ∈ U }.

Certainly also any such topology must contain, Ê , the set of all finite intersections of sets in E , and then

it must contain all arbitrary unions of sets in Ê . Hence O must contain OF .
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1.3.23 DEFINITION (Weak topology). Given a set X and a family F of functions from X to a

topological space (Y,O), the weak topology on X generated by F .

1.4 Some frequently used theorems

1.4.1 Baire’s Theorem

1.4.1 DEFINITION (Nowhere dense). Let (X,O) be a topological space. A subsetX is nowhere dense

in case the closure of A has empty interior; i.e., (A)◦ = ∅.

Note that if A is closed, it is nowhere dense if and only if A◦ = ∅, which is the case iff and only if

Ac ∩ U 6= ∅ for all U ∈ O. Therefore, a closed set A is nowhere densre if and only if its complement is an

open dense set in X.

1.4.2 LEMMA (Baire’s Lemma). Let (X, d) be a complete metric space. Let {Un}n∈N be a sequence of

open dense sets in X. Then
⋂
n∈N

Un is dense in X.

Proof. Let W be any open subset of X. It suffices to show that⋂
n∈N

Un ∩W 6= ∅ . (1.4.1)

Now construct a Cauchy seequence as follows: Since U1 is open and dense, and W is open, U1 ∩W is

open and non-empty. Hence for some r1 > 0 and some x1 ∈ X, Br1(x1) ⊂ U1 ∩ W . (Note that if

Bs1(x1) ⊂ U1 ∩W , then for any r1 < s1, Br1(x1) ⊂ U1 ∩W because Br1(x1) ⊂ Bs1(x1).) Without loss

of generality, we may suppose that r1 < 1. Since U2 is open and dense and Br1(x0), is open, there exist

r2 > 0 and some x2 ∈ X so that Br2(x2) ⊂ Br1(x1)∩U2. Without loss of generality, we may suppose that

r2 < r1/2.

Now supposing that {(r1, x1), . . . (rn, xn)} are chosen, pick (rn+1, xn+1) so that

Brn+1
(xn+1) ⊂ Brn(xn) ∩ Un+1 and rn+1 < rn/2 .

By contruction

Brn(xn) ⊂ Brm(xm) ⊂W for all n > m (1.4.2)

and

Brn(xn) ⊂
n⋂

m=1

Um ∩W . (1.4.3)

The sequence {xn}n∈N is Cauchy since (1.4.2) says that for all j, k ≥ m, d(xj , xk) < rm and limm→∞ rm =

0. Since (X, d) is complete, there exists x0 ∈ X such that limn→∞ xn = x0. By (1.4.2) again, for all n ≥ m,

xn ∈ Bbm(xm), and hence x0 ∈ Bbm(xm) for all m. By (1.4.3), x0 ∈
∞⋂
n=1

Un ∩W .

1.4.3 THEOREM (Baire’s Theorem). A complete metric space (X, d) is never the countable union of

nowhere dense sets.



19

Proof. Let {Em}n∈N be a sequence of nowhere dense sets in X. It suffice to show

∞⋃
n=1

En 6= X. By Baire’s

Lemma, ( ∞⋃
n=1

En

)c
=

∞⋂
n=1

(En)c 6= ∅

since each (En)c is open and dense.

Notice that to prove Baire’s Theorem, we only needed to know that the inetrsection of a sequence of

open dense sets is non-empty, while Baire’s lemma tells us that not only is ∩∞n=1Un non-empty, it is even

dense. This stronger information is sometimes useful in applications.

In fact, in a metric space (X, d) that has no isoolated points, ∩∞n=1Un is uncountable. To see this,

suppose on the contrary that ∩∞n=1Un is countable. Let {xn}n∈N be a sequence such that {xn : n ∈ N} =

∩∞n=1Un. (There will be repeats in the sequence if the latter set is finite.) Define En = U cn ∪ {xn}. Then

each En is closed and has empty interior (since X has no isolated points). Then

∞⋃
n=1

En =

( ∞⋃
n=1

U cn

)
∪

( ∞⋂
n=1

Un

)
=

( ∞⋂
n=1

Un

)c
∪

( ∞⋂
n=1

Un

)
= X .

By Baire’s Theorem, this is impossible.

1.4.2 The Arzelà-Ascoli Theorem

Let X be a compact topological space, and consider the metric space, and hence topological space,

consisting of C(X,R) equipped with the uniform metric.

1.4.4 DEFINITION (Equicontinuous, pointwise bounded). Let F ⊂ C(X,R). Then F is equicontinuous

in case for each ε > 0 and each x ∈ X, there is a neighborhood Uε of x such that for all f ∈ F ,

y ∈ Uε ⇒ |f(y)− f(x)| < ε .

Also, F is pointwise bounded in case for each x ∈ X, {f(x) : f ∈ F } is a bounded subset of R.

The first thing to observe is that if F is a compact subset of C(X,R), then F is both pointwise

bounded and equicontinuous.

Indeed, suppose that F is compact. Then evidently F ⊂
⋃
f∈F

Bf (1), and hence there exists a finite

set {f1, . . . , fn} in F such that

F ⊂
n⋃
j=1

Bfj (1) .

Let Mj denote the maximum of |fj |, which is continuous on X, and hence bounded. Let M =

maxj=1,...,nMj . Then for any f ∈ F , there is some j such that d∞(f, fj) < 1, and hence for all x,

|f(x)| ≤ |fj(x)|+ |f(x)− fj(x)| ≤Mj + d∞(f, fj) ≤M + 1 .

This even shows that F uniformly bounded.

To show that F is equicontinuous, fix x ∈ X and ε > 0. For each f ∈ F , define Vf by

Vf = { g ∈ F : d(g, f) < ε/3 } .
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Clearly, each Vf is open, and
⋃
f∈F

Vf = F . Hence there exists a finite set {f1, . . . , fn} ⊂ F such that

n⋃
j=1

Vfj = F .

Next, define Uj ⊂ X by Uj = { y ∈ X : |fj(y)− fj(x)| < ε/3}. Evidently U = ∩nj=1Uj is a neigh-

borhood of x.

For any f ∈ F , d∞(f, fj) < ε/3 for some j, and so for y ∈ U ,

|f(y)− f(x)| ≤ |f(y)− fj(y)|+ |fj(y)− fj(x)|+ |fj(x)− f(x)| ≤ |fj(y)− fj(x)|+ 2d∞(f, fj) < ε .

Thus, U is a neighborhood of x such that |f(y)− f(x)| < ε for all y ∈ U and all f ∈ F .

Thus, a necessary condition for F to be compact in C(X,R) is that F be equicontinuous and pointwise

bounded. The Arzelà-Ascoli Theorem says that these conditions are essentially sufficient as well:

1.4.5 THEOREM (Arzelà-Ascoli). Let X be a compact topological space space, and let F be an equicon-

tinuous and pointwise bounded subset of C(X,R). Then the closure of F is compact.

Proof. The first thing to observe is that if F is equicontinuous and pointwise bounded, then so is the

closure of F . Hence, let us assume that F is closed as well as equicontinuous and pointwise bounded. We

shall then show that F is compact.

By Theorem 1.3.20, it suffices to show that for any infinite sequence {f`}`∈N in F , there is a convergent

subsequence, and then by the completeness of C(X,R) it suffices to show that for any infinite sequence

{f`}`∈N in F , there is a Cauchy subsequence. Therefore, fix any infinite sequence {f`}`∈N in F . We must

prove that there is a subsequence {f`j}j∈N such that for all ε > 0, there is an Nε ∈ N such that

j, k ≥ Nε ⇒ |f`j (x)− f`k(x)| < ε for all x ∈ X. (1.4.4)

Fix ε > 0. Use the compactness of X and the equicontinuity of F to select a finite set of points

{x1, . . . , xm} and neighborhoods {U1, . . . , Um} that cover F and are such that

x ∈ Uj ⇒ |f(x)− f(xj)| <
ε

3
for all f ∈ F . (1.4.5)

Since for each i, the set {f(xi) : f ∈ F } is a bounded subset of R, we can choose a subsequence of

{f`}`∈N along which f`k(xi) converges for each i. Since convergent sequences are Cauchy, it follows that

there exists Nε ∈ N such that

j, k ≥ Nε ⇒ |f`j (xi)− f`k(xi)| ≤
ε

3
. (1.4.6)

But then since each x ∈ X belongs to Ui for some i, we have (for this i), and j, k ≥ Nε,

|f`j (x)− f`k(x)| ≤ |f`j (x)− f`k(xi)|+ |f`j (xi)− f`k(xi)|+ |f`j (xi)− f`k(x)|

≤ ε

3
+ |f`j (xi)− f`k(xi)|+

ε

3
≤ ε .

where the first inequality is the triangle inequality, the second is (1.4.5) and the third is (1.4.6). This

proves (1.4.4).
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Another proof of the Arzela-Ascoli Theorem may be given using the fact that complete totally bounded

subsets of a metric space are compact. This approach is useful in proving other compactness theorems, so

we briefly explain it as well. The key is the following lemma of Hanche-Olsen and Holden:

1.4.6 LEMMA. Let (X, dX) be a metric space. Suppose that for all ε > 0 there exists a δ > 0 and a

metric space (W,dW ) and a function Φ : X →W such that:

(1) Φ(X) is totally bounded in W .

(2) For all x, y ∈ X,

dW (Φ(x),Φ(y)) < δ ⇒ dX(x, y) < ε .

Then X is totally bounded.

1.4.7 Remark. If Φ : X →W were invertible, then (2) could be rewritten as: For all w, z ∈W ,

dW (w, z) < δ ⇒ dX(Φ−1(w),Φ−1(z)) < ε ,

which would mean that Φ−1 is continuous. However, we do not assume that Φ is invertible. Nonetheless,

even when Φ is not invertible, and A is any subset of W , we write Φ−1(A) to denote the preimage of A

under Φ, i.e., Φ−1(A) = {x ∈ X : Φ(x) ∈ A}. Condition (2) then says that the diameter of the preimage

of a set of diameter less than δ is less than ε.

Proof. Fix ε > 0, Let δ, (W,dW ) and Φ be such that (1) and (2) are satisfied. Since Φ(X) is totally

bounded, there is a finite cover {U1, . . . , Un} of Φ(X) be balls of radius δ in W . It follows immediately that

{Φ−1(U1), . . .Φ−1(Un)} is a cover of X by sets of diameter 2ε. For each i = 1, . . . , n, pick xi ∈ Φ−1(Ui).

Then Φ−1(Ui) ⊂ B2ε(xi), and so {B2ε(x1), . . . , B2ε(xn)} is a finite cover of X by balls of radius 2ε . Since

ε > 0 is arbitrary, (X, d) is totally bounded.

Second proof of the Arzela-Ascoli Theorem. We may suppose as before that F is closed and hence that

(F , d∞) is a complete metric space. It therefore suffices to show that it is totally bounded. Starting as

before, fix ε > 0, and use the compactness of X and the equicontinuity of F to select a finite set of points

{x1, . . . , xm} and neighborhoods {U1, . . . , Um} that cover F and are such that

x ∈ Uj ⇒ |f(x)− f(xj)| <
ε

3
for all f ∈ F . (1.4.7)

Define Φ : F → Rm by

Φ(f) = (f(x1), . . . , f(xm)) .

Since F is pointwise bounded, Φ(F) lies in some bounded rectangle in Rm, and bounded sets in Rm are

totally bounded. Thus, Φ satisfies condition (1) of Lemma 1.4.6. Next, consider any f, g ∈ F . Denoting

the Euclidean norm on Rm by ‖ · ‖,

‖Φ(f)− Φ(g)‖ = ‖(f(x1), . . . , f(xm))− (g(x1), . . . , g(xm))‖ ≥ m
max
j=1
|f(xj)− g(xj)| . (1.4.8)

fix any x ∈ X. Then for some j, x ∈ Uj , and for this j,

|f(x)− g(x)| ≤ |f(x)− f(xj)|+ |f(xj)− g(xj)|+ |g(xj)− g(x)|

≤ ε

3
+ |f(xj)− g(xj)|+

ε

3

≤ ε

3
+ ‖Φ(f)− Φ(g)‖+

ε

3
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where the first inequality is the triangle inequality, the second is (1.4.7) and the third is (1.4.8). Thus,

condition (2) of Lemma 1.4.6 is satisfied for δ = ε/3, and we have proved that F is totally bounded.

1.4.3 The Stone-Wierstrass Theorem

The Stone-Wierstrass Theorem is an approximation theorem that generalizes the classical Wierstrass

Approximation Theorem that we discussed at the beginning of these notes.

We begin with two definitions. Let X be a compact topological space, and let C(X,R) be the space

of continuous real valued functions on X equipped with the uniform metric d∞. A subset A of C(X,R) is

an algebra in case A is a vector subspace over R of C(X,R) equipped with its usual rules of addition and

scalar multiplication, and if, moreover, for every f and g in A, the pointwise product fg also belongs to

A.

A subset A of C(X,R) is separating in case for pair of distinct points x, y in X, there is an f ∈ A such

that f(x) 6= f(y).

Notice that if X is not Hausdorff, not even C(X,R) the space of all continuous real valued functions

on X is separating. Indeed, if X is not Hausdorff, there exist two distinct points x and y in X such that

every neighborhood U of x contains y. But then for any continuous function f , f(x) = f(y). Indeed, if

|f(x)−f(y)| := r > 0, then f−1((f(x)−r.2, f(x)+r/2)) would be an open neighborhood of x that excluded

y. Thus, for all continuous f , f(x) = f(y), so not even C(X,R) separates, let alone any proper subset of

C(X,R). Hence throughout this subsection, we shall only be concerned with Hausdorff topological spaces.

The primary example of a separating algebra to keep in mind is X = [0, 1], with A being the algebra

of all polynomials in the real variable x ∈ [0, 1]. To see that this algebra is separating, consider the

polynomial p(x) = x. Then for x0 6= x1 in X, p(x0) 6= p(x1).

1.4.8 THEOREM (Stone-Wierstrass). Let X be a compact topological space, and let A be a subset of

C(X,R) that is a separating algebra. Let B be the uniform closure of A. Then either B = C(X,R), or

else B consists of all continuous functions on X that vanish at some fixed point x0. In particular, if A
contains the constant functions, B = C(X,R).

We will prove Theorem 1.4.8 as a consequence of two lemmas, and shall make use of the partial order

in C(X,R): If f, g ∈ C(X,R), we write f ≤ g in case f(x) ≤ g(x) for all x ∈ X. With this partial

order, C(X,R) is a lattice: Given any f, g ∈ C(X,R) there is a unique function g ∧ f ∈ C(X,R) such that

g ∧ f ≤ f, g, and such that h ≤ g ∧ f whenever h ≤ f, g. Of course, g ∧ f is given by

g ∧ f(x) = min{ f(x) , g(x) } ,

which is continuous.

Likewise, given any f, g ∈ C(X,R) there is a unique function g ∨ f ∈ C(X,R) such that f, g ≤ g ∨ f ,

and such that g ∨ f ≤ h whenever f, g ≤ h. Of course, g ∨ f is given by

g ∨ f(x) = max{ f(x) , g(x) } ,

which is continuous.
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A subset F of C(X,R) is itself a lattice if and only if whenever f, g ∈ F , then both f ∧ g and f ∨ g
belong to F . Then observing that

f ∧ g =
1

2
(f + g − |f − g|) and f ∨ g =

1

2
(f + g + |f − g|) , (1.4.9)

we see that a subset F of C(X,R) that is a vector space is a lattice if and only if whenever f ∈ F , then

|f | ∈ F .

1.4.9 LEMMA (Limit point criterion for lattices in C(X,R)). Let X be a compact Hausdorff space. Let

F ⊂ C(X,R) be a lattice.

If f is any element of C(X,R) with the property that for every x, y ∈ X, there exists a function

fx,y ∈ F for which

fx,y(x) = f(x) and fx,y(y) = f(y) . (1.4.10)

Then f is a limit point of F ; i.e., it belongs to the closure of F .

Proof. Fix any f ∈ C(X,R) with the property every x, y ∈ X, there exists a function fx,y ∈ F such that

(1.4.10) is satisfied. Fix any ε > 0. We must show that there exists some g ∈ F with |g(x)− f(x)| < ε for

all x ∈ X.

First, for each (x, y) ∈ X ×X, make some choice of fx,y, and define the open set Ux,y ⊂ X by

Ux,y = { z : fx,y(z) < f(z) + ε } .

Evidently, x, y ∈ Ux,y. Therefore

X =
⋃
x∈X

Ux,y ,

and then, since X is compact, there exists a finite set {x1, . . . , xn} ⊂ X such that

X =

n⋃
j=1

Uxj ,y .

Now define the function fy by

fy = fx1,y ∧ fx2,y ∧ · · · ∧ fxn,y .

Since F is a lattice, fy ∈ F , and

fy ≤ f + ε

in the lattice order; i.e., everywhere on X.

Furthermore, since fxj ,y(y) = f(y) for each j, fy(y) = f(y). Therefore, defining the open set Vy by

Vy := { z ∈ X : f(z)− ε < fy(z) } ,

we have y ∈ Vy, and hence

X =
⋃
y∈X

Vy ,
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hen, since X is compact, there exists a finite set {y1, . . . , ym} ⊂ X such that

X =

m⋃
k=1

Vyk .

Now define g by

g = fy1 ∨ fy2 ∨ . . . ,∨fym .

Then since F is a lattice, g ∈ F , and by construction,

f − ε ≤ g ≤ f + ε ,

which means that |f(x)− g(x)| < ε for all x ∈ X.

1.4.10 LEMMA (A closed algebra in C(X,R) is a lattice). Let X be a compact Hausdorff space. Let B
be a closed subset of C(X,R) that is also a subalgebra of C(X,R). Then B is a lattice.

Proof. By the remarks we have made concerning (1.4.9), it suffices to show that for all f ∈ B, |f | ∈ B.

Since X is compact and f is continuous, f is bounded above and below, and hence there is a finite positive

number c such that |cf | ≤ 1. Then since |cf | = c|f |, we may freely suppose that f | ≤ 1.

Therefore, fix any f ∈ B with |f | ≤ 1, We shall complete the proof by showing that there exists a

sequence of polynomials {pn}n∈N so that

|f | = lim
n→∞

pn(f2) (1.4.11)

in the uniform topology. Since B is an algebra, pn(f2) ∈ B for each n, and then since B is closed, |f | ∈ B.

For any number a ∈ [0, 1], we define a sequence {bn}n∈N recursively as follows: We set b1 = 0 and

then for all n ∈ N,

bn+1 = bn +
a− b2n

2
.

Notice that

b1 = 0 , b2 =
a

2
, b3 = a− a2

8
,

and so forth. It is easy to see by induction that for each n, there is a polynomial pn, independent of the

value of a, so that such that bn = pn(a).

We claim that
√
a = limn→∞ bn. This will give us a sequence of polynomials {pn}n∈N such that for

each a ∈ [0, 1],
√
a = lim

n→∞
pn(a) ,

and therefore, such that

|f(x)| = lim
n→∞

pn(f2(x))

for all x in X. Then, since X is compact, Dini’s Theorem implies that (1.4.11) is true with uniform

convergence.

Hence, we need only verify the claim that
√
a = limn→∞ bn. To do this, note that

√
a− bn+1 =

√
a− bn −

(
√
a− bn)(

√
a+ bn)

2
= (
√
a− bn)

(
1−
√
a+ bn

2

)
.
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Since a ≤ 1, as long as bn ≤
√
a, the right hand side is non-negative, and therefore bn+1 ≤

√
a. Since

b1 ≤
√
a, it follows that

√
a is an upper bound for the sequence {bn}n∈N.

Now, knowing that b2n ≤ a for all n, it is clear from the definition that {bn}n∈N is a monotone

non-decreasing sequence. Therefore the limit b = limn→∞ bn exists and satisfies

b = b+
a− b2

2
.

This means that b2 = a, and since b ≥ 0, b =
√
a.

Proof of Theorem 1.4.8: Fix x 6= y in X, and consider the linear transformation from A to R2 given by

f 7→ (f(x), f(y)) .

The range of this linear transformation is a subspace S of R2.

Since A separates, there can be at most one point x0 ∈ X for which g(x0) = 0 for all g ∈ A.

Let us first assume first that neither x nor y is such a point. Since A is an algebra, and a vector space

in particular, if g is in A so is very multiple of g. By assumption, there is some g ∈ A such that g(x) 6= 0,

and by choosing an appropriate multiple, we may arrange that g(x) = 1.

Thus, S contains a vector of the form (1, a). (Since A separates, we can choose g ∈ A so that

g(y) = a 6= 1.)

Now there are two cases to consider. If also a 6= 0, then the two vectors (1, a) and (1, a2) are linearly

independent, and (1, a2) also belongs to S since A is an algebra (so that g2 ∈ A). On the other hand if

a = 0 then S contains the vector (1, 0), and, since there is some other g with g(y) = 1, there is some b ∈ R

such that (b, 1) ∈ S. Hence in this case, S contains the two vectors (1, 0) and (b, 1) which are linearly

independent. Either way, S = R2, and so we have proved that as long as g(x) 6= 0 and h(y) 6= 0 for some

g, h ∈ A, then S is all of R2.

This has the consequence that for any f ∈ C(X,R), we can find a function fx,y ∈ A for which

(f(x), f(y)) = (fx,y(x), fx,y(y)) . (1.4.12)

Now we have two cases once more: Suppose first that there is no point x0 ∈ X with f(x0) = 0 for all

f ∈ A. Then the above argument applies for all x and y in X and all f ∈ C(X,R), we can find fx,y ∈ A
such that (1.4.12) is true. Moreover, by Lemma 1.4.10, B is a lattice. Therefore, by Lemma 1.4.9, f is a

limit point of B, and since B is closed, f ∈ B. Since f is an arbitrary element of C(X,R), we see that in

this case, B = C(X,R).

The remaining case to consider is that in which there is one point x0 such that g(x0) = 0 for all g ∈ A,

and hence B, so that B is certainly contained in the closed subset of C(X,R) consisting of continuous

functions f on X such that f(x0) = 0.

Let f be any such function. The argument made above show that as long as neither x nor y equals

x0, then there is some g ∈ A, and hence B, for which (1.4.12) is true. Now suppose that x = x0, and

y 6= x0. Then we trivially have

f(x0) = g(x0) = 0
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for all g ∈ B. And since A separates, and is a vector space, we can choose g so that f(y) = g(y). Therefore,

for any f ∈ C(X,R) with f(x0) = 0, no matter how x and y are chosen, we can can find gx,y ∈ B so that

(1.4.12) is true.

Then the argument made above shows that every f ∈ C(X,R) with f(x0) = 0 is a limit point of B,

and hence belongs to B. Therefore, in this second case, B is the subset of C(X,R) consisting of functions

f with f(x0) = 0.

In our proof of Theorem 1.4.8, we made use of the fact that our functions f were real valued, and not

complex valued: The real numbers are ordered, while the complex numbers are not, and the order on the

real numbers played a crucial role in the proof through our use of Lemma 1.4.9.

This is not simply an artifact of the proof: If in the statement of the theorem we replace C(X,R) by,

C(X,C), the space of continuous complex valued functions on X, the statement becomes false.

To see this, take X to be the closed unit disc in the complex plane C. Take A to be the algebra of all

complex polynomials in the complex variable z, which clearly separates. Polynomials in z are analytic,

and uniform limits of analytic functions are analytic, and so the closure of A consists of functions that are

analytic in the interior of the the unit disc. Obviously, not every continuous function of the closed unit

disc is analytic in the interior of the disc; f(z) = z∗, the complex conjugate of z, is an example. Hence,

the uniform closure of A is not the full set of continuous complex valued functions on the closed unit disc.

However, under one simple additional condition on the algebra A, one can reduce the complex valued

case to the real case.

A (complex) subalgebra A of the algebra of complex valued function on a compact Hausdorff space is

called a ∗-algebra in case it is closed under complex conjugation. That is, whenever f ∈ A, then f∗ ∈ A,

where f∗ is the function defined by f∗(x) = (f(x))∗ for all x ∈ X.

In this case, for every f ∈ A, the real and imaginary parts of f both belong to A. It is also easy to

see that when A separates, so does the real algebra consisting of the real and imaginary parts of functions

in A. Applying the Stone-Wierstrass Theorem to this algebra, one can separately approximate, in the

uniform metric, the real and imaginary parts of any continuous complex valued function on X by functions

in A.

In summary, we have:

1.4.11 THEOREM (Complex Stone-Wierstrass). Let X be a compact topological space, and let A be

a subset of C(X,C) that is a separating ∗-algebra. Let B be the uniform closure of A. Then either

B = C(X,C), or else B consists of all continuous functions on X that vanish at some fixed point x0. In

particular, if A contains the constant functions, B = C(X,R).

Here is one important application of Theorem 1.4.11: Let X be the unit circle in C, with its usual

topology. Let A ⊂ C(x,C) be the set consisting of functions f of the form

f(z) =

n∑
j=−n

ajz
n

for some n ∈ N, and some numbers a−n, . . . , an in C. (Each element of X is a complex number z, and zn

denotes the nth power of z.) The elements of A are called complex trigonometric polynomials

It is easy to see that A is a ∗-algebra, and that A separates. Hence, by Theorem 1.4.11, A is dense

in C(X,C). This proves:
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1.4.12 THEOREM (Density of Complex Trigonometric Polynomials). Let X be the unit circle in C,

with its usual topology. Then the set of complex trigonometric polynomials is dense in C(X,C), with respect

to the uniform metric.

1.4.4 Tychonoff’s Theorem

Let X be a set. The Cartesian product of X with itself, X ×X, is the set of all ordered pairs (x1, x2) of

elements of X. Of course (x1, x2) is the graph of a unique function f : {1, 2} → X, namely the one with

f(1) = x1 and f(2) = x2. (One can accommodate Cartesian products of two different sets Y and Z in

this framework by considering X = Y ∪Z and restricting attention to functions f such that f(1) ∈ Y and

f(2) ∈ Z. No real generality is lost in taking the sets to be the same, and the notation is much simpler,

so that is how we shall proceed.)

More generally, given any set non-empty S, the Cartesian product of X indexed by S, denotes XS ,

is the set of all functions from S to X. For example, XN is the set of all infinite sequences {xn}n∈N of

elements of X.

On any Cartesian product, there is a natural family of functions with values in X, namely the

coordinate functions: For each s ∈ S, define

ϕs : XS → X

by

ϕ(f) = f(s) .

That is, one simply evaluates the function f ∈ XS at s.

Note that when S = {1, 2}, ϕj((x1, x2)) = xj , which is why the ϕs are called coordinate functions.

1.4.13 DEFINITION. Let (X,O) be a topological space, and S and arbitrary set. The product topology

on the Cartesian product XS is the topology generated by the coordinate functions. That is, it is the

weakest topology for which each of the coordinate functions is continuous.

Now suppose that (X,O) is a compact topological space. When is (X,O) compact in the product

topology? The answer, given by Tychonov’s theorem is: “Always.”

1.4.14 THEOREM (Tychonoff’s Theorem). Let (X,O) be a compact topological space, and S any non-

empty set. Then XS, equipped with the product topology, is compact.

The special case of this theorem in which X is a compact metric space and S is countable (or finite) is

fairly easy to prove using the theorems presented so far in these notes. This is developed in the exercises

that follow. The general case involves either the theory of “nets” or the theory of “filters”, and this would

be a digression, since we shall not invoke the general case in this course, nor shall we have any other

occasion to use the theory of nest of filters. Furthermore, the proof of the general case involves the axiom

of choice in a much more subtle way than does the spacial case. This is not a problem, but discussion

of these subtleties would take us far afield. (The axiom of choice enters the subject, even in the special

case, in an essential way: It is the axion of choice which assures us that XS is non-empty: one can always

choose, for each x ∈ s, some x(s) ∈ X. Moreover, it is known that Tychanov’s Theorem is logically

equivalent to the Axiom of Choice.)
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It is well worth knowing the general case nonetheless. It shows that advantage of the 20th century

notion of compactness, as defined above, in terms of open covers, and the 19th century notion of sequential

compactness. As shown in the exercises, if we take X = [0, 1] with its usual topology, and equip XX , the

set of all functions from [0, 1] to [0, 1], then XX is not sequentially compact, but is compact by Tychonov’s

Theorem. Many theorems in which compactness is an hypothesis remain true if this hypothesis is replaced

by sequential compactness (see the exercises). Tychonov’s Theorem is an important example for which

this is not the case.

1.5 Exercises

1. Let (X, d) be a separable metric space. Let Y be any subset of X, and define dY to be the restriction

of d to Y × Y . Show that (Y, dY ) is separable.

2. Suppose that (X, d) is a complete metric space with a finite diameter; i.e., there exists D < ∞ such

that d(x, y) ≤ D for all x, y ∈ X. Is it true that every continuous real valued function on X is bounded?

Prove this assertion or give a counterexample.

3. Let (X, d) be a compact metric space.

(a) Show that if f : X → X is continuous but not onto, there is some x0 ∈ X and some r > 0 so that

d(f(x), x0) ≥ r for all x ∈ X.

(b) Let f be an isometry from X into itself; i.e., a function with the property that

d(f(x), f(y)) = d(x, y)

for all x, y ∈ X. Show that f is necessarily one to one and onto, and hence invertible.

4. Let (X, d) be a compact metric space, and let f : X → C be continuous. Show that for all ε > 0, there

exists L <∞ so that

|f(x)− f(y)| ≤ Ld(x, y) + ε

for all x, y ∈ X.

5. (a) Let (X, d) be a complete metric space in which bounded sets are totally bounded. Let A ⊂ X be

closed and B ⊂ X be compact. Show that there exist x1 ∈ A and x2 ∈ B such that

d(x1, x2) ≤ d(x, y) for all x ∈ A , y ∈ B .

(b) Show by example that this is false if we weaken the assumption to only suppose that B is closed.

6. Define `1 to be the set of complex valued sequences {xj}j∈N such that

∞∑
j=1

|xj | <∞. Define a function

on d`1 on `2 by

d`1 ({xj} , {yj}) =

∞∑
j=1

|xj − yj | .

(a) Show that (`1, d`1) is a metric space.

(b) Show that the metric space (`1, d`1) is complete.
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7. Let (`2, d`2) Show that a bounded subset X of `2 is totally bounded if and only if for all ε > 0, there

exists Nε ∈ N such that ∑
k>Nε

|xj |2 < ε2

for all {xj} ∈ X.

8. Let (`1, d`1) be defined as in Exercise 6. Show that X ⊂ `1 is totally bounded if and only if for all

ε > 0, there exists Nε ∈ N such that ∑
k>Nε

|xj | < ε

for all {xj} ∈ X. Then show that B1({0}), the ball of radius 1 about the zero sequence, is not totally

bounded, and hence that the closed ball of radius 1 about the zero sequence is not compact.

9. Let X = [0, 1]. Each x ∈ X has a binary expansion

x =

∞∑
n=1

bn(x)2−n

with each bn(x) ∈ {0, 1}. We stipulate that if x is a dyadic rational, only finitely many of the bn(x) are

non-zero, and under this condition, the bn(x) are uniquely determined, so that bx : X → {0, 1} ⊂ X is a

well-defined function for each n.

(a) Show that no subsequence of {bn}n∈N converges pointwise.

(b) Equip XX with its product topology and note that each bn is a function from X to X, and hence is

an element of XX . Show that no subsequence of {bn}n∈N converges in the product topology, and thus

that the analog of Tychonov’s Theorem for sequential compactness is false.

10. Let (X, d) be a compact metric space. Then XN consists of all sequences {xk}k∈N in X. Define a

function d on XN ×XN by

d({xk}k∈N, {yk}k∈N) =

∞∑
k=1

2−kd(xk, yk) .

(a) Show that d is a metric on XN ×XN.

(b) Show that the metric topology in XN induced by d is at least as strong as the product topology.

(c) Show that with the metric topology induced by d, XN is sequentially compact.

(d) Show directly, without invoking Tychonov’s Theorem that XN compact in the product topology.

11. Let (X, dX) and (Y, dY ) be two compact metric spaces. Let C(X × Y,R) be the set of all valued

functions on X × Y continuous real that are continuous with respect to the product topology. Let A be

the set of functions f on X × Y of the form

f(x, y) =

n∑
j=1

gj(x)hj(y)

for some n ∈ N and some {g1, . . . , gn} ⊂ C(X,R) and some {h1, . . . , hn} ⊂ C(Y,R). Show that A is dense

in C(X × Y,R) in the uniform topology. (Note: The usual notation for A is C(X,R) ⊗ C(Y,R), and it is

called the tensor product of C(X,R) and C(Y,R).)
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12. A topological space is locally compact in case every point has a neighborhood whose closure is compact.

Let (X, dX) and (Y, dY ) be locally compact metric spaces, and suppose that f : X → Y is continuous and

bijective. Show that f−1 is continuous if and only if f−1(K) is compact for all compact K ⊂ Y .

13. Let (X,O) be a compact topological space. Let A and B be non-empty closed and disjoint subsets of

X. Suppose that for every b ∈ B, there exist a continuous function fb : X → [0, 1] such that fb(b) = 1 and

fb(a) = 0 for all a ∈ A. Show that there exist open sets U and V such that A ⊂ U , B ⊂ V and U ∩V = ∅.

14. Let (X,O) be a compact topological space, and let F be a set of functions real valued on X that is

equicontinuous and uniformly bounded. Define

g(x) = sup
f∈F

f(x) .

Is g(x) necessarily continuous? Prove that your answer is correct.

15. Let (X, dX) and (Y, dY ) be metric spaces with Y complete. For L ∈ (0,∞), a function f : X → Y is

L-Lipschitz in case dY (f(x), f(y)) ≤ LdX(x, y) for all x, y ∈ X.

Let S be a dense subset of X. Let g : S → Y satisfy

dY (g(x), g(y)) ≤ LdX(x, y) for all x, y ∈ S .

Show that there exists a unique L-Lipschitz function f : X → Y such that the restriction of f to S is g.

16. Let {fn}n∈N be a sequence of continuous real valued functions on [0, 1] that are continuously differen-

tiable on (0, 1). Suppose that fn(0) = 0 for all n and that there is a continuous function g : [0, 1]→ [0,∞)

such that |f ′n(x)| ≤ g(x) for all n ∈ N and all x ∈ (0, 1). Show that there exists a uniformly convergent

subsequence {fnk}k∈N.

17. Let (X, dX) and (Y, dY ) be two metric spaces. Let f : X → Y be continuous uand surjective, and

supose that

dX(x1, x2) ≤ dY (f(x1), f(x2))

for all x1, x2 ∈ X.

(a) If (X, dX) complete, must (Y, dY ) be complete? Prove this or give a counterexample.

(b) If (Y, dY ) complete, must (X, dX) be complete? Prove this or give a counterexample.

18. Let (X, d) be a metric space. If every real-vauled conttinuous function f on X has a maximum, does

this mean that X is compact? Prove your answer is correct.

19. Let (X, d) be a compact metric space. Ptove that if {U1, . . . , Uk} is an open cover of X, there there

exists a closed cover {C1, . . . , Ck} with Cj ⊂ Uj for j = 1, . . . , k.

20. Let A and B be compact subsets of a Hausdorff topological space. Prove that there exist open sets

U and V such that A ⊂ U , B ⊂ V and U ∩ V = ∅.

21. Let (X, dX) and (Y, dY ) be metric spaces and let F : X → Y be a continuous functions such that f

maps closed sets to closed sets and such that the inverse image of any point in Y is compact. Show that

f−‘(K) is compact whenever K is compact.

22. Ler {fn}n∈N be a sequence of uniformly continuous functions from R to R. Suppose that fn converges

uniformly to f . Must f be uniformly continuous?



Chapter 2

Topological Vector Spaces

2.1 Topological Vector Spaces

2.1.1 Neighborhood bases for topological vector spaces

2.1.1 DEFINITION (Topological Vector Space). A topological vector space is a vector space X over C

that is equipped with a topology of open sets O such that the maps (α, x) 7→ αx and (x, y) 7→ x + y are

continuous on C ×X and X ×X respectively. A real topological vector space is defined in the same way

except that the field C replaced by R.

Let X be a vector space. For all x ∈ X and A,B ⊂ X, define

x+B := {x+ y : y ∈ B} and A+B := {x+ y : x ∈ A, y ∈ B} . (2.1.1)

Then A+ B is said to be the Minkowski sum of A and B. For x ∈ X, let Tx denote the map from X to

X given by Tx(y) = x + y. Then T−1
x = T−x, and Tx is vector space isomorphism on X. The maps Tx,

x ∈ X, are called translations.

Likewise, for α ∈ C\{0} let Sα denote the map form X to X given by x 7→ αx. Since S−1
α = Sα−1 ,

each Sα is a vector space isomorphism on X. The maps Sα, α ∈ C\{0} are called scale transformations.

For all α ∈ C and all A ⊂ X, define

αA := {αx : x ∈ A} . (2.1.2)

Whenever (X,O) is a topological vector space, both Tx and T−1
x are continuous. Hence each Tx, x ∈ X,

is a homeomorphism on X. Likewise, each Sα, α ∈ C\{0}, is a homeomorphism on X. It follows that

U ⊂ X is open if and only if x + U = Tx(U) is open for each x ∈ X. If U is any non-empty set, and

−x ∈ U , then 0 ∈ x + U = Tx(U). Therefore, the sets in O are precisely the translates of the sets in O

that contain 0. Likewise, U ⊂ X is open if and only Sα(U) ∈ O for all α ∈ C\{0}.

2.1.2 DEFINITION (Neigborhood base at 0). Let (X,O) be a topological vector space. A neigborhood

base at 0 for the topology O is a set V ⊂ O such that 0 ∈ V for all V ∈ V , and if 0 ∈ U ∈ O, there exists

some V ∈ V such that V ⊂ U . A topologocal vector space is locally convex in case it has a neigborhood

base at 0 consisting of convex sets.

c© 2017 by the author.
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2.1.3 LEMMA. (X,O) be a topological vector space, and let V be a neighborhood base at 0 for the

topology O. Then a non-empty U ⊂ X is open if and only if for each x ∈ U , there is some V ∈ V such

that x+ V ⊂ U .

Proof. Suppose that for each x ∈ U , there is some Vx ∈ V such that x + Vx ⊂ U . Then each x + Vx is

open and writing U =
⋃
{x+ Vx : x ∈ U} displays U as a union of open sets. Hence U ∈ O.

Conversely, suppose that U ∈ O. Then for each x ∈ U , −x + U is an open set containing 0. Hence

for some Vx ∈ V , Vx ⊂ −x+ U . But then x+ Vx ⊂ U .

It is a simple matter to construct topologies O on a vector space X such that each translation map

Tx is a homeomphism on (X,O)

2.1.4 LEMMA. Let X be a vector space, and let W be a family of subsets of X that is closed under

finite intersections.

Define O to be the set of subsets U of X given by

O = ∅ ∪ {U ⊂ X : for all x ∈ U there exists Wx ∈ W such that x+Wx ⊂ U} . (2.1.3)

Then O is a topology on X, and under this topology, each of the maps Tx, x ∈ X, is continuous.

Proof. Evidently, ∅ ∈ O, and evidently an arbitrary union of sets U such that for each x ∈ U , there is

some Wx ∈ W such that x + Wx ⊂ U also has this same property. Hence O is closed under arbitrary

unions.

To see that O is closed under finite intersections, let {U1, . . . , Un} ⊂ O, and let U = ∩nj=1Uj . By

definition, for each x ∈ U , x ∈ Uj , j = 1, . . . , n, and hence there is some Wx,j such that x + Wx,j ⊂ Uj .

But then

x+

n⋂
j=1

Wx,j ⊂ U ,

and by the closure under finite intersections, ∩nj=1Wx,j ∈ W , and hence U ∈ O.

For the final statement, since T−1
x = T−x, it suffices to show that each Tx is open. By definition, the

general open set U has the form U = ∪{y + Wy : y ∈ U} for some set {Wy : y ∈ U} ⊂ W . Bu then

Tx(U) = ∪{x+ y +Wy : y ∈ U} which is open.

The condition that (x, y) 7→ x+y is continuous on X×X in the product topology is stronger than the

condition that each of the maps Tx are continuous. The latter condition amounts to separate continuity

of the map (x, y) 7→ x+ y, and for (X,O) to be a topological vector space, we require joint continuity. To

achieve this, and to ensure that the topology O provided by Lemma 2.1.4 has the other properties that

would make (X,O) is a topological vector space, and moreover is is Hausdorff, we must impose further

conditions on the sets in W . We close this section with some useful results that make direct use of the

joint continuity of the algebraic operations.

2.1.5 DEFINITION. Let X be a vector space over C. a set A ⊂ X is absorbing if for all x ∈ X, there

is a δx > 0 so that for t in(−δx, δx), tx ∈ A, or, what is the same thing, that x ∈ tA for all t > 1/δx. A

set A ⊂ X is balanced in case for all α ∈ C with |α| = 1, αA ⊂ A. (Hence every balanced set contains 0.)

2.1.6 LEMMA. In any topological vector space, every neighborhood V of 0 is absorbing.
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Proof. Let x ∈ X, and let V be a neighborhood of 0. Since 0x = 0, the continuity of scalar multiplication

implies that there exists r > 0 so that |α| < r ⇒ αx ∈ V . (For this proof, even separate continuity would

suffice.)

In a topological vector space, not every neighborhood of 0 need be balanced, but there will always be

a nieighborhood base consisting of balanced sets.

2.1.7 LEMMA. Let (X,O) be a topological vector space. Every neighborhood U of 0 contains a balanced

neighborhood V of 0, and thus that there exists a neighborhood base for O consisting of balanced sets.

Proof. By the joint continuity of scalar multiplication, there is an open set W containing 0 and an r > 0

so that αw ∈ U for all |α| < r and all w ∈ W . That is, defining D := {α : |α| < r}, DW ⊂ U . Since

DW =
⋃
α∈D αW is a union of open sets, V := DW is open and evidently balanced.

2.1.8 LEMMA. Let (X,O) be a topological vector space. For every neighborhood U of 0, there is a

balanced open set G (necessarily a neighborhood of 0) such that G+G ⊂ U .

Proof. By the joint continuity of vector addition, for x, y ∈ X, and for every neighborhood of U of 0,

there exist neighborhoods V,W of 0 such that (x + V ) + (y + W ) ⊂ (x + y + U). Let G be a balanced

neighborhood of 0 contained in V ∩W , which exists by Lemma 2.1.7. Then (x+G)+(y+G) ⊂ (x+y+U).

Specializing to x = y = 0, we have that G+G ⊂ U .

Lemmas 2.1.7 and 2.1.8 made use of the joint continuity of the algebraic operations in their proofs.

The next two theorems are consequences of these lemmas.

2.1.9 THEOREM. Let (X,O) be a topological vector space. Then X is Hausdorff if and only if {0} is

closed in X.

Proof. If X is Hausdorff, then for each x 6= 0, there is a open neighborhood Vx of x such that V cx contains

a neighborhood of 0. Choosing such a set for each x 6= 0, {0}c =
⋃
x 6=0{Vx}, which is open.

Conversely, suppose that {0} is closed in X. Let z 6= 0, and let U be a neighborhood of 0 such that

0 /∈ z + U . Then there is a balanced neighborhood G of 0 such that 0 /∈ z + G − G. Now let x, y ∈ X
with x 6= y, and put z = x − y. Then for all g1, g2 ∈ G, so that −g2 also belongs to G since G is

balanced, 0 /∈ z + G − G means that 0 6= x − y + g1 − g2, and hence y + g2 6= x + g1, which means that

(y +G) ∩ (x+G) = ∅.

2.1.10 THEOREM. Let (X,O) be a topological vector space. Let K ⊂ X be compact, and F ⊂ X be

closed, and suppose that K ∩ F = ∅. Then there exists a neighborhood V of 0 such that (K + V ) ∩ F = ∅

Proof. Let x ∈ K. Then x /∈ F , and since F is closed, there is a neighborhood U of 0 such that

(x + U) ∩ F = ∅. By Lemma 2.1.8, for each x ∈ K, there exists a balanced neighborhood Gx of 0 such

that (x+Gx +Gx) ∩ F = ∅. Then {x+Gx}x∈K is an open cover of K. Since K is compact, there exists

a finite set {x1, . . . , xn} such that

K ⊂
n⋃
j=1

(xj +Gxj ) .

Set W =
⋃n
j=1Gxj , which is an open neighbrood of 0.

For all x ∈ K, there exists j ∈ {1, . . . , n} such that x = xj + g for some g ∈ Gxj . For all w ∈ W ,

x+ w = xj + g + w ∈ xj +Gxj +Gxj . Since (xj +Gxj +Gxj ) ∩ F = ∅ (x+W ) ∩ F = ∅.
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2.1.2 Generating locally convex topologies

2.1.11 THEOREM. Let X be a vector space, and let W be a family of subsets of X such that that is

closed under finite intersections. Suppose further that: each W ∈ W is absorbing, convex and balanced,

and that for all W ∈ W , 1
2W belongs to W . Let O be defined by

O = ∅ ∪ {U ⊂ X : for all x ∈ U there exists Wx ∈ W such that x+Wx ⊂ U} .

Then (X,O) is a topological vector space, and W is a neighborhood base at 0 for this topology. Moreover,

if for all x 6= 0, there exists W ∈ W such that x /∈W , then (X,O) is a Hausdorff topological vector space.

Proof. By Lemma 2.1.4, O is a topology on X under which translation is a homeomorphism.

We now show that the map (α, x) 7→ αx is jointly continuous on (C\{0}) × (X,O). Let α0 ∈ C\{0}
and x ∈ X. It suffices to show that if U ∈ O and α0x ∈ U , then there is a δ > 0 and a W̃ ∈ W such

D(x+ W̃ ) ⊂ U where D := {α ∈ C : |α−α0| < δ}. Since α0x ∈ U ∈ O, there is some W ∈ W such that

α0x+W ⊂ U . Then

αx+
1

2
W = (α− α0)x+ (α0x+

1

2
W ) .

Since W is absorbing and balanced, for δ sufficiently small, if |α− α0| < δ, then (α− α0)x ∈ 1
2W . Then

since W is convex, αx+ 1
2W ⊂

1
2W + (α0x+ 1

2W ) ⊂ α0x+W ⊂ U . Taking W̃ = 1
2W , we have what we

sought for the scalar multiplication.

We now show that map (x, y) 7→ x + y is jointly continuous on X × X. Let x, y ∈ X, and let

U ∈ O be such that x + y ∈ U . Then there exists W ∈ W such that x + y + W ⊂ U . But then

(x+ 1
2W ) + (y + 1

2W ) ⊂ U .

Finally, by Lemma 2.1.9, (X,O) is Hausdorff in case {0} is closed. For a balanced neighborhood of 0,

x 6W is the same as 0 /∈ x+W . For each x 6= 0, choose Wx ∈ W such that 0 /∈Wx. Then {0}u =
⋃
x6=0Wx

is open.

Let X be a vector space and let V be a set of of absorbing, convex and balanced subsets of X. Since

any finite intersection of absorbing, convex and balanced sets is again absorbing, convex and balanced,

if we define W to be the set of all finite intersections of sets in V , then by Theorem 2.1.11, W is a

neighborhood base at 0 of a uniquely determined topology O on X such that (X,O) is a locally convex

topological vector space.

The vector spaces topologies that we consider below are always generated this way, and we will often

need to determine when two such topologies are comparable. The following lemma facilitates this.

2.1.12 LEMMA. Let X be a vector space. Let V1 and V2 be two sets of absorbing, convex and balanced

subsets of X, both also closed under multiplication by 2−k, k ∈ N. Let W1 and W2 be the sets of all finite

intersections of sets in V1 and V2 respectively. Let O1 and O2 be the topological vector space topologies on

X that have W1 and W2 respectively as neighborhood bases at 0. Then O1 ⊂ O2 if each V1 ∈ V1 contains

some V2 ∈ V2.

Proof. Let U ∈ O1. By definition, for each x ∈ U , there exists Wx ∈ W1 such that x+Wx ⊂ U . Suppose

that each W ∈ W1 contains some W̃ ∈ W2. In particular, writing U = ∪x∈U{x + Wx}, and letting W̃x

denote some element of W2 contained in Wx, we have U = ∪x∈U{x+ W̃x}. Thus U ∈ O2.
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Therefore, it suffice to show that whenever each V1 ∈ V1 contains some V2 ∈ V2, then each W1 ∈ W1

contains some W2 ∈ W2.

Let W1 ∈ W1. Then W1 is a finite intersection of elements of V1. Each of these contains a set in V2.

The intersection over the later sets belongs to W2, and is contained in W1.

2.1.3 Finite dimensional subspaces

Let (X,O) be a Hausdorff topological vector space. Let Y be a finite dimensional subspace of X. Let

{y1, . . . , yn} be a basis for Y . Then associated to this basis, there is the natural linear map T from Cn

into X and onto Y given by

T (α1, . . . , αn) =

n∑
j=1

αjyj , (2.1.4)

which is evidently injective as well as surjective onto Y . By the joint continuity of scalar multiplication

and vector additions, it is evident that T is continuous.

Let S be the unit sphere in Cn. That is, S consists of all (α1, . . . , αn) ∈ Cn such that
∑n
j=1 |αj |2 = 1.

Equip Cn with is usual topology. Then S is compact in Cn, and hence T (S) is compact in X. Since (X,O)

is Hausdorff, T (S) is closed and since T is injective, 0 /∈ T (S). Hence there is an open set V containing 0

that does not intersect T (S), and by Lemma 2.1.7, we may take V to be balanced.

If x ∈ T−1(V ), then ‖x‖ 6= 1 since V ∩ S = ∅. Furthermore if ‖x‖ > 1, then for some t ∈ (0, 1),

tx ∈ S, and then tT (X) = T (tx) ∈ T (S). this is impossible since V is balanced so that tT (x) ∈ V . Hence

T−1(V ) is contained in the open unit ball B(1, 0) in Cn. Therefore, V ⊂ T (B(1, 0)). By homogeneity, for

all r > 0, T (B(r, 0)) contains a neighborhood of 0 in Y . This means that T is open, and hence T−1 is

continuous.

This shows that every n dimensional subspaces Y of any Hausdorff topological vector space (X,O) is

naturally isomorphic and homeomorphic to Cn under the map T defined in (2.1.4) using any basis of Y .

In particular, all Hausdorff topological vector spaces of the same finite dimension n are homomorphically

isomorphic to one another.

Finally, let Y be any n-dimensional subspace of a Hausdorff topological vector space (X,O), and let

x ∈ X but x /∈ Y . Let {y1, . . . , yn} be a basis for Y , and note that {y1, . . . , yn, x} is linearly independent.

Let T : Cn+1 →W be the homeomorphic isomorphism induced by this basis. Note that

Y = T−1({(α1, . . . , αn, 0) : (α1, . . . , αn) ∈ Cn}) ,

and x = T−1(0, . . . , 0, 1). Evidently, T−1(x) /∈ T−1(Y ), which is a closed subspace of Cn+1. Hence there

is an neighborhood U of 0 in X such that (x+U)∩ Y = ((x+U)∩W )∩ Y = ∅, showing that x is not in

the closure of Y . Thus, Y is closed. We summarize the content of this section in a theorem:

2.1.13 THEOREM. Let (X,O) be a Hausdorff topological vector space. Let Y be a finite dimensional

subspace of X. Then Y is closed, and if {y1, . . . , yn} is any basis for Y , the map T defined by (2.1.4) is

a homeomorphic isomorphism of Cn onto Y .

Now let (X,O) be a topological vector space, not necessarily Hausdorff. Let Y be a subspace of X.

Define an equivalence relation ∼ on X by x1 ∼ x2 if and only if x1 − x2 ∈ Y . For x ∈ X, let {x}∼ denote
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the equivalence class of x. Let X/Y denote the set of equivalence classes in X. This is a vector space

with the operations α{x}∼ = {αx}∼ and {x}∼ + {y}∼ = {x+ y}∼.

The quotient topology on X/Y is the topology U consisting of those subsets U ⊂ X/Y such that the

preimage of U under the map π : x 7→ {x}∼ belongs to O. Then π is continuous from (X,O) to (X/Y,U ).

It is easy to check that (X/Y,U ) is a topological vector space. Moreover, π−1({0}∼) = Y , and so the

singleton consisting of {0}∼ alone is closed in X/Y if and only if Y is closed in X. Thus, by Lemma 2.1.9,

X/Y us Hausdorff if and only if Y is closed.

Now let Z be a finite dimensional subspace of X, and Y a closed subspace of X. Then π(Z) is a finite

dimensional subspace of X/Y , which is Hausdorff, and then by Theorem 2.1.13, π(Z) is a closed subspace

of X/Y . Then Y + Z = π−1(π(Z)) is closed in X. This proves:

2.1.14 THEOREM. Let (X,O) be a topological vector space, not necessarily Hausdorff. Let Y and Z

be subspaces of X with Y closed and Z finite dimensional. Then Y + Z is closed in X.

2.1.4 Seminorms, norms and normed vector spaces

2.1.15 DEFINITION. Let X be a vector space over C or R. A function f : X → R is convex in case

for all λ ∈ (0, 1) and all x, y ∈ X,

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) , (2.1.5)

and is subadditive in case for all x, y ∈ X,

f(x+ y) ≤ f(x) + f(y) , (2.1.6)

and is homogenous of degree one in case for all x ∈ X and α ∈ C

f(αx) = |α|f(x) . (2.1.7)

A function f : X → R is positively homogenous of degree one in case for all t ∈ [0,∞)

f(tx) = tf(x) . (2.1.8)

2.1.16 LEMMA. Let X be a vector space over C or R and let f : X → R be positively homogeneous of

degree one. Then f is convex if and only if f is subadditive.

Proof. Suppose that f is homogeneous of degree one and convex. Then

f(x+ y) = 2f

(
x+ y

2

)
≤ 2

(
1

2
f(x) +

1

2
f(y)

)
= f(x) + f(y) .

Conversely, Suppose that f is homogeneous of degree one and subadditive. Then for λ ∈ (0, 1)

f((1− λ)x+ λy) ≤ f((1− λ)x) + f(λy) = (1− λ)f(x) + λf(x) .

2.1.17 DEFINITION (Seminorm and norm). Let X be a vector space over C or R. A seminorm on X

is a function p : X → [0,∞) such that p is homogeneous of degree one and convex, or, what is the same

thing, homogeneous of degree one and subadditive. A seminorm p is a norm in case p(x) = 0 implies

that x = 0. A different notation, namely x 7→ ‖x‖ is usually used for norm functions, also sometimes for

seminorms.
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2.1.18 LEMMA. Let p be a seminorm on the vector space X. Define the set Bp by

Bp := {x ∈ X p(x) ≤ 1} . (2.1.9)

Then Bp is absorbing, balanced and convex. Moreover,

Bp = ∩r>1rBp . (2.1.10)

Proof. For x ∈ X, λ > 0, p(λx) = λp(x) < 1, so that λx ∈ Bp, for all λ < 1/p(x). Therefore, Bp is

absorbing. For x ∈ Bp, α ∈ C, |α| ≤ 1, p(αx) = |α|p(x) ≤ 1, so that αx ∈ Bp. Therefore, Bp is balanced.

For all x, y ∈ Bp, and all λ ∈ (0, 1), p((1− λ)x+ λy) ≤ (1− λ)p(x) + λp(y) ≤ 1. Therefore, Bp is convex.

To prove (2.1.10), note that x ∈ rBp if and only if r−1x ∈ Bp if and only if p(r−1x) ≤ 1. By the

homogeneity of p, p(r−1x) ≤ 1 is the same as p(x) ≤ r. Hence x ∈ ∩r>1rBp if and only if p(x) ≤ r for all

r > 1, and this means that p(x) ≤ 1.

It turns out that there is a one-to-one correspondence between absorbing, balanced, convex sets V in

X with the property that V = ∩r>1rV , and seminorms p on X, as the lemmas show.

2.1.19 LEMMA. Let V be any absorbing, convex set in X. Define a function pV : X → [0,∞) by

pV (x) = inf{t > 0 : x ∈ tV } . (2.1.11)

Then pV is subadditive and positivel homogeneous of degree one. If morover V is balanced, then pV is a

seminorm on X.

Proof. Since V is absorbing, pV (x) < ∞ for all x ∈ X. Next, let x, y ∈ X. Let t, s be such that x ∈ tV
and y ∈ sV . That is, t−1x, s−1y ∈ V . Since V is convex, (1 − λ)t−1x + λs−1y ∈ V for all λ ∈ (0, 1).

Define λ = s/(t+ s). Then we have x+ y ∈ (t+ s)V . Therefore, pV (x+ y) ≤ pV (x) + pV (y).

For all r, t > 0,

t(rx) ∈ V ⇐⇒ (tr)x ∈ V

and therefore pV (rX) = rpV (x). This porves that pV is positively homogeneous of degree one, and

completes the proof of the first part of the lemma.

Now suppose that V is balanced. Then pV (αx) = pV (x) when |α| = 1. Then for r > 0 and α ∈ C,

α = 1, for all x ∈ X,

pV (rαx) = rpV (αx) = rpV (x) = |rα|pv(x) .

This shows that pV is homogeneous of degree one. Altogether, we have shown that pV is a seminorm.

2.1.20 LEMMA. Let V be any absorbing, balanced, convex set in X. Suppose also that V = ∩r>1rV .

Let pV be the seminorm defined by (2.1.11), and then let BpV be the absorbing, balanced, convex set defined

by (2.1.9) with pV in place of V . Then V = BpV .

Proof. If x ∈ V , then pV (x) ≤ 1, and hence x ∈ BpV . If x ∈ BpV , pV (x) ≤ 1, and then x ∈ rV for all

r > 1. Since V = ∩r>1rV , x ∈ V . Thus, V = BpV .

2.1.21 LEMMA. Let V ⊂ X be absorbing, balanced and convex, and let pV be the seminorm defined in

(2.1.11). Then pV is a norm if and only if for all non-zero x ∈ X, there is some t > 0 such that x /∈ tV
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Proof. If for all non-zero x ∈ X, there is some t0 > 0 such that x /∈ tV , pV (x) = inf{t > 0 : x ∈ tV } ≥ t0,

and hence pV (x) > 0 for all x 6= 0. Conversely, if pV (x) > 0 for all x 6= 0, then for all x and all

0 < t < pV (x), x /∈ tV .

Summarizing, we have the following reuslt:

2.1.22 THEOREM. Let X be a vector space over C. For each absorbing, balanced, convex set V in X,

the function pV defined by (2.1.11) is a seminorm. Conversely, for each seminorm p, the set is absorbing,

balanced and convex. Moreover the map p 7→ Bp, with Bp defined in (2.1.9), is a bijection between the

set of seminorms on X and the set of absorbing, balanced, convex sets V ⊂ X with the property that

V = ∩r>1rV . Finally, for any absorbing, balanced and convex V ⊂ X, the seminorm pV defined in

(2.1.11) is a norm if and only if for all non-zero x ∈ X, there is some t > 0 such that x /∈ tV .

As a consequence of Theorem 2.1.11 and Theorem 2.1.22, there is a topology O on a vector space X

associated to any set P of seminorms p on X, and (X,O) is a topological vector space such that for each

p ∈P and each ε > 0, εBp ∈ O, and consequently, such that each p ∈P is continuous.

Let p be any seminorm on the vector space X. Consider the nested family of absorbing, balanced,

convex sets W = {2kBp : k ∈ Z}. Since this set is nested, it is closed under finite intersections. Then by

Theorem 2.1.11, the set O defined by (2.1.3) is a topology on X such that (X,O) is a topological vector

space. This topology is Hausdorff if and only if p is a norm.

To get a Hausdorff topology out of seminorms, one must use a sufficiently large family of them. Let

P be a set of seminorms on X. Define

WP := {2kBp : k ∈ Z , p ∈P} . (2.1.12)

Then W is closed under finite intersections and each set W ∈ W is balanced, convex and absorbing and by

Theorem 2.1.11, the set O defined by (2.1.3) is a topology on X such that (X,O) is a topological vector

space. This topology is Hausdorff if and only if for each x ∈, there is some p ∈P such that p(x) 6= 0.

2.1.23 DEFINITION. Let P be a family of seminorms on a vector space X. The weakest topology on

X that contains all translates of all of the sets in WP , as defined in (2.1.12) is called the topology on X

generated by P.

If P is a countable set of seminorms on X, then topology on X generated by P is metrizable. This

is the main content of the next theorem.

2.1.24 THEOREM. Let P be a countable family of seminorms on a vector space X, and suppose that

for each x ∈ X, there is some p ∈ P such that p(x) 6= 0. Then there is a translation is a translation

invariant metric ρ on X such that the topology induced on X by this metric coincides with the topology

on X generated by P.

Proof. Order the elements of P in a sequence {pn}n∈N. Define the function φ : [0,∞) → [0, 1) by

φ(t) = t/(1 + t). Then for s, t ≥ 0,

φ(s+ t) =
s

1 + s+ t
+

t

1 + s+ t
≤ φ(s) + φ(t) (2.1.13)
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and φ is strictly monotone increasing. For x, y ∈ X define

ρ(x, y) =

∞∑
n=1

2−nφ(pn(x− y)) , (2.1.14)

and note that the sum converges absolutely and in fact ρ(x, y) < 1 for all x, y ∈ X. It is evident that

ρ(x, y) = ρ(y, x), and since if x 6= y, there is some n such that pn(x− y) 6= 0, then ρ(x, y) 6= 0. Finally, by

the subadditivity of each pn, for all x, y, z ∈ X,

pn(x− z) = pn((x− y) + (y − z)) ≤ pn(x− y) + pn(y − z) ,

and then by (2.1.13), φ(pn(x − z)) ≤ φ(pn(x − y)) + φ(pn(x − z)). It follows that ρ satisfies the triangle

inequality, and therefore is a metric on X. Notice that by definition, for all x, y, z ∈ X,

ρ(Txy, Txz) = ρ(y, z) ,

so that ρ is translation invariant. For r > 0, let Bρ(r, 0) := {x ∈ X : ρ(x, 0) < r}.
It remains to show that for each k ∈ Z and n ∈ N, 2kBpn contains Bρ(r, 0) for some r > 0, and that

for each r > 0, Bρ(r, 0) contains a set that is open in the topology generated by P.

Consider the set 2kBpn = {x : pn(x) < 2k}. Since for each n, and each x, ρ(x, 0) ≥ 2−nφ(pn(x)),

pn(x) ≤ 2nρ(x, 0)

1− 2nρ(x, 0)

for all x such that ρ(x, 0) < 2−n. Hence for each n ∈ N , and each ε > 0, there is an rn,ε > 0 such that

pn(x) < ε whenever x ∈ B(rn,ε, 0). Taking ε = 2k, this can be written as

B(rn,2k , 0) ⊂ 2kBpn .

Next, fix r > 0 and n ∈ N. Fix N ∈ N such that 2−N < r/2. Then

ρ(x, 0) =

N∑
n=1

2−nφ(pn(x)) +

∞∑
n=N+1

2−n ≤
N∑
n=1

2−nφ(pn(x)) + r/2

Since for all t > 0, φ(t) ≤ t, if x ∈ (r/2)Bpn , then φ(pn(x)) ≤ (r/2). Now pick ` ∈ N so that 2−` < r/2,

and note that

W :=

N⋂
n=1

2−`Bpn

is in the canonical neighborhood base at 0 of the topology generated by P. By what we have noted above,

for all x ∈P, ρ(x, 0) < r. That is W ⊂ B(r, 0).

A single seminorm that is not a norm cannot generate a Hausdorff topology: If p is a seminorm but

not a norm, there is some non-zero x ∈ X such that p(x) = 0, and therefore tx ∈ Bp for all t > 0, or

what is the same, x ∈ 2kBp or all k ∈ Z. Hence x belongs to each open set containing 0. However, when

the seminorm p is norm, this problem is eliminated. A very important class of topological vector space

topologies arises this way.
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2.1.5 Normed vector spaces

2.1.25 DEFINITION (Normed vector space). A normed vector space (X, ‖ · ‖) is a vector space X

equipped with a norm function ‖ · ‖. For each r > 0 and x0 ∈ X, define

B(r, x0) = {x ∈ X : ‖x− x0‖ < r} . (2.1.15)

For each r > 0, B(r, 0) is balanced, convex and absorbing. Define W = {B(2k, 0) : k ∈ Z}, which is

nested and therefore closed under finite intersections. Then by Theorem 2.1.11, W is a neigborhood base

for a topology on X that makes it a topological vector space. This topology is called the norm topology.

The set B(r, x0) is call the open ball of radius r centered at x0.

Let (X, ‖ · ‖) be a vector space, and define a function ρ : X ×X → [0,∞) by ρ(x, y) = ‖x− y‖. Then

evidently ρ(x, y) = ρ(y, x) for all x, y, and ρ(x, y) = 0 if and only if x = y. Moreover, by the subadditivity

of the norm, for all x, y, z ∈ X,

ρ(x, z) = ‖x− z‖ = ‖(x− y) + (y − z)‖ ≤ ‖x− y‖+ ‖y − z‖ = ρ(x, y) + ρ(y, z) .

Therefore, the triangle inequality is satisfied, and hence ρ is a metric on X called the norm metric.

For all x0 ∈ X, the metric open ball of radius r about is precisely the set B(r, x0) defined in (2.1.15),

and U ⊂ X is open in the metric topology if and only if for each x0 in U , there is some r > 0 such

that B(r, x0) ⊂ U . Decreasing r if need be, we may assume that r = 2k for some k ∈ Z, and then since

B(2k, x0) = x0 +B(2k, 0), the metric topology is precisely the topology determined by the neighborhood

base W = {B(2k, 0) : k ∈ Z}.
A normed vector space is therefore not only a Hausdorff topological vector space, but the norm

topology is a metric topology, and it has a countable neighborhood base.

2.1.26 DEFINITION (Equivalent norms). Let ‖·‖0 and ‖·‖1 be two norms on a vector space X. These

norms are equivalent in case for some constant 0 < C <∞,

C‖x‖1 ≤ ‖x‖0 ≤
1

C
‖x‖1 for all x ∈ X . (2.1.16)

‖ · ‖0 and ‖ · ‖1 be two norms on a vector space X such that (2.1.16) is satisfied. For j = 0, 1, let

Bj(r, 0) be the centered open ball of radius r for the norm ‖ · ‖j . Then is equivalent to

B1(Cr, 0) ⊂ B0(r, 0) ⊂ B1(r/C, 0) (2.1.17)

for all r > 0. Therefore, two norms generate the same topology if and only if they are equivalent.

2.1.27 THEOREM. Let (X, ‖ · ‖) be a normed vector space, and let Y be a finite dimensional subspace

of X. Then Y is closed. Moreover, all norms on any finite dimensional vector space are equivalent to one

another.

Proof. since normed vector sapces are Hausforff topological vector spaces, this is immediate from Theo-

rem 2.1.13.

2.1.28 THEOREM. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ). Let BX(r, 0) and BY (r, 0) denote the open balls

of radius r > 0 in X and Y respectively. Let T be a linear transformation from X to Y . Then T is

continuous if and only if

‖T‖ := sup{ ‖Tx‖Y : x ∈ BX(1, 0) } <∞ . (2.1.18)
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Proof. Suppose that T is continuous. Then T−1(BY (1, 0)) contains BX(r, 0) for some r > 0, and hence

for all x ∈ BX(1, 0), ‖Tx‖Y ≤ 1/r. Hence ‖T‖ ≤ 1/r. Conversely, suppose that (3.1.1) is valid. Then for

all x1, x2 ∈ X and all λ > ‖x1 − x2‖X ,

‖Tx1 − Tx2‖Y = λ‖T ((x2 − x2)/λ)‖Y ≤ λ‖T‖ .

It follows that

‖Tx1 − Tx2‖Y ≤ ‖T‖‖x1 − x2‖X .

Thus, T is not only continuous, it is Lipschitz continuous.

On account of this theorem, the term bounded linear transformation is often used as a synonym for the

term continuous linear transformation when referring to transformations from one normed vector space

to another. The bounded transformations themselves are often called operators.

2.1.29 DEFINITION. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be normed vector spaces. Let B(X,Y ) denote the

vector space of continuous (bounded) linear transformations from X to Y . The function T 7→ ‖T‖, with

‖T‖ defined by (3.1.1) is called the operator norm on B(X,Y ).

The terminology in the previous definition is appropriate; it is easy to see, and left to the reader, that

the operator norm, is indeed a norm on the vector space B(X,Y )

We shall be forced to consider topologies O in vector spaces X that are not topologies coming from

norms on account a simple corollary of the following result of Riesz.

2.1.30 LEMMA (Riesz’s Lemma). Let (X, ‖ · ‖) be a normed vector space. Let Y be a proper, closed

subspace of X. Then for all α ∈ (0, 1), there exists u ∈ X, ‖u‖ = 1, such that

α ≤ inf{‖u− y‖ : y ∈ Y } .

Proof. Since Y is proper, there exists some x0 /∈ Y , and then since Y is closed, there exists some r > 0

such that B(r, x0) ∩ Y = ∅. Therefore, d := inf{‖u− y‖ : y ∈ Y } ≥ r > 0. By the definition of d, for all

α ∈ (0, 1), there exists y0 ∈ Y such that ‖x0 − y0‖ < d/α. Then, by the definition of d,

α‖x0 − y0‖ ≤ d ≤ ‖x0 − y0 − y‖ for all y ∈ Y .

That is,

α ≤
∥∥∥∥ x0 − y0

‖x0 − y0‖
− y

‖x0 − y0‖

∥∥∥∥ for all y ∈ Y .

Let u = ‖x0 − y0‖−1(x0 − y0). Notice that ‖x0 − y0‖−1y ranges over all of Y as y ranges over Y .

2.1.31 COROLLARY. In every infinite dimensional normed vector space (X, ‖ · ‖), there exists an

infinite sequence {un}n∈N such that ‖un‖ = 1 for all n, but from which no convergence subsequence can

be extracted. In other words, the closed unit ball in an infinite dimensional normed vector space is never

sequentially complete.

Proof. The sequence {un}n∈N is constructed inductively as follows: Pick some u1 ∈ X with ‖u1‖ = 1. For

the induction, suppose that we have found vectors {u1, . . . , un} such that ‖uj‖ = 1 for each j and if j 6= k,

then ‖uj − uk‖ ≥ 1/2. Let Vn := span({u1, . . . , un}) which is is closed by Theorem 2.1.27 proper since X

is infinite dimensional. By Riesz’s Lemma, we may choose un+1 with ‖un+1‖ = 1 snd ‖un+1 − y‖ ≥ 1/2

for all y ∈ Y . In particular we have ‖uj − uj‖ ≥ 1/2 for all 1 ≤ j < k ≤ n+ 1.
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2.1.6 Topologies induced by sets of linear transformations

The usual way of constructing seminorms on X is to consider linear transformations T from X to a normed

vector space (Y, ‖ · ‖). (A particularly important example is that in which (Y, ‖ · ‖) = (C, | · |).) Then

evidently the function pT on X defined by

pT (x) = ‖Tx‖ (2.1.19)

is a seminorm, and is a norm if and only if T is injective.

Let (Y, ‖ · ‖) be a normed space and let T be any set of linear maps from X → Y . For each T ∈ T ,

let pT be defined as in (2.1.19). Let Õ be any translation invariant topology on X. Then T is continuous

from (X, Õ) to Y equipped with the norm topology if and only if for each x0 ∈ X, and each ε > 0, there

is a set U ∈ Õ such that for all x− xo ∈ U ,

‖Tx− Tx0‖ = ‖T (x− x0)‖ < ε .

Since pT (x− x0) = ‖T (x− x0)‖, for all k ∈ Z,

x ∈ x0 + 2−kBpT ⇐⇒ x− x0 ∈ 2−kBpT ⇐⇒ ‖Tx− Tx0‖ < 2−k .

Hence T is continuous on (X, Õ) if and only if if Õ contains each of the sets x0 + 2kBpT , k ∈ Z, x0 ∈ X.

This proves:

2.1.32 THEOREM. Let T be any set of linear transformations from a vector space X to a normed

space (Y, ‖ · ‖). Let P be the set of seminorms on X given by P = {pT : T ∈ T } where pT (x) = ‖T (x)‖.
Let O be the topology generated by P, as in Definition 2.1.23. Then (X,O) is a topological vector space

such that each T ∈ T is continuous from (X,O) to (Y, ‖ · ‖), and O is the weakest topology of any sort

on X such that each T ∈ T is continuous from (X,O) to (Y, ‖ · ‖).

In what follows, the case in which (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are two normed vector spaces, and

T = B(X,Y ), the set of all bounded linear transformations from X to Y , is especially important. In

many cases we shall be able to show that norm closed, norm bounded, convex sets K ⊂ X are compact

in the weak topology on X generated by T . (To say that K is norm bounded, or simply bounded, means

that there exists C <∞ such that ‖x‖ ≤ C for all x ∈ K.) This will be more useful to us if we have not

only compactness, but sequential compactness, which is the same thing if this weak topology, or at least

the relative weak topology on K is metrizable.

The following theorem gives a useful sufficient condition for weak topology generated by T to be

metrizable on bounded subsets of X.

2.1.33 THEOREM. (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are two normed vector spaces, and let T be any subset

of B(X,Y ). Suppose that T0 is a countable subset of T that is dense in T in the operator norm. Then

restricted to bounded subsets the weak topologies generated by T0 and T coincide.

Proof. Let K be a bounded subset of X. Let O0 and O be the relative weak topologies generated by T0

and T respectively. Evidently, O0 ⊂ O.
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Let C < ∞ be such that ‖x‖X ≤ C for all x ∈ K. For any T ∈ T and any ε > 0, there is T0 ∈ T0

such that ‖T − T0‖ < ε, and then for all x ∈ K,

|‖Tx‖Y − ‖T0x‖Y | ≤ ‖(T − T0)x‖Y ≤ ‖T − T0‖‖x‖ ≤ εC .

It follows that ‖T0x‖Y ≤ ‖Tx‖Y + εC for all x ∈ K. Hence for all k ∈ N, if we choose ε (and then T0) so

that ε < 2−k−1/C, 2−k−1BpT0 ∩K ⊂ 2−kBpT ∩K. By Lemma 2.1.12, O ⊂ O0.

2.2 Banach spaces

2.2.1 Banach spaces of bounded linear transformations

2.2.1 DEFINITION (Banach space). A Banach space is a normed vector space (X, ‖·‖) that is complete

in its norm topology.

2.2.2 THEOREM. Let (X, ‖ · ‖X) be a normed space, and let (Y, ‖ · ‖Y ) be a Banach space. Then

B(X,Y ), equipped with the operator norm is Banach space.

Proof. Let {Tn}n∈N be a Cauchy sequence in B(X,Y ). Then for each x ∈ X, {Tnx}n∈N is a Cauchy

sequence in Y . Since Y is complete, there exists y ∈ Y such that y = limn→∞ Tnx. Define a function T

mapping X to Y by Tx = y.

To see that T is linear, fix x1, x2 ∈ X and α1, α2 ∈ C. Then

T (α1x1 + α2x2) = lim
n→∞

Tn(α1x1 + α2x2) = α1 lim
n→∞

Tnx1 + α2 lim
n→∞

Tnx2 = α1Tnx1 + α2Tx2 .

To see that T is bounded, first observe that since |‖Tn‖−‖Tm‖| ≤ ‖Tn−Tm‖, {‖Tn‖}n∈N is a Cauchy

sequence in R, and hence a := limn→∞ ‖Tn‖ exists.

Now consider any x ∈ X with ‖x‖X < 1. By the triangle inequality,

‖Tx‖Y ≤ ‖Tnx‖Y + ‖(T − Tn)x‖Y ≤ ‖Tn‖+ ‖(T − Tn)x‖Y , (2.2.1)

and since limn→∞ ‖(T −Tn)x‖Y = 0, ‖Tx‖Y ≤ limn→∞ ‖Tn‖. This shows that T is bounded, and in fact,

‖T‖ ≤ limn→∞ ‖Tn‖. Now the same reasoning that led to (2.2.1) shows that ‖Tnx‖ ≤ ‖T‖+‖(T −Tn)x‖Y
for all x ∈ X with ‖x‖X < 1. Therefore,

lim
n→∞

‖Tnx‖ ≤ ‖T‖ . (2.2.2)

Altogether, ‖T‖ = limn→∞ ‖Tn‖. Now considering the Cauchy sequence {Tn − T}n∈N, we conclude that

limn→∞ ‖Tn−T‖ = 0. which shows that T is the operator norm limit of the Cauchy sequence {Tn}n∈N.

An important spacial case of Theorem 2.2.2 is that in which (Y, ‖ · ‖) = (C, | · |), which is of course

the simplest example of a Banach space.

2.2.3 DEFINITION (Dual space). Let (X, ‖ · ‖) be a normed space. Let X∗ denote the set of bounded

linear transformations from (X, ‖ · ‖) to (C, | · |) and let ‖ · ‖∗ denote the operator norm on X∗. Then

(X∗, ‖ · ‖∗) is a Banach space called the dual space to (X, ‖ · ‖). The norm ‖ · ‖∗ is called the dual norm.

Elements of X∗ are referred to as bounded linear functionals on X. Applying the same construction to

(X∗, ‖ · ‖∗) we obtain the second dual (X∗∗, ‖ · ‖∗∗), which is also a Banach space.
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There is a natural embedding of X into X∗∗: For each x ∈ X, define the function φx on X∗ by

φx(L) = L(x) for all L ∈ X∗ . (2.2.3)

It is evident that φx is a linear functional from X∗ to C, and for all x ∈ X, L ∈ X∗, |φx(L)| = |L(x)| ≤
‖L‖∗‖x‖. Therefore φx is bounded, so that φx ∈ X∗∗, and in fact,

‖φx‖∗∗ ≤ ‖x‖ .

Thus, the map x 7→ φx is a contractive linear map from (X, ‖ · ‖) into (X∗∗, ‖ · ‖∗∗), which is a Banach

space. The results of the next section show that this contractive map is actually an isometry, so that

every normed vector spaces is isometrically embedded into a Banach space in a canonical manner. We

may identify the closure of the image as the completion of (X, ‖ · ‖).

2.2.2 The real Hahn-Banach extension theorem

In this section we consider real vector spaces X. Every complex vector space X is also a vector space over

R, only now, for each non-zero x ∈ X, x and ix are linearly independent, and in the next section we shall

extend the results of this section to complex vector spaces through this connection.

2.2.4 LEMMA (Helly’s Lemma). Let X be a real vector space, and let V be a subspace of X. Let x ∈ X,

x /∈ V , and let W = span({x}∪V ), so that V is a subspace of W of co-dimension 1. Let p be a function on

X with values in [0,∞) that is sub-additive; i.e., p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X, and is postitively

homogeneous of degree one; i.e., such that p(tx) = tp(x) for all t ≥ 0 and all x ∈ X.

Let L be a linear functional on V such that

L(y) ≤ p(y) for all y ∈ V . (2.2.4)

Then there exists an extension L̃ of L as a linear functional to W such that L(w) ≤ p(w) for all w ∈W .

2.2.5 Remark. In many, but not all, applicartions, p(x) will be norm on X; i.e., p(x) = ‖x‖. Then of

course ‖ · ‖ is sub-additive, and it is homogenous of degree one; i.e., p(λx) = |λ|p(x) for all αinR, and not

only p(tx) = tp(x) for all t ≥ 0 which is what we shall use in the proof. In particular, p need not even be

a semi-norm. We also do not require that p(x) > 0 for x 6= 0. This is true when p is a norm, but it has

no role in the proof.

Proof of Helly’s Lemma. Let y1, y2 ∈ V . By the subadditivity of p, ,

L(y1)− L(y2) = L(y1 − y2) ≤ p(y1 − y2) = p((y1 + x)− (y2 + x)) ≤ p(y1 + x) + p(−y2 − x) .

Rearranging terms, to bring all y2 terms to the left, and all y1 terms to the right,

−L(y2)− p(−y2 − x) ≤ −L(y1) + p(y1 + x) .

Since y1, y2 are arbitrary,

a := sup
y∈V
{ −L(y)− p(y + x)} ≤ inf

y∈V
{ −L(y) + p(−y − x)} =: b .
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Pick any λ̃ ∈ [a, b]. Define L̃(y + tx) = L(y) + tλ̃. Then for t > 0,

L̃(y + tx) = t[L(y/t) + λ̃] ≤ t[L(y/t)− L(y/t) + p(y/t+ x)] = p(y + tx) ,

while for t < 0,

L̃(y + tx) = t[L(y/t) + λ̃] ≥ t[L(y/t)− L(y/t)− p(−y/t− x)] = |t|p(−y/t− x) = p(y + tx) ,

Hence, for all t ∈ R, and all y ∈ V , |L̃(y + tx)| ≤ p(y + tx).

2.2.6 THEOREM (The Real Hahn-Banach Extension Theorem). Let X be a real vector space, and let

Y be a subspace of X. Let p be a function on X with values in [0,∞) that is sub-additive and postitively

homogeneous of degree one.

Let L be a linear functional on Y such that for some L(y) ≤ p(y) for all y ∈ Y . Then there exists a

linear functional L̃ on all of X such L̃(x) ≤ p(x) for all x ∈ X and such that L̃y = Ly for all Y ∈ Y .

Proof. Consider the set of pairs (V,LV ) of subspaces V of X and LV on V with LV (v) ≤ p(v) for all

v ∈ V . Partially order this set of pairs so that (V,LV ) ≺ (W,LW ) in case V ⊂ W and LW
∣∣
V

= LV . By

Zorn’s Lemma, since every linearly ordered chain containing (Y,L) has a maximal element, the set of all

such pairs has a maximal element (L̂, X̂) (V,LV ). By Lemma 2.2.4, X̂ = X, or else (L̂, X̂) would not be

maximal.

We now give an important geometric application of the Hahn-Banach extension that uses its full

generality.

2.2.7 THEOREM (Hahn-Banach Separation Theorem). Let (X,O) be a real locally convex topological

vector space.

(1) Let A and B be convex, non-empty subsets of X with A open, and A ∩ B = ∅. Then there exists a

continuous linear functional L on X such that for all x ∈ A and y ∈ B,

L(x) < 1 ≤ L(y) . (2.2.5)

(2) Let K and F be convex, non-empty subsets of X with K compact, and F closed, and K ∩F = ∅. Then

there exists a continuous linear functional L on X such that for all x ∈ A and y ∈ B,

L(x) < 1 ≤ L(y) . (2.2.6)

Proof. We first prove (1). Choose x0 ∈ A and y0 ∈ B, which is possible since A and B are non-empty.

Define z0 := y0 − x0 and C = A−B + z0 (where A−B denotes A+ (−1)B). C is open and convex, and

since −z0 ∈ A−B, 0 ∈ C. Since A ∩B = ∅, z0 /∈ C.

Since C is a neighborhood of 0, by Lemma 2.1.6, C is absorbing so that for all x ∈ X, there is some

t ∈ (0,∞) such that x ∈ tC. Therefore, we may define a function pC on X with values in [0,∞) by

pC(x) = inf{ r > 0 : x ∈ rC } , (2.2.7)

and since C is convex, Lemma 2.1.19 says that pC is subadditive and positively homogeneous of degree

one. Also since C is convex, for r ∈ [0, 1], rC ⊂ C, and hence z0 /∈ rC for any r < 1. Therefore, pC(z0) ≥ 1
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Define a linear functional L0 on span({z0}) by L0(tz0) = 1. Then for t > 0, L0(tz0) = t ≤ tp(z0) =

p(tz0), whicle for t ≤ 0, L0(tz0) = t ≤ p(tz0) is trivially true. Hence L0 ≤ p in span({z0}). By

Theorem 2.2.6, there exists an extension L of L0 to all of X such that L ≤ pC on all of X.

Let x ∈ A and y ∈ B. Then x−y+z0 ∈ C, which is open, and hence for some ε > 0, (1+ε)(x−y+z0) ∈
C. Therefore, pC(x− y + z0) ≤ (1 + ε)−1. Then we have L(x− y + z0) ≤ (1 + ε)−1. Rearranging terms,

L(x) ≤ L(y) + (1 + ε)−1 − L(z0) = L(y)− ε

1 + ε
.

In particular, L(x) < L(y). Define a = supx∈A{L(x)} > 0. Then L(x) ≤ a ≤ L(y) for all x ∈ A and

y ∈ B.

We now claim that L(x) < a for all x ∈ A. Suppose on the contrary that x ∈ A and L(x) = a. Since

A is open, there is a neighborhood V of 0 such that x+ V ⊂ A, and by Lemma 2.1.7, we may take V to

be ballanced. It follows that L(v) ≤ 0 for all v ∈ V . Since V is balanced, and L 6= 0, this is impossible.

Hence for all x ∈ A, L(x) < a. Replacing L by a−1L, we obtain the desired linear functional.

To complete the first part of the proof we must show that L is continuous. By Lemma 2.1.7, C

contains a balanced neighborhood W of 0. Since L ≤ PC ≤ 1 on C and hence on W , for all w ∈ W ,

L(w) ≤ 1 and −L(w) = L(−w) ≤ 1 so that |L(w)| ≤ 1. Hence 1
2W ⊂ L−1((−1, 1)), showing that L is

continuous.

We next prove (2). By Theorem 2.1.10, there is a balanced, convex neighborhood V of 0 such that

(K + V ) ∩ F = ∅. K + V is open and convex, and therefore by part (1), there exists a continuous linear

functional L such that for all x ∈ K and all y ∈ F , L(x) < 1 ≤ L(y). Now define a := maxx∈K{L(x)} > 0.

Since K is compact and L is continuus, there is some x0 ∈ K such that a = L(x0) < 1. Replacing L by

((1 + a)/2)−1L, we obtain the desired linear functional.

2.2.3 The complex Hahn-Banach extension theorem

In this section (X,O) will denote a complex locally convex topological vector space, and (XR,O) will

denote the real normed vector space obtained by regarding X as a real vector space, and equipping it with

the same topology. We write X∗ denotes the set of continuous (complex) linear functionals on (X,O),

and X∗R denotes the set of continuous (real) linear functional on (XR,O).

2.2.8 LEMMA (Murray’s Lemma). Let (X,O) be a complex normed vector space. Let R ∈ (XR,O) be

a continuous real linear functional on XR. Define the functional LR on X by

LR(x) = R(x)− iR(ix) . (2.2.8)

Then LR is complex linear and continuous on (X,O), and for all x ∈ X, R(x) = <(LR(x)), and for any

balanced neighborhood V of 0 in X,

sup{|LR(x)| : x ∈ V } = sup{|R(x)| : x ∈ V } . (2.2.9)

In particular, if the topology O on X is generated by a norm, ‖LR(x)‖ = ‖L(x)‖ for all x inX. Finally,

if R = <◦L, L ∈ X∗, then L = LR. Thus the map L 7→ <◦L is a real linear homeomorphic isomorphism

between X∗ and X∗R that is even isometric when the topology O is generated by a norm.
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Proof. Evidently, for all x1, x2 ∈ X and t1, t2 ∈ R, LR(t1x1 + t2x2) = LR(x1) + t2LR(x2). Therefore, it

suffices to show that for all x, y ∈ X, LR(x+ iy) = LR(x) + iLR(y), and this is a simple calculation. The

fact that R(x) = <(LR(x)) is evident. It follows that |R(x)| ≤ |LR(x)| for all x ∈ X. Therefore, for any

neighborhood V of 0 in X, sup{|R(x)| : x ∈ V } ≤ sup{|LR(x)| : x ∈ V }. When V is a balanced

neighborhood of 0, and x ∈ V there is some θ ∈ [0, 2π) such that eiθLR(x) > 0, and then eiθx ∈ V .

Therefore,

|LR(x)| = eiθLR(x) = LR(eiθx) = <(LR(eiθx)) = R(eiθx) ≤ sup{|R(x)| : x ∈ V } .

Since x ∈ V is arbitrary, this completes the proof of (2.2.9). If O is a norm topology, take V to be

the open unit ball in X to conclude from (2.2.9) that ‖LR‖ ≤ ‖R‖. In the general setting, first set

W = R−1((−1, 1)) which is an open neighborhood of 0 in X. By Lemma 2.1.7, there exists a balanced

neighborhood V of 0 contained in W , and then for this V , sup{|R(x)| : x ∈ V } ≤ 1. Then (2.2.9) shows

that V ⊂ L−1
R ({α ∈ C : |α| < 1}). Thus, L is continuous. Finally, if R = <◦L, then L(x) and LR(x) are

complex linear functionals that have the same real parts for all x ∈ X. Hence L = LR.

2.2.9 THEOREM (The Complex Hahn-Banach Extension Theorem). Let (X, ‖·‖) be a complex normed

vector space, and let Y be a subspace of X. Let L be a linear functional on Y such that for some C <∞,

|L(y)| ≤ C‖y‖ for all y ∈ Y . Then there exists a linear functional L̃ on all of X such that for this same

C, |L̃(x)| ≤ C‖x|| for all x ∈ X and such that L̃y = Ly for all y ∈ Y .

Proof. Define R = < ◦ L. By Lemma 2.2.8, ‖R‖ = ‖L‖, where the norms are computed on Y . By

Theorem 2.2.6, there exists a linear functional R̃ on XR such that R̃(y) = R(y) for all y ∈ Y , and such

that ‖R̃‖ = ‖R‖. Then LR̃ is a complex linear functional on X such that for all y ∈ Y ,

<(LR̃(y)) = R̃(y) = R(y) = <(L(y)) .

Replacing y by iy, yields equality of the imaginary parts as well. Therefore, LR̃(y) = L(y) for all y ∈ Y ,

and again by Lemma 2.2.8, ‖LR̃‖ = ‖R̃‖. Altogether, ‖LR̃‖ = ‖L‖.

2.2.10 THEOREM. Let (X, ‖ · ‖) be a non-trivial normed vector space. For all x ∈ X, there exists

Lx ∈ X∗ such that ‖Lx‖ = 1 and Lx(x) = ‖x‖.

Proof. Let x ∈ X, x 6= 0, and let Y be the one-dimensional subspace X spanned by x. The general

element of Y has the form αx, α ∈ C. Define a linear functional L on Y by L(αx) = α‖x‖. Evidently

‖L‖ = 1 and L(x) = ‖x‖. Let Lx denote the norm-preserving extension of L to all of X that is provided

by the Hahn-Banach Theorem. For x = 0, the claim is true, since by the first part, unit vectors L in X∗

exist, and any such unit vector will do.

2.2.11 THEOREM. Let (X, ‖ · ‖) be a normed vector space. For x ∈ X, let φx denote the element of

X∗∗ given by φx(L) = L(x) for all L ∈ X∗. The map x 7→ φx is an isometric imbedding of X into X∗∗.

Proof. We have already observed that x 7→ φx is linear and that ‖φx‖ ≤ ‖x‖. Let Lx be an element of X∗

such that ‖Lx‖∗ = 1 and Lx(x) = ‖x‖. Then φx(Lx) = Lx(x) = ‖x‖, and hence ‖φx‖ ≥ ‖x‖. Altogether,

we have the isometry ‖φx‖ = ‖x‖.
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2.2.12 DEFINITION (Natural isometry, reflexive). The map x 7→ φx described in Theorem 2.2.11 is

called the natural isometry embedding X in X∗∗. A Banach space (X, ‖ · ‖) is reflexive in case every the

natrual isometry is surjective.

Theorem 2.2.11 provides a natural way to complete a normed vector space that is not a Banach space:

Identify it with its image in the Banach space X∗∗ under the isometric map x 7→ φx. The closure of the

image in X∗∗ is a Banach space in which the isometric image of X is dense.

A number of applications of the Hahn-Banach Theorem will be made it what follows, but a simple

alternative proof of Lemma 2.1.30, Riesz’s Lemma, is worthwhile to give at this point. Recall that

Lemma 2.1.30 says that if (X, ‖ · ‖) be a normed vector space, and Y be a proper, closed subspace of X,

then for all α ∈ (0, 1), there exists u ∈ X, ‖u‖ = 1, such that

α ≤ inf{‖u− y‖ : y ∈ Y } .

Second Proof of Lemma 2.1.30. Let x ∈ X, x /∈ Y . Define L on span(Y ∪ {x}) by L(y + αx) = α for all

y ∈ Y , α ∈ C. Then ker(L) = Y which is closed in span(Y ∪{x}), and hence is bounded on span(Y ∪{x}).
By the Hahn-Banach Theorem, there is a non-zero element L̃ of X∗ that is zero on all of Y .

By the definition of ‖L̃‖∗, for all α ∈ (0, 1), there is a unit vector u ∈ X such that L̃(u) is real and

L̃(u) ≥ α‖L̃‖∗. Since for all y ∈ Y ,

α‖L̃‖∗ ≤ L̃(u) = L̃(u− y) ≤ ‖L̃‖∗‖u− y‖ ,

inf{‖u− y‖ : y ∈ Y } ≥ α.

2.2.13 THEOREM. Let (X, ‖ · ‖) be a reflexive Banach space space. For all L ∈ X∗, there exists a unit

vector x ∈ X such that L(x) = ‖x‖.

Proof. By Theorem 2.2.10, there exists φ ∈ X∗∗ such that ‖φ‖∗∗ = 1 and φ(L) = ‖L‖. Since X is refexive,

for some x ∈ X with ‖x‖ = 1, φ = phix. Thus, L(x) = φx(L) = ‖L‖.

It is a much deeper theorem of James that the converse of Theorem 2.2.13 is also true: If for every

L ∈ X∗ there exists a unit vector x ∈ X such that L(x) = ‖L‖, then X is reflexive.

2.2.14 THEOREM. Let (X, ‖·‖) Banach space space. Then X is reflexive if and only if X∗∗ is reflexive.

Proof. Let f ∈ X∗∗∗. The natrual isometry of X into X∗∗ x 7→ φx is continuous (even isometric), and

hence x 7→ f(φx) is continuous, so that for some Lf ∈ X∗, for all x ∈ X,

f(φx) = Lf (x) = φx(Lf ) . (2.2.10)

Suppose that X is reflexive. Then every φ ∈ X∗∗ has the form φx for some x ∈ X, and then (2.2.10)

becomes

f(φ) = φ(Lf ) . (2.2.11)

which shows that every element f of X∗∗∗ is an evaluation functional on X∗∗. Hence X∗ is reflexive.

For the converse, suppose that X∗ is reflexive. If X is not reflexive, the image of X under the isometric

embedding x 7→ φx is a proper closed subspace V of X∗∗, and then by the Hahn-Banach Theorem, there
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exists a non-zero f ∈ X∗∗∗ that vanishes on V . Since X∗ is reflexive, there exists Lf ∈ X∗ such that

(2.2.11) is true for all φ ∈ X∗∗. But then

0 = f(φx) = Lf (φx) = Lf (x)

for all x, so that Lf = 0, and hence f = 0. This contradiction shows that V cannot be a proper subspace

of X∗∗.

2.2.4 The weak and weak-∗ topologies

2.2.15 DEFINITION. Let (X, ‖ · ‖) be a normed space, and let (X∗, ‖ · ‖∗) be its dual. For x ∈ X,

let φx ∈ X∗∗ be given by φx(L) = L(x) for all L ∈ X∗. The weak topology on X is the weakest topology

on X under which each L ∈ X∗ is continuous. The weak-∗ topology on X∗ is the weakest topology on X

under which each of the functionals φx, x ∈ X, is continuous

By Theorem 2.1.32, the weak topology makes X a topological vectors space, and the weak-∗ topology

makes X∗ a topological vector space. By Theorem 2.1.33, if X∗ is separable, then the relative weak

topology is metrizable on bounded subsets of X, and if X is separable, then the relative weak-∗ topology

is metrizable on bounded subsets of X∗

The sets

VL1,...,Ln,ε =

n⋂
j=1

{x ∈ X : |Lj(x)| < ε} (2.2.12)

where {L1. . . . , Ln} is a (finite) subset of X∗ and ε > 0, constitute a neighborhood base at 0 for the weak

topology on X. It is left as a simple exercise to show that in fact one may require that {L1. . . . , Ln}
be linearly independent, and then this smaller set of neighborhoods is still a base at 0. Partly forr this

reason, the following lemma will be useful:

2.2.16 LEMMA. Let (X, ‖ · ‖) be a normed space. Let {L1, . . . , Ln} be a linearly independent subset of

X∗. Then there exists a set {x1, . . . , xn} of X such that Li(xj) = δi,j for all 1 ≤ i, j ≤ n (and therefore

linearly independent). Moreover, defining

Z :=

n⋂
j=1

ker(Lj) and W := span({x1, . . . , xn}) , (2.2.13)

X = Z ⊕W .

Proof. If n = 1 the claim is trivial. Suppose the claim is true for all linearly independent sets of n − 1

vectors in X∗, and let {y1, . . . , yn−1} be such that Li(yj) = δi,j for all 1 ≤ i, j ≤ n− 1. If
∑n−1
j=1 αjyj = 0,

then for each k = 1, . . . , n − 1, αk = Lk(
∑n−1
j=1 αjyj) = 0, and so {y1, . . . , yn−1} is linearly independent.

For all x ∈ X,

Ln(x) = Ln

x− n−1∑
j=1

Lj(x)yj

+

n−1∑
j=1

Ln(yj)Lj(x) ,

and since x−
∑n−1
j=1 Lj(x)yj belongs to

⋂n−1
k=1 ker(Lk), if it were the case that

n−1⋂
k=1

ker(Lk) ⊂ ker(Ln) ,
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then it would follow that Ln −
∑n−1
j=1 Ln(yj)Lj = 0, and this would contradict the linear independence of

{L1, . . . , Ln}. Hence there exists xn ∈
⋂n−1
k=1 ker(Lk) such that Ln(xn) = 1. For each j = 1, . . . , n − 1,

define xj = yj − Ln(yj)xn. One readily checks that Li(xj) = δi,j for all 1 ≤ i, j ≤ n.

Finally, for all x ∈ X, x =

x− n∑
j=1

Lj(x)xj

+

 n∑
j=1

Lj(x)xj

, and the first term on the right

belongs to Z, and the second to W . If x ∈ Z ∩W , x =
∑n
j=1 αj and for each k, αk = Lk(x) = 0 and

hence x = 0. Therefore, X = Z ⊕W .

One reason it is often useful to consider the weak-∗ topology on X∗ is on account of the following

Theorem:

2.2.17 THEOREM (Alaoglu’s Theorem). Let (X, ‖ · ‖) be a normed space, and let B denote the closed

unit ball in X∗. Then B is compact in the weak-∗ topology.

Proof. For each x ∈ X, define Dx = {z ∈ C |z| ≤ ‖x‖} which is a compact subset of C. By Tychonov’s

Theorem, D :=
∏
x∈X Dx, which consists of all complex values functions φ on X such that for each

x ∈ X, φ(x) ∈ Dx, is compact in the product topology. Let L denote the subset of D consisting of

linear functions. It is easy to that  L is a closed subset of D . (The same argument that we applied in the

Hilbert space setting can be made here.) Hence L is compact, and the elements of L are precisely the

elements of B. Moreover, the product topology on D is precisely the weakest topology that makes all of

the evaluation maps φ 7→ φ(x) continuous, but this is precisely the weak-∗ topology on B.

2.2.18 COROLLARY (Corollary to Alaoglu’s Theorem). Let (X, ‖ · ‖) be a reflexive Banach space, B

denote the closed unit ball in X. Then B is compact in the weak topology.

Proof. Since X is isometric with X∗∗ under the natural embedding, the weak topology on X is the same

as the weak-∗ topology on X∗∗.

If (X, ‖ · ‖) is reflexive, then the closed unit ball in X is weakly compact since we may then identify

the weak topology on X with the weak-∗ topology on X∗∗. But when (X, ‖ · ‖) is reflexive, the unit ball

in X need not be weakly compact.

While the weak topology on a Banach space (X, ‖·‖) is weaker than the norm topology, and strictly so

when X is infnite dimensional (since then the norm topology is not metrizable), every weakly continuous

function is norm continuous, but not vice-versa. However, by the very definition of the weka topology,

every norm continuous linear functional is weakly continuous.

There is an important reult of this type for subsets of X: While the class of weakly open sets is

strictly smaller than the class of norm closed sets, every norm closed convex set is also weakly closed.

2.2.19 DEFINITION (Half-space). Let (X, ‖ ·‖) be a Banach space. A set H ⊂ X is a closed half-space

of X in case for some a ∈ R and L ∈ X∗,

H = { x ∈ X : <(L(x)) ≥ a } . (2.2.14)

By the definition of the weak topology, the functions x 7→ <(L(x)) is weakly continuous, and hence

H is weakly closed, and therefore norm closed.
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2.2.20 THEOREM (Mazur’s Theorem). Let (X, ‖ · ‖) be a Banach space. Every norm closed convex set

K ⊂ X is the intersection of the half-spaces containing K. In particular, every norm closed convex set K

is also weakly closed.

Proof. Regard (X, ‖ · ‖) as a real Banach space (XR, ‖ · ‖). Let z ∈ Kc. Then {z} is compact and convex

in a trivial manner, while K is closed and convex, and {z}∩K = ∅. By the Real Hahn-Banach Separation

Theorem, there is a continuous linear functional Rz on (XR, ‖ · ‖) such that and an ε > 0 such that for all

y ∈ K,

Rz(z) + ε ≤ 1 ≤ Rz(y) .

Thus, Hz := { x ∈ X : Rz(x) ≥ 1 } contains K, and does not contain z. By Murray’s Lemma.

Lemma 2.2.8, there exists a complex contiuous linear functional on (X, )̧) such that R = <◦L, and hence

Hz{ x ∈ X : <(Lz(x)) ≥ 1 }, which is manifestly closed. Thus, K =
⋂
z∈Kc Hz, and this displays K as

the intersection over a family of weakly closed sets.

In particular, the norm closed unit ball in a Banach space X is also weakly closed. The unit ball in its

dual X∗ is closed in the weak-∗ topology since the weak-∗ topology is Hausdorff, and it is weak-∗ compact

by Alaglu’s Theroem. However, one can give a more elementary proof of this fact as follows: Let B be

the unit ball in X∗. If L ∈ X∗∗ and L /∈ B, then there exists a unit vector z ∈ L such that <(L(z)) > 1.

But |M(z)| ≤ 1 for all M ∈ B. Hence

HL := {M ∈ X∗ : <(M(x)) ≤ 1} = {M ∈ X∗ : <(φx(M)) ≤ 1}

is weak-∗ closed, contains B, and does not contain L. Therefore,

B =
⋂
L/∈B

HL

is weakly closed.

2.2.21 THEOREM. Let (X, ‖·‖X) and (Y, ‖·‖Y ) be Banach spaces, with X reflexive. Let T ∈ B(X,Y ).

Let K ⊂ X be convex, bounded and norm closed. Then T (K) is convex, bounded and norm closed in Y .

Proof. By Mazur’s Theorem, K is a weakly closed subset of rB, for some r > ∞ where B is the closed

unit ball in X. By Corollary 2.2.18 to Alaoglu’s Theorem, K is weakly compact. By Theorem 2.2.27, T

is weak-weak contiuous, and hence T (K) is weakly compact in Y . Since the weka topology is Hausdorff,

T (K) is weakly closed, and therefore, norm closed. A linear image of a convex set is evidently convex, so

that T (K) is convex, and ‖Tx‖Y ≤ ‖T‖‖x‖X for all x ∈ K, so that T (K) is bounded.

2.2.5 The uniform boundedness principle and related theorems

2.2.22 THEOREM. Let (X, ‖ · ‖X) be a Banach space, and let (Y, ‖ · ‖Y ) be a normed space. Let

T ⊂ B(X,Y ). For each T in T , let ‖T‖ denote the operator norm of T . Suppose that for all x ∈ X,

sup
T∈T
{‖Tx‖Y } <∞ . (2.2.15)

Then

sup
T∈T
{‖T‖} <∞ . (2.2.16)
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Proof. For n ∈ N, define En =
⋂
T∈T

{x ∈ X : ‖Tx‖Y ≤ n} = {x ∈ X : sup
T∈T
{‖Tx‖Y } ≤ n}. Since for

each T , {x ∈ X : ‖Tx‖Y ≤ n} is closed, En is closed, and by (2.2.15),
⋃
n∈N

En = X. By Baire’s Theorem,

for some n, the interior of En is non-empty.. Hence for some n ∈ N, r > 0 and x0 ∈ X, B(r, x0) ⊂ En.

That is, if ‖x‖X ≤ 1, and 0 ≤ s < r, x0 + sx ∈ En. Therefore, for all T ∈ T ,

s‖Tx‖Y = ‖T (sx− x0) + Tx0‖Y ≤ n+ ‖Tx0‖ .

Define C = supT∈T {‖Tx0‖Y } which is finite by (2.2.15). Then ‖Tx‖Y ≤ (n + C)/s for all x with

‖x‖X ≤ 1, and this means that ‖T‖ ≤ (n+ C)/r, showing that supT∈T {‖T‖} ≤ (n+ C)/r.

2.2.23 COROLLARY. Let (X, ‖ · ‖X) be a Banach space, and let (Y, ‖ · ‖Y ) be a normed space. Let T

be a linear transformation from X to Y such that L ◦ T ∈ X∗ for all L ∈ Y ∗. Then T ∈ B(X,Y ).

Proof. Define A = {L ◦ T : L ∈ Y ∗ , ‖L‖Y ∗ = 1}, which, by hypothesis, is set of continuous linear

transformations form (X, ‖ · ‖X) to (C, | · |), By the definition of ‖ · ‖Y ∗ ,

sup
L◦T∈A

{|L(T (x))|} ≤ ‖T (x)‖Y } <∞ .

By the Uniform Boundedness Principle, C := supf◦T∈A{‖L ◦ T‖Y ∗} < ∞. Thereofre for all unit vectors

x ∈ X and L ∈ Y ∗, |L(T (x))| ≤ C, and this shows that ‖T‖ ≤ C.

2.2.24 DEFINITION (Weakly bounded). Let (X, ‖ · ‖X) be a Banach space. A ⊂ X is weakly bounded

in case for every weak neighborhood U od 0, there is an r <∞ such that A ⊂ rU .

2.2.25 COROLLARY. (X, ‖ · ‖X) be a Banach space. A ⊂ X is wekaly bounded if and only if it is

norm bounded.

Proof. Suppose A is norm bounded: For some C < ∞, ‖x‖ ≤ C for all x ∈ A. Let U be any weakly

open set containing 0. Then U contain VL1,...,Ln,ε for some {L1, . . . , Ln} ⊂ X∗ and ε > 0. Let m :=

max{‖L1‖∗, . . . , ‖L1‖∗}. Then for all x ∈ A, j = 1, . . . , n, |Lj(x)| ≤ ‖Lj‖∗‖x‖ ≤ mC. Therefore, if

r > mC/ε, x ∈ VL1,...,Ln,ε ⊂ U . Thus, A is weakly bounded.

Conversely, let x 7→ φx be the natural embedding of X into X∗∗. Suppose A is weakly bounded. Then

for each L ∈ X∗, there is some rL < ∞ so thet A ⊂ rLVL,1, which is the same as |φx(L)| = |L(x)| ≤ rL

for all x ∈ A. That is,

sup
x∈A
|{|φx(L)|} = sup

x∈A
|{|L(x)|} <∞ .

By the Uniform Boundedness Principle, supx∈A |{‖φx‖} <∞, but, as a consequence of the Hahn-Banach

Theorem, for each x, ‖φx‖ = ‖x‖. Thus, weak boundedness implies strong boundedness.

Corollary 2.2.25 says that in a Banach space, where one might expect two distinct notions of bound-

edness – norm boundedness and weak boundedness – there is onty one. There are also fewer dicrinct

classes of linear transformations than one might expect.

2.2.26 DEFINITION (Mixed continuity). Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces. Let T be a

linear transformation from X to Y
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(1) T is weak-weak continuous in case T is continuous when X and Y are equipped with their weak

topologies.

(2) T is strong-strong continuous in case T is continuous when X and Y are equipped with their norm

topologies.

(3) T is strong-weak continuous in case T is continuous when X is equipped with its norm topology and

Y is equipped with its weak topology.

(4) T is weak-strong continuous in case T is continuous when X is equipped with its weak topology and

Y is equipped with its norm topology.

The next theorem says that the first three types of continuity are the same, and that the fourth

type of continuity is extremely resrictive in an infinite dimensional setting. The key step is to prove that

strong-weak continuity implies strong-strong continuity, but this follows easily from Corollaray 2.2.23, and

hence this thoerem is another fairly direct conseqeunce of the Uniform Boundedness Principle.

2.2.27 THEOREM. (X, ‖ · ‖X) be a Banach space, and let (Y, ‖ · ‖Y ) be a normed space. Let T be a

linear transformation from X to Y . Then the following are equivalent:

(1) T is strong-strong continuous.

(2) T is weak-weak continuous.

(3) T is strong-weak continuous.

Moreover, T is weak-strong continuous if and only if for some n ∈ N, there exists {L1, . . . , Ln} ⊂ X∗

and {y1, . . . , yn} ⊂ X such that for all x ∈ X,

Tx =

n∑
j=1

(Lj(x))yj . (2.2.17)

Proof. Suppose that T is strong-strong continuous, and therefore bounded. Let {L1, . . . , Ln} be any

finite subset of Y ∗, and let ε > 0. We must show that T−1(VL1,...,Ln,ε) is weakly open. Note that since

|Lj(T (x))| = |T ∗Lj(x)|, max1≤j≤n{|Lj(T (x)|} < ε ⇐⇒ max1≤j≤n{|T ∗Lj(x)|} < ε. Therefore,

T−1(VL1,...,Ln,ε) = VT∗L1,...,T∗Ln,ε ,

which is open. Thus whenwever T is strong-strong continuous, T is weak-weak continuous.

Since the norm topology is stronger than the weak topology, weak-weak continuity implies strong

weak continuity.

Suupose that T is strong-weak continuous. Since every L ∈ X∗ is weakly continuous by the definition

of the weak topology, L ◦ T is continuous on X equipped with is norm topology. That is, L ◦ T ∈ X∗.
Then by Corollary 2.2.23, T is bounded, and hence strong-strong continuous. This completes the proof of

the equivalence of (1), (2) and (3).

Finally, suppose that T is weak-strong continuous. Then for some {L1, . . . , Ln} ⊂ Y ∗ and some ε > 0,

VL1,...,Ln,ε ⊂ T−1(BY (1, 0)) .

Let Z =
⋂n
j=1 ker(Lj), and note that Z ⊂ VL1,...,Ln,ε. If z ∈ Z, then tz ∈ Z for all t ∈ R. Then

|t|‖Tz‖Y = ‖T (tz)‖Y < 1 for all t, and this means that Tz = 0. We may assume without loss of
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generality that {L1, . . . , Ln} is linearly independent. By Lemma 2.2.16, there exists a set {x1, . . . , xn}
such that Lj(xj) = δi,j for 1 ≤ i, j ≤ n. Then for all x ∈ X, x −

∑n
j=1 Lj(x)xj ∈ Z, and hence

T (x) = T
(∑n

j=1 Lj(x)xj

)
=
∑n
j=1(Lj(x))Txj . This proves (2.2.17) with yj = Txj for j = 1, . . . , n.

Conversely, any operator of the form (2.2.17) is weak-strong continuous since each Lj is weakly

continuous, and scalar multiplication continuous and vector addition are norm continuous.

2.2.28 THEOREM. Let (X, ‖·‖X) and (Y, ‖·‖Y ) be Banach spaces, with X reflexive. Let T ∈ B(X,Y ).

Let K ⊂ X be convex, bounded and norm closed. Then T (K) is convex, bounded and norm closed in Y .

Proof. By Mazur’s Theorem, K is a weakly closed subset of rB, for some r > ∞ where B is the closed

unit ball in X. By Corollary 2.2.18 to Alaoglu’s Theorem, K is weakly compact. By Theorem 2.2.27, T

is weak-weak contiuous, and hence T (K) is weakly compact in Y . Since the weka topology is Hausdorff,

T (K) is weakly closed, and therefore, norm closed. A linear image of a convex set is evidently convex, so

that T (K) is convex, and ‖Tx‖Y ≤ ‖T‖‖x‖X for all x ∈ K, so that T (K) is bounded.

2.2.29 THEOREM. Let (X, ‖ · ‖) be a Banach space. Let {xn}n∈N be a sequence in X. Then {xn}n∈N

converges weakly to x ∈ X if and only if for all L ∈ X∗,

lim
n→∞

L(xn) = L(x) . (2.2.18)

Moreover, if {xn}n∈N is wekly convergent, then

sup
n∈N
{‖xn‖} <∞ . (2.2.19)

Proof. By definition, {xn}n∈N converges weakly to x ∈ X if and only if for every weak neighborhood V

of 0, xn ∈ x+V for all but finitely many n ∈ N. In particular, for all L ∈ X∗ and all ε > 0, xn−x ∈ VL,ε,
with is the same thing as |L(xn)− L(x)| < ε for all but finitely many n, so that (2.2.18) is valid.

Conversely if (2.2.18) is valid for all L, then for any {L1, . . . , Ln} ⊂ X∗ and any ε > 0, |Lj(xn−x)| < ε

for all but finitely many n, and thus

xn − x ∈
n⋂
j=1

VLj ,ε = VL1,...,Ln,ε

for all but finitely many n. Since the sets VL1,...,Ln,ε are a neighborhood basis at 0 for the weak topology,

this means that {xn}n∈N converges weakly to x.

Finally, by what we just proved, if {xn}n∈N converges weakly to x, then {L(xn)}n∈N is a

Cauchy sequence in C, and hence is bounded, so that for all L ∈ X∗, there exists CL < ∞
such that supn ∈ N{L(xn)} = supn ∈ N{φxn(L)} ≤ CL. By the Unifrom Boundednes Principle,

supn ∈ N{‖φxn‖} <∞, and as a consequence of the Hahn-Banach Theorem, ‖φxn‖ = ‖xn‖, thus proving

(2.2.19).

2.2.30 THEOREM (Open Mapping Theorem). Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces. Let

T ∈ B(X,Y ) be surjective. Then T is an open mapping. In particular, when T ∈ B(X,Y ) is injective as

well as surjective, its inverse belongs to B(Y,X).
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Proof. Let BX(r, 0) denote the open unit ball of radius r > 0 in X, and let BY (r, 0) denote the open unit

ball of radius r > 0 in Y , Since {BX(r, 0) r > 0} is a neighborhood base at the origin for the topology

on X, and {BY (r, 0) r > 0} is a neighborhood base at the origin for the topology on Y , if for each r > 0,

there is an s > 0 so that BY (s, 0) ⊂ T (BX(r, 0)), then T maps open sets in X to open sets in Y . moreover,

by homogeneity, to show that T has this property, it suffices to show that there is some s > 0 so that

BY (s, 0) ⊂ T (BX(1, 0)).

Since X = ∪n∈NBX(n, 0), and since T is surjective,

Y =
⋃
n∈N

T (BX(n, 0)) =
⋃
n∈N

nT (BX(1, 0)) .

By Baire’s Theorem, for some n, the interior of nT (BX(1, 0)) is non-empty. Since these sets are a

homeomorphic to one another, each of them has a non-empty interior, and hence T (BX(1, 0)) 6= ∅.
Thus, for some y0 ∈ Y , and some t > 0, BY (t, y0) ⊂ T (BX(1, 0)). In other words, of ‖y − y0‖Y < t,

then y − y0 ∈ T (BX(1, 0)). In particular, y0 ∈ T (BX(1, 0)) Then since T (BX(1, 0)) is convex,

1

2
y =

1

2
(y − y0) +

1

2
y0 ∈ T (BX(1, 0)) .

This shows that BY (t/2, 0) ⊂ T (BX(1, 0)).

What we have proved so far shows that for all y ∈ BY (t/2, 0) and all ε > 0, there is an x ∈ BX(1, 0)

such that ‖y − Tx‖Y < ε. By homogeneity, we have that for all r > 0,

for all ε > 0 , ‖y‖Y < r ⇒ there exists x ∈ BX(2r/t, 0) such that ‖y − Tx‖Y < ε . (2.2.20)

Pick y ∈ BY (t/4, 0), and then pick x1 ∈ BX(1/2, 0) so that ‖y − Tx1‖Y ≤ t/8. Now apply (2.2.20)

with y− Tx1 in place of y, and choose x2 ∈ BX(1/4, 0) such that ‖(y1− Tx1)− Tx2‖ ≤ t/16. Proceeding

inductively, we construct an infinite sequence {xn}n∈N such that for all n, xn ∈ BX(2−n−1, 0) and ‖y −
T (
∑n
j=1 xj)‖Y ≤ t2−n−2. Note the

∑∞
j=1 xj coverages to an element x ∈ BX(1, 0), and then ‖y−Tx‖Y =

limn→∞ ‖y − T (
∑n
j=1 xj)‖Y = 0. Thus y ∈ T (BX(1, 0)) whenever y ∈ BY (t/4, 0) which means that

BY (t/4, 0) ⊂ T (BX(1, 0)).

The final statement is clear since T−1 is continuous if and only if whenever U is open in X,

(T−1)−1(U) = T (U) is open in Y .

2.2.31 DEFINITION. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be normed vector spaces, and let T be a linear

transformation from X to Y , not necessarily bounded. The graph of T , Γ(T ), is the subset of X×Y given

by

Γ(T ) = {(x, Tx) : x ∈ X} .

The norm ‖(x, y)‖ := ‖x‖X + ‖y‖Y makes X × Y into a normed vector space with the obvious rules for

vector addition and scalar multiplication. A linear operator T from X to Y is said to be closed in case

Γ(T ) is norm closed in X × Y .

Beware the terminology, which is standard: while a map T is open if and only if the image under T

of every open set is open, to say that T is closed does not mean that the image under T of every closed

set is closed.
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2.2.32 THEOREM (Closed Graph Theorem). Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces. Let T

be a linear transformation from X to Y . If T is closed, then T ∈ B(X,Y ).

Proof. It is easy to see that X × Y is a Banach space in the norm ‖(x, y)‖ = ‖x‖+ ‖y‖. Then since Γ(T )

is a norm closed subspace of X × Y , it is a Banach space in this norm. The map (x, Tx) 7→ x is a linear

bijection of X with Γ(X), and since ‖x‖X ≤ ‖x‖X + ‖Tx‖Y , it is bounded. (Its operator norm is no

greater than 1.) By the Open Mapping Theorem, its inverse, which is the map x 7→ (x, Tx) is bounded.

That is, there is a finite constant C such that ‖x‖X + ‖Tx‖Y ≤ C‖x‖X , which certainly implies that the

operator norm of T is no greater than C.

The following example of the use of the Closed Graph Theorem is due to Terry Tao.

2.2.33 THEOREM. Let (X,O) be a Hausdorff topological vector space, and let ‖ · ‖1 and ‖ · ‖2 be two

norms on X such that these norm topologies are both at least as strong as O, and such that X is complete

in both norms. Then ‖ · ‖1 and ‖ · ‖2 are equivalent norms.

Proof. To say that ‖ · ‖1 and ‖ · ‖2 are equivalent norms means that the identity transformation I is

bounded from (X, ‖ · ‖1) to (X, ‖ · ‖2) and vice-versa. Note that Γ(I) = {(x, x) : x ∈ X}. Let (x, y)

belong to the closure of Γ(I). Then there is a sequence {xn}n∈N such that limn→∞ ‖xn − x‖1 = 0 and

limn→∞ ‖xn − y‖2 = 0. But then every open set U ∈ O that contains x contains xn for all but finitely

n, and every open set V ∈ O that contains y contains xn for all but finitely n. If U ∩ V = ∅, this is

impossible, and since O is Hausdorff, it must be that x = y. Hence (x, y) ∈ Γ(I). This Γ(I) is closed,

and hence I is bounded from (X, ‖ · ‖1) to (X, ‖ · ‖2). By symmetry, it is also bounded from (X, ‖ · ‖2) to

(X, ‖ · ‖1).

The utility of the closed graph theorem lies in the fact that if we seek to prove continuity of a linear

transformation T between two normed space (X, ‖ · ‖X) and (Y, ‖ · ‖Y ), we must show that whenever

limn→∞ xn = x in X, then limn→∞ Txn = Tx in Y . When the normed spaces are Banach spaces, the

closed graph theorem reduces our burden to show that if limn→∞ xn = x in X and limn→∞ Txn = y, then

y = Tx. That is we may assume that both sequences converge and need only identify the limit, as in the

proof of Theorem 2.2.33. We do not need to prove that {Txn}n∈N is convergent.

2.3 Exercises

1. Let O be the topology on R generates by the half-open intervals (x, y]. (This is clalled the lower-limit

topology, and (R,O) is called the Sorgenfrey line. Show that (R,O) is not a topological vector space over

R.

2. Let (X,O) be a topological vector space. Show that for all subsets A,B of X, A+B ⊂ A+B. Show

that if C ⊂ X is convex, then C abd C◦ are convex.

3. Let (X,O) be a topological vector space. Let A and B be compact subsets of X. Show that A+B is

compact. Let A be closed and B compact. Show that A+B is closed.

4. Let (X,O) be a topological vector space. Let L be a linear map from X to C. Show that T is continuous

if and only if ker(T ) is closed.
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5. Let (X, ‖ · ‖) be a normed vector space. Show that if X∗ is sepearable, then so is X. Show that if

(X, ‖ · ‖) is a separable, reflexive Banach space, then so is X∗. Show that in this case, the weak topology

on bounded subset of X is metrizable.

6. Let X = `∞, the space of bounded sequences x = {xn}:n∈n which, equipped with the norm ‖x‖ :=

supn∈N{|xn|} is a Banach space. Find a sequence {Ln}n∈N in the unit ball of X∗ that has no weak-

∗ convergent subsequence, showing that the unit ball B in X∗, which is weak-∗ compact by Alaoglu’s

Theorem is not sequentially weak-∗ compact.

7. Show that the norm function x 7→ ‖x‖ is lower semicontinuous on any Banach space (X, ‖ · ‖).

8. Let (X, ‖ · ‖X) be a normed vector spaces, and let (Y, ‖ · ‖Y ) be a Banach space. Suppose {Tn}n∈N is

a uniformly bounded sequence in B(X,Y ); i.e.; supn∈N{‖Tn‖} <∞. Suppose there is a dense set E ⊂ X
such that {Tnx}n∈N converges for all x ∈ E. Show that {Tnx}n∈N converges for all x ∈ X.

9. Let (X, ‖ · ‖) be a Banach space. Let X∗ be its dual and X∗∗ be the dual of X∗. Let B be the closed

unit ball in X, andl let B∗∗ be the closed unit ball in X∗∗. The natural isometrix embedding of X into

X∗∗ idetifies B with a subset of B∗∗. Show that this subset is weak-∗ dense in B∗∗. Then show that X is

reflexive if and only if B, identified with a subset of X∗∗ via the natural isometric embedding, is weak-∗
compact.

10. Let (X, ‖ · ‖) be a reflexive Banach space. Show that for every L ∈ X∗, there exists a unit vector

u ∈ X such that L(u) = ‖L‖.

11. Let (X, ‖ · ‖) be a reflexive Banach space. Let K be a closed convex subset of X. For any x0 ∈ X,

define the function F : X → [0,∞) by F (x) = ‖x− x0‖. Show that F is weakly lower semicontinuous on

X, and then show that there exists an x ∈ K such that F (x) ≤ F (y) for all y ∈ K.

12. Let X = C([0, ]) the Banach space of continuous functions f in [0, 1] with the norm ‖f‖ = max{|f(x)| :

x ∈ [0, 1]}. For a ∈ [0,∞), define

Ka :=

{
f ∈ X :

∫ 1

0

f(x)dx = 1 , f(0) = a

}
.

(a) Show that for each a ∈ R, Ka is closed and convex.

(b) For f ∈ X, define d(f,Ka) = inf{‖f − g‖ : g ∈ Ka}. Show that there is no g ∈ K0 such that

‖g‖ = d(0,K0), while there is a unique g ∈ K1 such that ‖g‖ = d(0,K1), and there are ininiftely many

g ∈ K2 such that ‖g‖ = d(0,K2).

13. Let (X, ‖ · ‖) be a Banach space. Suppose that {xn}n∈N is a sequence in X that converges to x ∈ X
in the weak topology. . Suppose that {Ln}n∈N is a sequence in X∗ that converges weakly to L ∈ X∗. Is

it necessarily the case that limn→∞ Ln(xn) = L(x)? Prove this is true or give a counter-example. Is it

necessarily the case that for some strictly increasing sequence {nk}k∈N in N that limk→∞ Lnk(xnk) = L(x)?

Prove this is true or give a counter-example.

14. Let (X, ‖ · ‖) be a Banach space. The weak-∗ topology on X∗ is no stronger than the weak topology

on X∗. When X is reflexive, the two topologoes are the same. Otherwise, the weak-∗ topology on X∗ is

strictly weaker than the weak topology on X∗. Here is one way to see this: Show that a linear functional
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φ on X∗ is weak-∗ continuous if and only if φ is in the image of the canonical embedding of X into X∗∗.

Thus, when X is not refexive, there are continuous (and hence weakly continuous) linear functionals on

X∗ that are not weak-∗ continuous.

15. Let (X, ‖ · ‖) be a Banach space. A set A ⊂ X∗ is total in case the only vector x ∈ X such that

L(x) = 0 for all L ∈ A is x = 0. Show that if X is separable, then there is a countable total set in X∗.

Show that in this case, there is even a sequence {Ln}n∈N of unit vectors in X∗ such that for all x ∈ X,

‖x‖ = supn∈N{|Ln(x)|}. Show that `∞ is not separable, but that it does contain a countable total set.

16. Let (X, ‖ · ‖) be a Banach space. Let A ⊂ X be weakly compact. Show that A is bounded.

17. (X, ‖ · ‖) be a Banach space whose dual X∗ contains a countable total set, which, without loss of

generlaity may be takesm to be a sequence {Ln}n∈N od unit vectors. Let A ⊂ X be weakly compact.

Show that

ρ(x, y) =

∞∑
n=1

2−k|Ln(y − x)|

defines a metric on A, and that the identity map on A is continuous from the relative weak topology on

A to the metric topology on A. Then, using the fact that A is weakly compact, show that the identity

map is also open, and hence that the relative weak topology and the metric topology coincide.

18. (X, ‖ · ‖) be a Banach space, and let A ⊂ X be weakly compact. Let {xn}n∈N be any sequence in A.

Let Y be the norm-closed span of {xn}n∈N, which is a separable subspace of X. Show that A∩Y is weakly

compact, and then using the separability of Y , that the relative weak topology on A∩ Y is metrizable, so

that A ∩ Y is weakly sequentially compact. Conclude that in any Banach space (X, ‖ · ‖), every weakly

compact set A is weakly sequentially compact.



Chapter 3

Hilbert Space

3.1 Hilbert Space

3.1.1 Inner product spaces

The modern definition of a Hilbert space was given by John von Neumann in 1929 during the course of

his work on the mathematical foundations of the then new quantum theory. He had gone to Götingen to

work with Hilbert on problems in mathematical logic. When he arrived, he was drawn to a seminar on

quantum theory, and embarked on a new direction.

3.1.2 Inner product spaces

3.1.1 DEFINITION (Sesqilinear form). Let H be a complex vector space. A sesqilinear form on H is

a function on H ×H with values in C such that for fixed f ∈ H, g 7→ 〈f, g〉 is a linear functional on H,

and such that for all f, g ∈ H, 〈g, f〉 = 〈f, g〉 The sesqilinear form is positive definite in case 〈f, f〉 > 0 for

all f 6= 0.

3.1.2 DEFINITION (Inner product space). An inner product space (H, 〈·, ·〉) is a complex vector space

H equipped with a positive definite sesqilinear form 〈·, ·〉 on H ×H. The norm ‖f‖ of a vector f ∈ H is

defined by

‖f‖ =
√
〈f, f〉 . (3.1.1)

The example behind these definitions is `2, the space of complex valued square-summable sequences

where for two such sequences f, g,

〈f, g〉 =

∞∑
n=1

f(n)g(n) ,

which was basic to Hilbert’s theory of “infinite matrices”.

The fundamental theorem concerning inner product spaces is that the Cauchy-Schwarz inequality is

satisfied:

59
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3.1.3 THEOREM (Cauchy-Schwarz). Let H be a vector space, and let 〈·, ·〉 be an inner product, possibly

degenerate, on H. Then for all f, g ∈ H.

|〈f, g〉|2 ≤ 〈f, f〉〈g, g〉 (3.1.2)

and, when 〈·, ·〉 is non-degenerate, so that (H, 〈·, ·〉) is an inner product space, there is equality in (3.1.2)

if and only if {f, g} is linearly dependent.

Proof. If either f = 0 or g = 0, equality holds in (3.1.2). Suppose that this is not the case. Then ‖f‖ 6= 0

and ‖g‖ 6= 0, and we may define u = ‖f‖−1f and v = eiθ‖g‖−1g for θ ∈ [0, 2π) to be chosen later. Then

‖u‖ = ‖v‖ = 1 and hence

‖u− v‖2 = 〈u− v, u− v〉 = ‖u‖2 + ‖v‖2 + 2<(〈u, v〉) = 2(1 + <(〈u, v〉)) .

Now choose θ so that <(〈u, v〉) = |〈u, v〉|, and hence |〈u, v〉| = 1− 1

2
‖u− v‖2. Multiplying through by

‖f‖‖g‖, this becomes

|〈f, g〉| ≤ ‖f‖‖g‖ − 1

2
‖ (‖g‖f − eiθ‖f‖g) ‖2 . (3.1.3)

This proves the inequality and shows, under the assumption that ‖h‖ = 0 only for h = 0, that equality

holds if and only if ‖g‖f = eiθ‖f‖g, which is the cases if and only if {f, g} is linearly dependent.

A consequence of the Cauchy-Schwarz Inequality is that the function f 7→ ‖f‖ is sub-additive on H.

That is, for all f, g ∈ H, ‖f + g‖ ≤ ‖f‖+ ‖g‖.

3.1.4 DEFINITION (Unit vectors and orthogonality). A vector u in an inner product space H is a unit

vector in case ‖u‖ = 1. Two vectors f, g ∈ H are orthogonal in case 〈f, g〉 = 0. A subset {uj}j∈J of H is

orthonormal in case for all j, k ∈J , 〈uj , uk〉 = 0 if j 6= k while 〈uj , uj〉 = 1.

By the Cauchy-Schwarz inequality, for any two unit vectors u, v ∈ H, <(〈u, v〉) ∈ [−1, 1], and hence it

makes sense to define the angle between two unit vectors in H to be arccos(<(〈u, v〉)). The angle between

two non-zero vectors f, g is defined to be the angle between their normalizations ‖f‖−1f and ‖g‖−1g;

which is consistent with Definition 3.1.4.

Using the the Cauchy-Schwarz Inequality, it is simple to prove that the function f 7→ ‖f‖ is sub-

additive on H. That is, for all f, g ∈ H, ‖f + g‖ ≤ ‖f‖+ ‖g‖, and f 7→ ‖f‖ is evidently homogeneous of

degree one. Thus, our terminology is consistent, and an inner product space, (H, 〈·, 〉), equipped with the

norm (3.1.1) is a normed vector sapce:

3.1.5 THEOREM (Minkowski’s inequality for inner product spaces). Let (H, 〈·, ·〉) be an inner product

space. Then for all f, g ∈ H,

‖f + g‖ ≤ ‖f‖+ ‖g‖ (3.1.4)

and there is equality in (3.1.4) if and only if {f, g} is linearly dependent.

Proof. for any f, g ∈ H, by the Cauchy-Schwarz inequality,

‖f + g‖2 = 〈f + g, f + g〉 = ‖f‖2 + ‖g‖2 + 2<〈f, g〉 ≤ ‖f‖2 + ‖g‖2 + 2‖f‖‖g‖ = (‖f‖+ ‖g‖)2 .

The square root function is strictly monotone, and there is equality above if and only if there is equality

in the Cauchy-Schwarz inequality.
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The metric associated to the inner product norm is often called the inner-product metric. We know

for any two normed vectors spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y ), a linear transformation T from X to Y is

continuous if and only if it is bounded. Let H and K be two inner product spaces. Let B(H,K) denote the

set of all bounded linear transformations from H to K, and in the special case K = H, let B(H) denote

B(H,H). As always, the function T 7→ ‖T‖ is evidently a norm on the vector space B(H,K) which is

called the operator norm. Elements of B(H,K) will often be referred to as operators.

There are two important identities that hold in any complex inner product space H, both of which

are easily verified by direct computation: The polarization identity is

〈f, g〉 =
1

4
[〈f + g, f + g〉 − 〈f − g, f − g〉 − i〈f + ig, f + ig〉+ i〈f − ig, f − ig〉]

=
1

4
[‖f + g‖2 − ‖f − g‖2 − i‖f + ig‖2 + i‖f − ig‖2] . (3.1.5)

The polarization identity shows that the correspondence between inner products and norms is one-to-one:

Every inner product defines a norm, and the inner product may be recovered from the norm.

The parallelogram identity is∥∥∥∥f + g

2

∥∥∥∥2

+

∥∥∥∥f − g2

∥∥∥∥2

=
‖f‖2 + ‖g‖2

2
. (3.1.6)

This expresses a quantitative strict convexity property of the function f 7→ ‖f‖2.

3.1.3 Hilbert spaces and the Projection Lemma

3.1.6 DEFINITION (Hilbert Space). A Hilbert space is a complex vector space H equipped with a

sesqilinear form 〈·, ·〉 such that H is complete in its inner product metric. In particular, a Hilbert sapces

is a Banach space.

By what has been explained earlier about general normed vector spaces, if H and K are both Hilbert

spaces, then B(H,K) is complete in the operator norm, and hence is a Banach space.

The next theorem makes essential use of the completeness of Hilbert space.

3.1.7 THEOREM (Projection Lemma). Let K be a non-empty closed convex set in a Hilbert space H.

Then K contains a unique element of minimal norm. That is, there exists f0 ∈ K such that ‖f0‖ < ‖f‖
for all f ∈ K, f 6= f0. Moreover, if {fn}n∈N is any sequence in K such that

lim
n→∞

‖fn‖ = inf{‖f‖ : f ∈ K} ,

then limn→∞ ‖fn − f0‖ = 0.

Proof. Let D := inf{‖f‖ : f ∈ K}. If D = 0, then 0 ∈ K since K is closed, and this is the unique

element of minimal norm. Hence we may suppose that D > 0. Let {fn}n∈N be a sequence in K such that

limn→∞ ‖wn‖ = D. By the parallelogram identity∥∥∥∥fm + fn
2

∥∥∥∥2

+

∥∥∥∥fm − fn2

∥∥∥∥2

=
‖fm‖2 + ‖fn‖2

2
.
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By the convexity of K, and the definition of D,

∥∥∥∥fm + fn
2

∥∥∥∥2

≥ D2 and so

∥∥∥∥fm − fn2

∥∥∥∥2

=

(
‖fm‖2 −D2

)
+
(
‖fn‖2 −D2

)
2

.

By construction, the right side tends to zero, and so {fn}n∈N is a Cauchy sequence. By the completeness

of H, {fn}n∈N is a convergent sequence. Let f0 denote the limit. By the continuity of the norm, ‖f0‖ =

limn→∞ ‖fn‖ = D. Finally, if f1 is any other vector in K with ‖f1‖ = D, (f0 + f1)/2 ∈ K, so that

‖(f0 +f1)/2‖ ≥ D. Then by the parallelogram identity once more ‖(f0−f1)/2‖ = 0, and so f0 = f1. This

proves the uniqueness.

3.1.4 Orthogonal complements

As a first application, we discuss orthogonal complements.

3.1.8 DEFINITION (Orthogonal complement). Let H be a Hilbert space and S ⊂ H. Then S⊥, the

orthogonal complement of S is the set

S⊥ =
⋂
g∈S
{f ∈ H ; 〈g, f〉 = 0} . (3.1.7)

By the continuity of f 7→ 〈g, f〉, for each g, {f ∈ H ; 〈g, f〉 = 0} is closed, and hence S⊥ is closed.

Also it is evident that if f1, f2 ∈ S⊥ and α1, α2 ∈ C, for all g ∈ S,

〈α1f1 + α2f2, g〉 = α1〈f1, g〉+ α2〈f2, g〉 = 0 .

Hence S⊥ is a subspace of H for all S ⊂ H.

3.1.9 THEOREM. Let H be a Hilbert space, and let K be a closed subspace of H. Let f ∈ H. Then

there exist unique vectors f0 ∈ K and f1 ∈ K⊥ such that f = f0 + f1. That is, H = K ⊕ K⊥. Finally,

define the distances d(f,K⊥) and d(f,K) from f to K⊥ and K respectively,

d(f,K⊥) := inf{‖f − g : g ∈ K⊥} and d(f,K) := inf{‖f − g‖ : g ∈ K} . (3.1.8)

Then f1 is the unique vector in K⊥ such that ‖f − f1‖ = d(f,K⊥), and f0 is the unique vector in K such

that ‖f − f0‖ = d(f,K).

Proof. We first show that if such a decomposition of f exists, then it is unique. Suppose that f0, g0 ∈ K
and f1, g1 ∈ K⊥, and that f = f0 + f1 = g0 + g1. Then f0 − g0 = g1 − f1, and f0 − g0 ∈ K while

g1 − f1 ∈ K⊥, so that f0 − g0 and g1 − f1 are orthogonal. Therefore

0 = 〈f0 − g0, g1 − f1〉 = 〈f0 − g0, f0 − g0〉 = ‖f0 − g0‖2 ,

and hence f0 = g0, from which it follows that f1 = g1.

To prove the existence of such a decomposition, Let K = {f − g : g ∈ K}. Then K is a non-empty

closed convex subset ofH, and hence it contains a unique element f−g0 of minimal norm. By construction,

for all g ∈ K and t ∈ R, f − (g0 + tg) ∈ K, and so the function ϕ(t) = ‖(f − g0)− tg)‖2 has a maximum

at t = 0. Differentiating,

0 = ϕ′(0) = 2<〈f − g0, g〉 .
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This shows that f − g0 ∈ K⊥ and then f = (f − g0) + g0 where f − g0 ∈ K⊥ and g0 ∈ K.

Finally, for any g ∈ K⊥, ‖f − g‖2 = ‖(f − f1) + (f1 − g)‖2 = ‖(f − f1)‖2 + ‖(f1 − g)‖2 since

f − f1 = f0 ∈ K and f1 − g ∈ K⊥. Therefore, ‖f − g‖ ≥ ‖f − f1‖ with equality if and only if f = f1. The

same reasoning shows that for all g ∈ K, ‖f − g‖ ≥ ‖f − f0‖ with equality if and only if g = f0.

Let K be a closed non-zero, proper subspace of a Hilbert space H. For any f ∈ H, define Pf and

P⊥f to be the unique elements of K and K⊥ respectively such that f = Pf + P⊥f . By the uniqueness

of Theorem 3.1.9, the transformations f 7→ Pf and f 7→ P⊥f are both linear, and since ‖f‖2 = ‖Pf‖2 +

‖P⊥f‖2 ≥ max{‖Pf‖2, ‖P⊥f‖2}, it is evident that ‖P‖, ‖P⊥‖ ≤ 1. That is, P, P⊥ ∈ B(H). (Since K is a

subspace of H, we may regard B(H,K) as a subspace of B(H), and likewise with B(H,K⊥).) Moreover,

since neither K nor K⊥ is the zero subspace, there are unit vectors u and v in K and K⊥ respectively such

that Pu = u and P⊥v = v. Therefore, ‖P‖ = ‖P⊥‖ = 1.

3.1.10 DEFINITION. Let K be a closed non-zero, proper subspace of a Hilbert space H. The bounded

linear transformations P and P⊥ such that for all f ∈ H, Pf ∈ K, P⊥f ∈ K⊥ and f = Pf + P⊥f are

the orthogonal projections of H onto K and K⊥ respectively.

3.2 Duality in Hilbert space

3.2.1 The dual space of an inner product space

3.2.1 DEFINITION (The dual space of an inner product space). Let H be an inner product space.

The dual space H∗ of H is the vector space space of all continuous linear functional on H.

Let L be a continuous linear functional on an inner product space H. As a linear transformation L

from the normed space H to the normed space C, L is continuous if and only if L is bounded, so that the

continuity of L is equivalent to the condition that ‖L‖∗ <∞ where ‖L‖∗ defined by

‖L‖∗ = sup{|L(u)| : ‖u‖ ≤ 1} . (3.2.1)

By what we have said earlier about bounded linear transformations from one normed space to another,

‖ · ‖∗ is a norm on H∗, and therefore d∗(L,M) := ‖L−M‖∗ defined a metric on H∗.
As an example of a bounded linear functional on an inner product space H, consider any g ∈ H, and

define

Lg(f) = 〈g, f〉 . (3.2.2)

Then Lg is linear, and by the Cauchy-Schwarz inequality, |Lg(f)| ≤ ‖g‖‖f‖ with equality if f = g, showing

that ‖Lg‖ = ‖g‖. Thus the map g 7→ Lg is an isometry from H into H∗. Note that it is not, however,

linear, but sequilinear: For all α ∈ C, Lαg = αLg. We shall soon prove that when H is a Hilbert space,

every L ∈ H∗ is of the form L = Lg for some g ∈ H.

A number of facts about dial spaces that are, in the general setting of Banach spaces, conseqeunces

of the Hahn-Banach Theorem can be proved directly in the Hilber space setting. For example, the fact

that the dual of any Banach space separates points is a conseqeunce of the Hahn-Banach Theorem. In

Hilbert space, matters are simpler: For all f, g ∈ H, f 6= g, Lf−g(f − g) = 〈f − g, f − g〉 = ‖f − g‖2 > 0.

Thus, Lf−gf 6= Lf−gg.
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Likewise, we know that for any Banach space X, and all x ∈ X, there exists L ∈ X∗ such that

‖L‖∗ = 1 and L(x) = ‖x‖. Again, in general, this is a consequence of the Hahn-Banach Theorem, but

when X is a Hilbert space H, we can be more explicit: If f = 0, we may take L = Lg for any unit vector

g ∈ H. Otherwise, f/‖f‖ is a unit vector in H, and hence Lf/‖f‖ is a unit vector in H∗. Then

Lf/‖f‖(f) = ‖f‖−1〈f, f〉 = ‖f‖ .

3.2.2 The Riesz Representation Theorem and the dual space of a Hilbert

space

3.2.2 THEOREM (Riesz Representation Theorem). Let H be a Hilbert space, and let L ∈ H∗. There

is a unique vector gL ∈ H such that L(f) = 〈gL, f〉 for all f ∈ H, and ‖gL‖ = ‖L‖∗.

Proof. If L(f) = 0 for all f ∈ H, the assertion is trivial, so suppose that ‖L‖∗ > 0. Define K to be the set

K := {f ∈ H : <(L(f)) = ‖L‖∗ } .

It is readily checked that this is a closed convex set in H.

If f ∈ K, then ‖L‖∗‖f‖ ≥ |L(f)| ≥ <(L(f)) = ‖L‖∗, and hence ‖f‖ ≥ 1. On the other hand, by

the definition of ‖L‖∗, there is a sequence of unit vectors {un}n∈N such that |L(un)| → ‖L‖∗. Then

choosing θn ∈ [0, 2π) so that eiθnL(un) = |L(un)|, vn := eiθn
‖L‖∗
|L(un)|

un ∈ K and ‖vn‖ → 1. Thus,

inf{‖v‖ : v ∈ K} = 1.

It now follows from the Projection Lemma that there is a (unique) unit vector u0 ∈ K with

‖L‖∗ = <(L(u0)) . (3.2.3)

For all f ∈ H, <(L(f)) ≤ |L(f)| ≤ ‖L‖‖f‖, when f with f 6= 0,

<(L(f))

‖f‖
≤ ‖L‖∗ =

<(L(u0))

‖u0‖
.

Hence, for any g ∈ H, the function ϕ :

(
− 1

2‖g‖
,

1

2‖g‖

)
→ R defined by ϕ(t) :=

<(L(u0 + tg))

‖u0 + tg‖
has a

maximum at t = 0. One readily checks that ϕ is differentiable and computes

ϕ′(0) = <(L(g))− ‖L‖∗<(〈u0, g〉) .

Since the left hand side is zero for all g, <(L(g)) = ‖L‖∗<(〈u0, g〉) for all g. Replacing g by ig, the same

is true of the imaginary parts, and so L(g) = 〈‖L‖∗u0, g〉 for all g. Thus, gL = ‖L‖∗u0 is such that

L(f) = 〈gL, f〉 for all f ∈ H, and ‖gL‖ = ‖L‖∗.
If hL were any other vector with L(f) = 〈hL, f〉 for all f ∈ H, we would have 〈gL − hL, f〉 = 0 for

all f ∈ H, Taking f = gL − hL, we see that ‖gL − hL‖2 = 0, and so hL = gL, proving the uniqueness of

gL.

The Riesz Representation Theorem allows us to identify a Hilbert space H with its dual space H∗:
That is, the sesquilinear mapping L→ gL is an isometry from H∗ onto H whose inverse is the map g 7→ Lg.

A consequence of the Riesz Representation Theorem is that H is reflexive. This is more or less evident
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since the identification of H with H∗ extends to identify H with H∗∗. The fact that the identification of

H with H∗ is sesquilinear dooes nor matter since the composition of two sequilinear maps is linear. All

the same, it is perhaps worth spelling out the short argument:

Let φ ∈ H∗∗. Then g 7→ φ(Lg) is a continuous linear funtional on H. By Theorem 3.2.2, there is a

unique h ∈ H such that for all g ∈ H,

φ(Lg) = 〈h, g〉 = 〈g, h〉 = Lgh .

Since every L ∈ H∗ is of the form L = Lg, by Theorem 3.2.2 a second time, φ(L) = L(h) for all L ∈ H∗,
and thus φ is an evaluation functional. That is, the canonical linear embedding of H into H∗∗ is surjective.

An elementary but important application of the Riesz Representation Theorem concerns the adjoint

A∗ of an operator A ∈ B(H), H a Hilbert space. Let A ∈ B(H), and for g ∈ H, let Lg be defined as in

(3.2.2). Then Lg ◦A is a continuous, and hence it is a bounded linear functional on H.

By the Riesz Representation Theorem, since Lg ◦A ∈ H∗, there exists a unique h ∈ H so that for all

f ∈ H,

〈g,Af〉 = Lg ◦A(f) = 〈h, f〉 .

Therefore we may define a function A∗ : H → H by defining A∗g to be the unique element of H such that

〈g,Af〉 = 〈A∗g, f〉 (3.2.4)

for all f, g ∈ H.

Again because of the uniqueness, the linearity of A implies that A∗ is a linear transformation on H.

Moreover, for all unit vectors u, v ∈ H,

|〈u,A∗v〉| = |〈A∗v, u〉| = |〈v,Au〉| ≤ ‖v‖‖Au‖ ≤ ‖A‖ .

Taking u = ‖A∗v‖−1A∗v, we obtain ‖A∗v‖ ≤ ‖A‖. Since v is an arbitrary unit vector in H, this yields

‖A∗‖ ≤ ‖A‖ . (3.2.5)

Therefore, A∗ ∈ B(H).

Taking complex conjugates of both sides of (3.2.4), 〈f,A∗g〉 = 〈Af, g〉, and then swapping the roles

of f and g,

〈g,A∗f〉 = 〈Ag, f〉 (3.2.6)

for all f, g ∈ H. Comparing (3.2.4) and (3.2.6), it is evident that A∗∗ := (A∗)∗ = A for all bounded linear

transformations A. Then by (3.2.5),

‖A‖ = ‖A∗∗‖ ≤ ‖A∗‖ ≤ ‖A‖ .

This means that for all bounded linear transformations ‖A‖,

‖A∗‖ = ‖A‖ . (3.2.7)

Summarizing, we have proved the following:
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3.2.3 THEOREM. Let A ∈ B(H), H a Hilbert space. Then there exists a unique bounded linear

transformation A∗ on H that that (3.2.4) is valid for all f, g ∈ H. The map A 7→ A∗ is conjugate linear,

and satisfies ‖A∗‖ = ‖A‖.

Theorem 3.2.3 says that the map A 7→ A∗ is a conjugate linear isometry on the Banach space B(H),

and since A∗∗ = A, it is an involution. Because of its canonical nature, it is often called the involution on

B(H). The above considerations are readily extended to maps in B(H,K) for two Hilbert spaces. This

is left to the reader.

3.2.4 DEFINITION. Let A ∈ B(H),H a Hilbert space. Then the unique bounded linear transformation

A∗ on H that that (3.2.4) is valid for all f, g ∈ H is called the adjoint of A. A ∈ B(H) is called self-adjoint

in case A = A∗, that is, in case for all f, g ∈ H,

〈g,Af〉 = 〈Ag, f〉 . (3.2.8)

As an example, let K be a closed, proper, non-zero subspace of a Hilbert space H. Let P be the

orthogonal projection onto K. Then for all f, g ∈ H,

〈f, Pg〉 = 〈P⊥f + Pf, Pg〉 = 〈Pf, Pg〉 = 〈Pf, Pg + P⊥g〉 = 〈Pf, g〉 .

Thus P is self-adjoint, and for the same reason, so is P⊥.

3.2.5 THEOREM (Hellinger-Toeplitz Theorem). Let A be a linear transformation from H to H defined

everywhere on H and such that for all f, g ∈ H, (3.2.8) is valid. Then A ∈ B(H).

Proof. By the Closed Graph Theorem, it suffices to show that the graph of A is closed. Suppose that

{fn} is a sequence in H such that f = limn→∞ fn and g = limn→∞Afn both exist. Then for all h ∈ H,

〈h, g〉 = lim
n→∞

〈h,Afn〉 = lim
n→∞

〈Ah, fn〉 = 〈Ah, f〉 = 〈h,Af〉 .

That is, for all h ∈ H, 〈h, g−Af〉 = 0, Taking h = g −Af , we conclude that g = Af , and the graph of A

is closed.

3.2.6 THEOREM (Gram-Schmidt). Let H be a Hilbert space, and let {fj}j∈J be a linearly independent

subset of H where either J = {1, . . . , N} for some N ∈ N, N ≤ dim(H), or, in case H is infinite

dimensional, J = N. Then there exists an orthonormal set {uj}j∈J such that for all n ∈J ,

span({f1, . . . , fn}) = span({u1, . . . , un}) . (3.2.9)

We may further require that 〈fn, un〉 > 0 for all n, and under this condition, {uj}j∈J is uniquely deter-

mined.

Proof. To have span({f1}) = span({u1}) and ‖u1‖ = 1, we must choose u1 = α1‖f1‖−1f1 for some α1 ∈ C

with |α| = 1. For each n ∈ J , n > 1, let Kn = span({f1, . . . , fn}). Since dim(Kn) = n, Kn is closed.

Let Pn denote the orthogonal projection onto Kn. Since {f1, . . . , fn−1} spans Kn−1, and since {fj}j∈J

is linearly independent, fn /∈ Kn−1, and hence P⊥n−1fn 6= 0. Choose αn ∈ C with |αn| = 1, and define

un =
αn

‖P⊥n−1fn‖
P⊥n−1fn . (3.2.10)
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This formula is valid for all n including n = 1 if we define P0 to be the identity operator.

Note that

fn = Pn−1fn + P⊥n−1f = Pn−1fn +
‖P⊥n−1fn‖

αn
un

and Pn−1fn ∈ Kn−1. Hence

Kn = span({f1, . . . , fn−1, fn}) = span(Kn−1 ∪ {fn})) = span(Kn−1 ∪ {un})) .

Therefore, if Kn−1 = span({u1, . . . , un−1}), then Kn = span({u1, . . . , un}). Since evidently span{f1}) =

span{u1}), induction shows that Kn = span({u1, . . . , un}) for all n, and thus (3.2.9) is valid for all n, and

for all n,

un ∈ K⊥n−1 = (span({u1, . . . , un}))⊥ .

That is, for all j < n 〈uj , uk〉 = 0 for all n ∈J . Since each uj is a unit vector, {uj}j∈J is orthonormal.

For the uniqueness, note that un must be orthogonal to every vector in Kn−1 = span({u1, . . . , un−1}),
and must belong to Kn = span({f1, . . . , fn}), there are βj ∈ C, j = 1, . . . , n such that un =

∑n
j=1 βjfj ,

and therefore

un = P⊥n−1un = P⊥n−1

 n∑
j=1

βjfj

 = βnP
⊥
n−1fn .

and so un must have the form given in (3.2.10), and the only freedom in the choice of {uj}j∈J is the

choice of the multiples αj , but the further condition 〈fn, un〉 > 0 fixes αj = 1 for all j.

In any infinite dimensional Hilbert space H, there is an infinite linearly independent sequence {fn}n∈N

in H, and then by Theorem 3.2.6, there is an infinte orthonormal sequence {un}n∈N in H. Since for m 6= n,

‖un − um‖ =
√

2, no subsequence of this sequence is Cauchy, and hence this sequence has no convergent

subsequence. This proves:

3.2.7 THEOREM. In an infinite dimensional Hilbert space H, B := {f : ‖f‖ ≤ 1}, the closed unit

ball, is not compact.

3.3 The Hilbert space L2(X,M, µ)

3.3.1 L2(X,M, µ) as an inner product space

So far, our only example of an infinite dimensional Hilbert space is `2. The Lebesgue theory of integration

provided a vast new range of examples. If (X,M, µ) is a measure space, the vector space of square

integrable complex valued function f on X, identified under almost everywhere equivalence, has a natural

inner product making it a Hilbert space. This is the content of the Riesz-Fisher Theorem. A particular

case is that in which X = N, M = 2N, and µ is counting measure. In this case, L2(X,M, µ) = `2.

Let (X,M, µ) be a measure space. As a set, L2(X,M, µ) consists of the equivalence classes, under

equivalence almost everywhere with respect to µ, of functions on X that are M-measurable and such

that

∫
X

|f |2dµ <∞. Clearly, if z ∈ C and f ∈ L2(X,M, µ), |zf |2 = |z|2|f |2 is integrable, and if

f, g ∈ L2(X,M, µ),

|f + g|2 ≤ (|f |+ |g|)2 ≤ 2(|f |2 + |g|2) . (3.3.1)
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is integrable. Thus, L2(X,M, µ) is a vector space under the usual rules of addition and scalar multiplica-

tion for functions. Also, for α, β ∈ C, 2|αβ| ≤ |α|2 + |β|2 so that for L2(X,M, µ), fg ∈ L1(X,M, µ).

3.3.1 DEFINITION (The L2 inner product). For f, g ∈ L2(X,M, µ), we define

〈f, g〉 =

∫
X

fgdµ . (3.3.2)

Note that 〈·, ·〉 is a positive sesquilinear form on L2(X,M, µ), and it is non-degenralte since 〈f, f〉 = 0

if and only if
∫
X
|f |2dµ = 0 if and only if f = 0 almost everywhere. Therefore, L2(X,M, µ) equipped

with this inner product is an inner product sapce. We write d2 to denote the metric corresponding to this

inner product, and refer to is as the L2 metric.

3.3.2 The Reisz-Fischer Theorem

3.3.2 THEOREM (Riesz-Fischer Theorem). L2(X,M, µ) equipped with the L2 metric is complete, and

hence a Hilbert space. Moreover, if {fn}n∈N is any Cauchy sequence in L2(X,M, µ), then there is a

subsequence of {fn}n∈N that converges almost everywhere with respect to µ.

Proof. Let {fn}n∈N be a Cauchy sequence in L2(X,M, µ). Recursively define an increasing sequence of

natural numbers {nk}k∈N such that ‖fn − fnk‖2 ≤ 2−k for all n ≥ nk. Since {nk}k∈N is increasing, it

follows that ‖fnk+1
− fnk‖2 ≤ 2−k for all k.

Now define Fm = |fn1
|+

m−1∑
k=1

|fnk − fnk−1
|. By Theorem 3.1.5, applied iteratively,

‖Fm‖2 ≤ ‖fn1‖2 +

m−1∑
k=1

‖fnk − fnk−1
‖2 ≤ ‖fn1‖2 + 1 .

Thus, by the Lebesgue Monotone Convergence Theorem, F := lim
m→∞

Fm is square-integrable and

∫
X

F 2dµ ≤ ‖fn1‖2 + 1 .

It follows that F < ∞ a.e. µ, and thus that

∞∑
k=1

(fnk − fnk−1
) is absolutely convergent a.e. µ. But

since absolute convergence implies convergence, lim
m→∞

[
fn1 +

m−1∑
k=1

(fnk − fnk−1
)

]
= lim
m→∞

fnm exists almost

everywhere. Call this limit f . As a point-wise limit of measurable functions, f is measurable. Also,

f ∈ L2(X,M, µ) by Fatou’s Lemma.

Next, |fnm − f |2 ≤ 4F 2, and since 4F 2 is integrable, the Lebesgue Dominated Convergence Theorem

implies that

lim
m→∞

‖fnm − f‖2 = 0 .

Thus, a subsequence of the Cauchy sequence {fn}n∈N converges of f in the L2 metric. But then the whole

sequence converges to f . The subsequence {fnm}m∈N converges to f a.e. µ.
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3.3.3 Landau’s Theorem

The next result illustrates the way in which the various abstract results we have proved so far may be

combined to prove a theorem that refers only to the Lebesgue theory of integration, but is not easy to

prove using only the tools of that theory.

3.3.3 THEOREM (Landau’s Theorem). Let (X,M, µ) be a measure space such that for every set B ∈M
with µ(B) = ∞, there is a set A ∈ M, A ⊂ B, with 0 < µ(A) < ∞. Suppose f is a measurable function

on X such that whenever g is a measurable function on M with
∫
X
|g|2dµ < ∞, |fg| is integrable. Then∫

X
|f |2dµ <∞.

Proof. The Riesz-Fischer Theorem identifies the set of measurable g such that
∫
X
|g|2dµ < ∞ with the

elements of the Hilbert space H := L2((X,M, µ), and then the hypotheses allow us to define a linear

functional L on H the by L(g) =
∫
X
fgdµ for all g ∈ H, For n ∈ N, define En ⊂ H by

En :=

{
g :

∫
X

‖fg|dµ ≤ n
}
.

Then En is closed. To see this, let {gm}m∈N be a sequence in En that converges to g ∈ H. By the

final part of Theorem 3.3.2, there is a subsequence {gmk}k∈N that converges almost everywhere to g. By

Fatou’s Lemma, ∫
|fg|dµ ≤ lim inf

k→∞

∫
X

|fgmk |dµ ≤ n .

Therefore, g ∈ En, and hence En is closed.

By hypothesis,H = ∪∞n=1En, and then by Baire’s Theorem, there exists some n such that En has a

non-empty interior. Hence for some g0 ∈ H and some r > 0, B(r, g0) ⊂ En; i.e., for all g ∈ B(1, 0), and

all 0 < s < r, g0 + sg ∈ En. Therefore

|L(g0) + sL(g)| =
∣∣∣∣∫
X

f(g0 + sg)dµ

∣∣∣∣ ≤ ∫
X

|f(g0 + sg)|dµ ≤ n .

It follows that |L(g)| ≤ (n + |L(g0|)/r for all g ∈ B(1, 0), and hence L is bounded. By the Reisz

Representation Theorem, there exists a unique f0 ∈ H such that L(g) =
∫
X
f0gdµ for all g ∈ H, and thus,∫

X

(f0 − f)gdµ = 0

for all g ∈ H. This implies that f = f0 almost everywhere. To see this, for each n ∈ H define the set

Bn = {x : |f0(x) − f(x)| ≥ 1/n}. By hypothesis, even if µ(Bn) = ∞, there exists a measurable set

An ⊂ Bn with 0 < µ(An) <∞. Define gn by

gn(x) =

f0(x)− f(x)/|f0(x)− f(x)| x ∈ An

0 x /∈ An .

then gn ∈ H and
∫
X
f0 − fgndµ ≥ µ(An)/n, which is a contradiction. Hence µ(Bn) = 0 for all n.

The condition on the measure space is much weaker than countable additivity, but the condition

is necessary: If there exists a set B ∈ M with µ(B) = ∞, and such that for all measurable A ⊂ B,

either µ(A) = 0 or µ(A) = ∞, let f be the function 1B , the indicator function of B. Since every

g ∈ L2(X,M, µ) must equal zero almost everywhere on B,it follows that fg is zero almost everywhere for

all g ∈ L2(X,M, µ), and therefore certainly fg is integrable. However, f is not square integrable.
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3.4 Bessel’s inequality and complete orthonormal sets

3.4.1 Best approximation in a Hilbert space and Bessel’s inequality

Let H be a Hilbert space space, and let {u1, . . . , un} be an orthonormal set in H. Let K =

span({u1, . . . , un}) which is finite dimensional and therefore closed. Let P denote the orthogonal pro-

jection onto K. For any f ∈ H, by Theorem 3.1.9, the best approximation to f by elements of K is given

by Pf in the sense that ‖f − Pf‖ < ‖F − g‖ for any g 6= Pf in K. This result will be more useful once

we have a formula for Pf in terms of {u1, . . . , un}. We now derive such a formula.

The general element of K has the form

n∑
j=1

αjuj for some complex numbers α1, . . . , αn. To determine

the choice of these coefficients that gives the best approximation to f , we compute∥∥∥∥∥∥f −
n∑
j=1

αjuj

∥∥∥∥∥∥
2

=

〈
f −

n∑
j=1

αjuj , f −
n∑
j=1

αjuj

〉

= ‖f‖2 −
n∑
j=1

2<(αj〈uj , f〉) +
∑
j=1

|αj |2

= ‖f‖2 −
n∑
j=1

|〈uj , f〉|2 +

n∑
j=1

|αj − 〈uj , f〉|2 . (3.4.1)

Evidently, the best choice is given by αj = 〈uj , f〉 for each = 1, . . . , n, and therefore,

Pf =

n∑
j=1

〈uj , f〉uj . (3.4.2)

We summarize so far:

3.4.1 THEOREM. Let {uj}j∈N be an onrthonormal sequence in an Hilbert sapce H. Thren for all

n ∈ N, ∥∥∥∥∥∥f −
n∑
j=1

αjuj

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥f −

n∑
j=1

〈uj , f〉uj

∥∥∥∥∥∥ (3.4.3)

and there is equality if and only if αj = 〈uj , f〉 for all j.

Making the choice αj = 〈uj , f〉 for each = 1, . . . , n, we have∥∥∥∥∥∥f −
n∑
j=1

〈uj , f〉uj

∥∥∥∥∥∥
2

= ‖f‖2 −
n∑
j=1

|〈uj , f〉|2 . (3.4.4)

Since the left hand side is non-negative, we have that for any finite orthonormal set {u1, . . . , un},
n∑
j=1

|〈uj , f〉|2 ≤ ‖f‖2 . (3.4.5)

Now suppose that H contains an uncountable orthonormal set {uj}j∈J . (Hence J is some uncount-

able set.) For any f ∈ H, if |〈f, uj〉| > 0 for uncountably many j ∈ J , there is some n ∈ N such that

|〈f, uj〉| > 1/n for uncountably many j ∈J since

{j : |〈f, uj〉| > 0} =

∞⋃
n=1

{j : |〈f, uj〉| > 1/n}
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and a countable union of countable sets is countable. But then there is a sequence {uj.k}k∈N such

that

∞∑
k=1

|〈f, uj,k〉|2 =∞, and this contradicts (3.4.5). Therefore, even when H contains an uncountable

orthonormal set {uj}j∈J . |〈f, uj〉| > 0 only for countably many j ∈ J , and then we have from (3.4.4)

that ∑
j∈J

|〈uj , f〉|2 ≤ ‖f‖2 . (3.4.6)

Summarizing, we have proved:

3.4.2 THEOREM (Bessel’s Inequality). Let H be a Hilbert space, and let {uj}j∈J be an orthonormal

set in H. Then for all f ∈ H, |〈f, uj〉| > 0 only for countably many j ∈J , and (3.4.6) is valid.

3.4.2 Complete orthonormal sets

3.4.3 LEMMA. Let {αj}j∈N be any square-summable sequence of complex numbers; i.e,

∞∑
j=1

|αj |2 <∞.

Let {uj}j∈N be any orthonormal sequence in a Hilbert space H. Then the sequence
{∑n

j=1 αjuj

}
n∈N

is

Cauchy and therefore this sequence has a unique limit g ∈ H so that

∞∑
j=1

αjuj = g . (3.4.7)

Moreover, this sum converges to the same vector no matter how the terms are ordered.

Proof. For each n ∈ N define fn =

n∑
j=1

αjuj . Then for n > m,

‖fn − fm‖2 =

∥∥∥∥∥∥
n∑

j=m+1

αjuj

∥∥∥∥∥∥
2

=

n∑
j=m+1

|αj |2 ≤
∞∑

j=m+1

|αj |2 . (3.4.8)

Since lim
m→∞

∞∑
j=m+1

|αj |2 = 0, {fn}n∈N is a Cauchy sequence, and then since H is complete, there exists a

unique g ∈ H such that limn→∞ ‖fn − g‖ = 0. This proves (3.4.7). Since the condition

∞∑
j=1

|αj |2 <∞

holds independent of how the terms in the sum are ordered, the convergence of the infinite sum in (3.4.7)

holds independent of how the terms in the sum are ordered. For all ε > 0, let J and K be finite subsets

of N such that ∑
j /∈J

|αj |2 < ε2/9 and
∑
j /∈K

|αj |2 < ε2/9 . (3.4.9)

Then

∥∥∥∥∥∥
∑
j∈J

αjuj −
∑

j∈J∪K
αjuj

∥∥∥∥∥∥ ≤ 1

3
ε, and

∥∥∥∥∥∥
∑
j∈K

αjuj −
∑

j∈J∪K
αjuj

∥∥∥∥∥∥ ≤ 1

3
ε. Then by Minkowski’s inequal-

ity,

∥∥∥∥∥∥
∑
j∈J

αjuj −
∑
j∈K

αjuj

∥∥∥∥∥∥ < 2

3
ε. Let J = {1, . . . , n} for n sufficently large that (3.4.9) is valid. By (3.4.8),∥∥∥∥∥∥g −

∑
j∈J

αjuj

∥∥∥∥∥∥ < 1

3
ε, and then

∥∥∥∥∥∥g −
∑
j∈K

αjuj

∥∥∥∥∥∥ < ε. This shows that the sequence of partial sums tends

to g no matter how the terms are ordered.
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Let {uj}j∈J be an orthonormal set in H and let f ∈ H. By Theorem 3.4.2,
∑
j∈J

|〈uj , f〉|2 <∞, and

then by Lemma 3.4.3,

g :=
∑
j∈J

〈uj , f〉uj (3.4.10)

is a well-defined element of H. Notice that for each j ∈J , 〈uj , g〉 = 〈uj , f〉 and hence 〈f − g, uj〉 = 0 for

all j ∈J . This brings us to the following definition:

3.4.4 DEFINITION (Complete orthonormal set). Let H be a Hilbert space and let {uj}j∈J be an

orthonormal set in H. Then {uj}j∈J is a complete orthonormal set in H in case the only vector f ∈ H
such that 〈uj , f〉 = 0 for all j is f = 0. A complete orthonormal set in H is also called an orthonormal

basis for H.

We have shown just above that if {uj}j∈J is any orthonormal set in H and f is any vector in H,

g :=
∑
j∈J 〈uj , f〉uj is a well-defined vector in H such that 〈f − g, uj〉 = 0 for all j ∈J . If {uj}j∈J is

complete, this means that f − g = 0, and hence for all f ∈ H.

f =
∑
j∈J

〈uj , f〉uj . (3.4.11)

3.4.5 THEOREM (Parseval’s Theorem). Let {uj}j∈J be a complete orthonormal set in a Hilbert space

H. Then for all f ∈ H, (3.4.11) is valid, and

‖f‖2 =
∑
j∈J

|〈uj , f〉|2 . (3.4.12)

Proof. It remains only to prove (3.4.12). Note that∥∥∥∥∥∥
∑
j∈J

〈uj , f〉uj

∥∥∥∥∥∥
2

=
∑
j∈J

|〈uj , f〉|2 ,

so if
∑
j∈J

|〈uj , f〉|2 6= ‖f‖2, then (3.4.11) cannot be valid, and this is a contradiction.

3.4.3 Separability

A metric space is separable in case it contains a countable dense set. Hilbert spaces are, in particular,

metric spaces and hence a separable Hilbert space H is one that contains a dense sequence {fn}n∈N of

vectors. To avoid trivialities, suppose that H is infinite dimensional as well as separable. Let {fn}n∈N be

any dense sequence in H. Discard the vector fn in case fn ∈ span({f1, . . . , fn−1}). Let gk denote the kth

retained vector. Then {gk}k∈N is linearly independent and span ({gk}k∈N) is dense in H.

Applying Theorem 3.2.6 to {gk}k∈N we obtain an orthonormal sequence {uk}k∈N such that

span ({uk}k∈N) = span ({gk}k∈N), and hence such that span ({uk}k∈N) is dense. This shows that ev-

ery separable Hilbert space H contains an orthonormal sequence {uk}k∈N whose span is dense in H.

Such an orthonormal sequence is necessarily complete, as we show next:

3.4.6 LEMMA. Let H be a Silbert sapce and let {un}n∈N be an orthonormal sequence in H such that

span({un}n∈N) is dense in H. Then {un}n∈N is complete.
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Proof. Suppose f ∈ H and 〈uk, f〉 = 0 for all k ∈ N. Since span ({uk}k∈N) is dense in H, for all ε > 0,

there exists for n ∈ N and coefficients α1, . . . , αn such that ε ≥

∥∥∥∥∥∥f −
n∑
j=1

αjuj

∥∥∥∥∥∥. Then using (??) and the

orthogonality hypothesis,

ε ≥

∥∥∥∥∥∥f −
n∑
j=1

αjuj

∥∥∥∥∥∥ ≥
∥∥∥∥∥∥f −

n∑
j=1

〈f, uj〉uj

∥∥∥∥∥∥ = ‖f‖ .

Since ε > 0 is arbitrary, ‖f‖ = 0.

3.4.7 THEOREM. A Hilbert space H is separable if and only if exists there exists a sequence {uk}k∈N

that is orthonormal and complete.

Proof. We have already proved that if H is separable, then H contains a sequence {uk}k∈N that is or-

thonormal and complete. Therefore, suppose that H contains a sequence {uk}k∈N that is orthonormal

and complete. Then for all f ∈ H, f =

∞∑
k=1

〈uk, f〉uk and

∥∥∥∥∥f −
∞∑
k=1

αkuk

∥∥∥∥∥
2

=

∞∑
k=1

|〈uk, f〉 − αk|2 .

For any ε > 0, we may choose an n ∈ N and α1, . . . αn, each of whose real and imaginary parts are rational,

such that
n∑
k=1

|〈uk, f〉 − αk|2 <
1

2
ε and

∞∑
k=n+1

|〈uk, f〉|2 <
1

2
ε .

It follows that with g =

n∑
k=1

αkuk, ‖f − g‖ < ε. Thus, the set of finite linear combinations of the vectors

in {uk}k∈N with coefficients whose real and imaginary parts are rational is dense in H. Evidently this set

is countable, and hence H is separable.

Notice that if H is any separable Hilbert space, and {uj}j∈N is any orthonormal basis in H, then the

transformation that sends f ∈ H to the sequence whose jth term is 〈uj , f〉 is a linear isometry of H onto

`2. That is, every separable Hilbert space can be mapped onto `2 by a linear isometry.

3.4.8 EXAMPLE (Fourier series). Let H = L2(S1,BS1 ,m) be the Hilbert space of Borel functions f(θ)

on the unit circle that are square integrable with respect to Lebesgue measure m on S1 normalized so that

µ(S1) = 1.

It is then readily checked that with uj defined by un(θ) = einθ, {un}n∈Z is orthonormal. By the

Stone-Wierstrass Theorem, every continuous function on S1 can be approximated arbitrarily well in the

uniform metric by a finite linear combination of the vectors in our orthonormal set. Since for continuous

functions f, g on S1, (∫
S1

|f − g|2dµ

)1/2

≤ max
θ
{|f(θ)− g(θ)|} ,

the span of {un}n∈Z is dense in the set continous function on S1 equipped with the norm metric inherited

from H.
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Since the continuous functions are dense in H, and for any f ∈ H and any ε > 0, we can find a

continuous function g such that ‖f − g‖ < ε, and then a function p in the span of {un}n∈Z such that

‖g − p‖ < ε/2. Then ‖f − p‖ < ε, and hence the span of {un}n∈Z is dense in H. Then by Lemma 3.4.6,

{un}n∈Z is complete: Thus, {un}n∈Z is orthonormal basis for H, called the Fourier basis. It follows that

for each f ∈ H,

f = lim
n→∞

n∑
j=−n

〈uj , f〉uj .

The sequence {〈uj , f〉}j∈Z is called the sequence of Fourier coefficients of f . By Parseval’s identiy,

‖f‖2 =
∑
n∈Z

|〈un, f〉|2 .

The map sending f into the (doubly) infnite sequence {〈un, f〉}n∈Z is then a a linear isometry from H
into the Hilbert space of square summable sequences indexed by Z, which we can identify with `2 using

any bijection between N and Z. In fact this isometry is a bijection: As we have seen, if {αn}n∈Z is any

sqaure summable sequence, then g =
∑
n∈Z αnuu is a well defined element of H, and for each n ∈ Z,

〈un, g〉 = αn. This isometric linear bijection between H onto `2 is the Fourier transform.

3.4.9 EXAMPLE (Orthogonal polynomials). For a, b ∈ R, a < b, let B the Borel σ-algebra on [a, b],

and let µ be any finite Borel measure on [a, b]. Let H = L1([a, b],B, µ). Continuous functions are dense

in H, and by the Stone-Wierstrass Theorem, for every continuous function f on [a, b] and every ε > 0,

there is a polynomial p(x) such that max{|f(x) = p(x)| : x ∈ [a, b]} < ε, and then by the Cauchy-Schwarz

inequality, ‖f − p‖ ≤
√
εµ([a, b]). Without loss of generality, we may take the coefficients of p to have

rational real and imaginary parts and the set of such polynomials is countable. Therefore H is separable.

Moreover, this proves that the sequence of monomials {xn−1}n∈N has a dense span in H, and therefore,

the orthonormal sequence {un}n∈N that is obtained from {xn−1}n∈N via the Gram-Schmidt Theorem is

an orthonormal basis for H such that each un is a polynomial of degree n − 1. The elements of this

basis are uniquely determined up to a multiple by a unit complex number, and conventionally one chooses

the multiple so that the leading coefficient; i.e., the multiple of xn−1, is positive. This is the canonical

orthonormal polynomial basis for H.

3.4.4 Partial isometries and unitary operators

3.4.10 DEFINITION. Let H and K be s Hilbert spaces. An isometry from H into K is an operator

U ∈ B(H.K) such that ‖Uf‖K = ‖f‖H for all f ∈ H. An isometry U from H to K is unitary in case U is

surjective. Two Hilbert spaces H and K are unitarily equivalent in case there is a unitary transformation

from H onto K. A partial isometry in B(H,K) is an operator U such that the restriction of U to (ker(U))⊥

is an isometry from (ker(U))⊥ into K.

Note that the composition of unitary operators is unitary since the composition of invertible transfor-

mations is invertible, and the composition of isometries is an isometry. It follows easily that the inverse

of a unitary transformation is also unitary, so that unitary equivalence is, indeed, an equivalence relation

on the set of Hilbert spaces. As the next example shows, all separable Hilbert spaces belong to the same

equivalence class, which is represented by `2.
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3.4.11 EXAMPLE. Let H be a separable Hilbert space, and let {un}n∈N be an orthonormal sequence

in H. Define a map U from H to `2 by U({αn}n∈N) =

∞∑
n=1

αnun, which is well-defined by Lemma 3.4.3.

Since ‖U({αn}n∈N)‖2 =

∞∑
n=1

|αn|2, U is an isometry.

Suppose moreover that {un}n∈N is not only an orthonormal sequence, but that it is an orthonormal

basis for H. Then by Theorem 3.4.5, f =

∞∑
n=1

〈un, f〉un = U({〈un, f〉}n∈N) so that U is surjective, and

hence unitary. Hence H is unitarily equivalent to `2. Since H is an arbitrary separable Hilbert space, by

the remarks preceding the example, all separable Hilbert spaces are unitarily equivalent.

3.4.12 LEMMA. Let H and K be Hilbert spaces, and let U ∈ B(H,K). Then U is an isometry if and

only if for all f, g ∈ H, 〈Uf,Ug〉K = 〈f, g〉H.

Proof. Suppose that for all f, g ∈ H, 〈Uf,Ug〉K = 〈f, g〉H. Then taking g = f , ‖Uf‖K = ‖f‖H so that U

is an isometry. Conversely, if ‖Uh‖K = ‖h‖H for all h ∈ H,

< (〈f, g〉H) =
1

4
(‖f + g‖H − ‖f − g‖H) =

1

4
(‖Uf + Ug‖K − ‖Uf − Ug‖K) = < (〈Uf,Ug〉K) .

Replacing g by eiθg, we conclude that for all f, g ∈ H, 〈Uf,Ug〉K = 〈f, g〉H.

3.4.13 THEOREM. Let H and K be Hilbert spaces, and let U ∈ B(H,K). Then U is unitary if and

only if U∗U = IH, and UU∗ = IK.

Proof. If U is unitary, by Lemma 3.4.15, for all f, g ∈ H,

〈f, g〉H = 〈Uf,Ug〉K = 〈f, U∗Ug〉H .

This means that g − U∗Ug is orthogonal to all f ∈ H, and so g − U∗Ug = 0. Since g ∈ H is arbitrary,

this means that U∗U = IH. Hence U∗ is the inverse of U , and so UU∗ = IK.

Conversely, suppose that U∗U = IH and UU∗ = IK. Then for all f, g ∈ H,

〈f, g〉H = 〈f, U∗Ug〉H = 〈Uf,Ug〉K ,

so that U is an isometry into K, Then since for any f ∈ K, f = UU∗f = U(U∗f), ran(U) = K, so that U

is surjective and hence unitary.

3.4.14 DEFINITION. Let H and K be two Hilbert spaces, and let U ∈ B(H,K) be a partial isometry.

Let H1 := (ker(U))⊥ and let K1 := ran(U), which is closed. Then K1 is called the initial space of U , and

H1 is called the final space of U .

Let U ∈ B(H,K) be a partial isometry with initial space H1 and final space K1. Then the restriction

of U to H1 is a unitary from H1 onto K1. Let P be the orthogonal projection in H onto H1, and

let Q be the orthogonal projection in K onto K1. By Theorem 3.4.13, the restriction of U∗U is the

identity on H1, and hence U∗UP = P . Since the range of P⊥ is H⊥1 = ker(U), U∗UP⊥ = 0. Hence

U∗U = (U∗U(P + P⊥) = P . Likewise, UU∗ = Q.

Now consider any U ∈ B(H,K) such that U∗U = P , where P is the orthogonal projection onto some

closed subspace H1 of H. Then for all f ∈ H1, ‖Uf‖2K = 〈f, U∗Uf〉H = 〈f, Pf〉H = ‖f‖2H. Hence U is a

partial isometry. This proves:



76

3.4.15 THEOREM. Let H and K be Hilbert spaces. An operator U ∈ B(H,K) is a partial isometry if

and only if U∗U is an orthogonal projection in H, in which case UU∗ is an orthogonal projection in K.

Let H and K be two Hilbert spaces. If H and K are not unitarily equivalent, then there are no unitary

operators in B(H,K). If H and K are unitarily equivalent, let V be any particular unitary operator in

B(H,K). Then for all T ∈ B(H,K), V ∗T ∈ B(H), and V ∗T is unitary if and only if T is unitary. Thus,

the study of unitary operators on B(H,K) readily reduces to the study of unitary operators on B(H).

We henceforth focus on this case.

Suppose that U ∈ B(H) is an isometry, but that U is not unitary, so that UU∗ 6= I. It turns out

that UU∗ is the orthogonal projection onto the range of U , as we now exlain: Let V := ran(U), which is

closed since U is an isometry, and V ⊥ = ker(U∗). Let P be the orthogonal projection onto the range of

U , and f, g ∈ H. By definition, there exists h ∈ H such that Pg = Uh. Then

〈f, Pg〉 = 〈f, Uh〉 = 〈U∗f, h〉 = 〈UU∗f, Uh〉 = 〈UU∗f, g〉 .

since f, g ∈ H are arbitrary, it follows that UU∗ = P . We have proved:

3.4.16 THEOREM. Let H be a Hilbert space and let U ∈ B(H) be an isometry, Then UU∗ is the

orthogonal prjection on the range of U .

3.4.17 DEFINITION (Partial isometry). Let H be a Hilbert space. An operator U ∈ B(H) is a partial

isometry in case the restriction of U to (ker(U))⊥ is an isometry into H.

3.4.18 DEFINITION (Ortogonal projection). Let H be a Hilbert space. An operator P ∈ B(H) is an

orthogonal proejction in case P = P ∗ and P 2 = P .

Let P be an orthogonal projection in B(H), and let V = ran(P ). Since (ker(P ))⊥ = ran(P ∗) =

ran(P ), the restriction of P to (ker(P ))⊥ is an isometry, and hence P is a partial isometry.

3.4.19 THEOREM. Let H be a Hilbert space. U ∈ B(H) is a partial isometry if and only if UU∗ is an

orthogonal projection.

Proof. Suppose that U is a partial isometry. Then UU∗ is self adjoint, and

(UU∗)2 = U(U∗U)U∗ = UU∗ ,

so that UU∗ is an orthogonal projection. Conversely, suppose that UU∗ is an orthogonal projection.

3.5 The weak topology on a Hilbert space

3.5.1 Weak topology and weak convergence

As a Banach space, a Hilbert space H may be equipped with its weak topology, and since every Hilbert

space H is a reflexive Banach space, as a consequence of the Riesz Representation Theorem, this weak

topolgoy conicides with the weak-∗ topology on H considered as the dual of H through the canonical

sesquilinear isometry of H onto H. By the Alaoglu’s Theorem, it then follows that the norm-closed unit
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ball B in H is weakly compact, while we have seen that in an infinite dimensional Hilbert space B is never

compact in the norm topology.

Specializing the Banach space construction to the Hilbert space setting, the weak topology on a

Hilbert space H is the weakest topology for which all of the functions f 7→ 〈g, f〉, g ∈ H, are continuous,

and a neighborhood base of 0 is given as follows:

Let F = {f1, . . . , fn} be a finite subset of H, and let ε > 0. Define the set VF,ε by

VF,ε = {g ∈ H : |〈f, g〉| < ε for all f ∈ F} (3.5.1)

Note that each VF,ε is convex, balanced, and absorbing. Let V denote the collection of all such set VF,ε,

and F ranges over the finite subsets of H and ε ranges over (0,∞). Since every L ∈ H∗ is of the form

Lf for some f ∈ H, by Theorem 3.2.2 once more, this is the weak topology for H considered as a Banach

space. Since H∗ separates points, the weak topology is Hausforff. Also, as in any Banach space, the

norm-closed unit ball B is weakly closed.

As a direct consequence of our general Banach space results, we have:

3.5.1 THEOREM. Let H be a Hilbert space. A sequence {fn}n∈N in H has the limit f ∈ H under the

weak topology if and only if for all g ∈ H,

〈g, f〉 = lim
n→∞

〈g, fn〉. (3.5.2)

Every weakly convergence sequence {fn}n∈N is bounded: supn∈N{‖fn‖} <∞.

3.5.2 Alaoglu’s Theorem for Hilbert Space

3.5.2 THEOREM (Alaoglu’s Theorem for Hilbert Space). Let H be a Hilbert space and let B = {f ∈
H : ‖f‖ ≤ 1}. Then B is compact in the weak topology on H.

Proof. Since H is reflexive, the weak-∗ topology on H∗ coincides with the weak topology on H under the

idetification of H and H∗ through the canonical sesquilinear embedding. Alaoglu’s Theorem in the general

Banach space setting then yields the result.

Sequential compactness is the same as compactness for metric topologies, but not in general. In an

infinite dimensional Banah space X, the weak topology is never metrizable, but when the dual X∗ is

separable, then the relative weak topology is metrizable on bounded subsets of X. This is not the case

when H is not separable, but nonethless, bounded weakly closed subsets of of a Hilbert sapce are always

weakly sequentially compact.

3.5.3 THEOREM. Let H be a Hilbert space, and let B be the norm-closed unit ball. For every r ∈ (0, 1),

rB is weakly sequentially compact.

Proof. Consider any sequence {fn}n∈N in a Hilbert space H such that for some fn ∈ rB for all n ∈ N.

Let K be the norm closure of the span on {fn}n∈N . The set of all finite linear combintations of vectors in

{fn}n∈N with coefficients that have rational real and imaginary parts is countable and dense in K. Hence

K, as a subspace of H, is a Hilbert space in its own right, and is a separable Hilbert space. Since the

relaitve weak topology on rB∩K is metrizable, there is a subsequence {fn)k}k∈N that converges weakly to
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some f ∈ rB ∩ K. Then for all g ∈ K, limn→∞〈g, fnk〉 = 〈g, f〉 while for all g ∈ K⊥, 〈g, fnk〉 = 〈g, f〉 = 0

for all n. It follows that for all g ∈ H, limn→∞〈g, fnk〉 = 〈g, f〉, and thus {fn)k}k∈N converges weakly to

f in H.

Corollary 3.5.3 will be useful one we have useful methods for identifying weakly closed subsets of H.

We already know, from Alaoglu’s Theorem, that norm closed unit ball B is weakly compact, and therefore

weakly closed. In the next section we shall prove a significant generalization of this: Every norm closed

convex set is weakly closed.

3.5.3 Separation theorems

3.5.4 THEOREM. Let K be a non-empty, norm-closed convex set in a Hilbert space H, and let f ∈ H
with f /∈ K. Then there exists ε > 0 and g0 ∈ H such that

<(〈g0, h〉) ≥ ε+ <(〈g0, f〉) for all h ∈ K . (3.5.3)

3.5.5 Remark. This result is an immediate consequence of the Hahn-Banach Separation Theorem. How-

ever, like everything else pertaining to the Hahn-Banach Theorem, in Hilbert space there is a simpler

method of proof that we now give.

Proof of Thereom 3.5.4. Let Kf = K − f = {h − f : h ∈ K}. Since Kf is a non-empty closed convex

set, the Projection Lemma provides the existence of a unique element g0 ∈ Kf of minimal norm, and since

f /∈ K, g0 6= 0. Hence for all h ∈ K and t > 0,

‖t(h− f) + (1− t)g0‖2 ≥ ‖g0‖2

The left hand side equals ‖g0 + t(h−f −g0)‖2 = ‖g0‖2 +2t<(〈g0, h−f −g0〉)+ t2‖h−f −g0‖2. Therefore,

<(〈g0, h− f − g0〉) +
t

2
‖h− f − g0‖2 ≥ 0

for all t ∈ (0, 1), and hence <(〈g0, h− f − g0〉) ≥ 0. This is the same as <(〈g0, h− f〉) ≥ ‖g0‖2, which, for

ε = ‖g0‖2 > 0, yields (3.5.3).

For g ∈ H and λ ∈ R, define the half-space

Hg,λ = {h ∈ H : <(〈g, h〉) ≥ λ} . (3.5.4)

since the function h 7→ <(〈g, h〉) is weakly continuous, Hg,λ is weakly closed. Theorem 3.5.4 says that if

K be a non-empty, closed convex set in a Hilbert space H, and f ∈ H but f /∈ K, there is a closed half

space Hg,λ such that K ⊂ Hg,λ but f /∈ Hg,λ. Therefore,

K =
⋂
{Hg,λ : K ⊂ Hg,λ} .

This displays K as the intersection of weakly closed sets, and we have proved:

3.5.6 THEOREM. Let H be a Hilbert space. Every norm closed convex set K ⊂ H is weakly closed.
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3.5.4 From weak convergence to norm convergence

Combining corollary 3.5.3 and Theorem 3.5.6, we conclude that in a closed, bounded convex subset K of

a separable Hilbert space H, one can extract a weakly convergent subsequence {fnk}k∈N from any infinite

sequence {gn}n∈N in K.

It is useful to know when such a sequence also converges in the norm topology. The next theorem,

provides a useful criterion.

3.5.7 THEOREM. Let H be a Hilbert space, and let {fn}n∈N be a weakly convergent sequence in H
with limit f . Then

‖f‖ ≤ lim inf
n→∞

‖fn‖ , (3.5.5)

and if ‖f‖ = limn→∞ ‖fn‖, then limn→∞ ‖f − fn‖ = 0. That is, weak convergence, together with conver-

gence of the norms, implies norm convergence.

Proof. Suppose on the contrary that ‖f‖ > lim infn→∞ ‖fn‖. Then for some ε > 0, there is a subsequence

{fnk}k∈N such that ‖fnk‖ ≤ ‖f‖ − ε for all k ∈ N. But since the subsequence also converges weakly to f ,

‖f‖2 = <(〈f, f〉) = lim
k→∞

<(〈f, fnk〉) ≤ ‖f‖‖fnk‖ ≤ ‖f‖(‖f‖ − ε) ,

which is impossible. This proves (3.5.5).

Now suppose that ‖f‖ = limn→∞ ‖fn‖. Since

‖f − fn‖2 = ‖f‖2 + ‖fn‖2 − 2<(〈f, fn〉) ,

lim
n→∞

‖f − fn‖2 = ‖f‖2 + lim
n→∞

‖fn‖2 − 2 lim
n→∞

2<(〈f, fn〉) = 0 .

3.6 Excercises

1. Let H be a separable, infinite dimensional Hilbert space, and let {un}n∈N be an orthonormal basis for

H. Let {cj}∈N be a given sequence of non-negative numbers, and define

Let C ⊂ H be defined by

C = {f ∈ H : ‖f‖ ≤ 1 and |〈uj , f〉| ≤ cj for all j} .

Show that C is always closed and bounded, but is compact if and only if
∑∞
j=1 c

2
j <∞. Taking each

cj = 1, C becomes the unit ball in H, and thus the unit ball is not compact.

2. For real valued square integrable functions f on [−1, 1], compute

max{
∫

[−1,1]

x3f(x)dm :

∫
[−1,1]

xjf(x)dm = 0 for j = 0, 1, 2 and

∫
[−1,1]

f2(x)dm = 1}

3. Show that if E is any Borel set in (0, 2π] then

lim
j→∞

∫
E

cos(jx)dm = lim
j→∞

∫
E

sin(jx)dm = 0 .
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Next, consider any increasing sequence {nk} of the natural numbers. Define E to be the set of all x

for which

lim
k→∞

sin(nkx) exists .

Show that m(E) = 0. (The identity 2 sin2 x = 1− cos(2x) and the first part may prove useful.)

4. Show that in any Hilbert sapce H, there is a continuous curve t 7→ f(t) ∈ H defined for t ∈ 0,∞) such

that for all r < s < t, 〈f(t)− f(s), f(s)− f(r)〉 = 0. That is, the curve is constantly making rangle angle

turns. Do this first wehn H = L2([0,∞),B, µ) where µ is Lebesgue measure, and then deduce the general

case as a consequence.

5. Let H be a seperable Hilbert sapce and let {un}n∈N be an orthonormal basis for H. Let {vn}n∈N be

another orthonormal sequence in H.

(a) Suppose that
∑∞
n=1 ‖un − vn‖2 < 1. Use Bessel’s inequality and Parseval’s identity to show that

{vn}n∈N is complete; i.e., that {vn}n∈N is also an orthonormal basis for H.

(b) Suppose that
∑∞
n=1 ‖un − vn‖2 <∞. Pick N large enough that

∑∞
n=N+1 ‖un − vn‖2 < 1. Show that

if f ∈ H is orthognal to un for 1 ≤ n ≤ N , and is orthogonal to vn for n ≥ N + 1, then g = 0. Then let

V denote the closed span of {vN+1, vN+2, . . . }, and show that V ⊥ is a subsapce of dimension N .

(c) Show that when
∑∞
n=1 ‖un − vn‖2 <∞, {vn}n∈N is an orthonormal basis.

Commentary: Exercise 5 is based on a result of Birkhoff and Rota who apply it to show completeness of

the orthonormal sequences of Sturm-Liouville eigenfunctions. It is known, going back to Liouville himself,

that if {vn}n∈N is the normalized sequence of eigenfunctions of a Sturm-Liouville operator with some

boundary considtions, and {un}n∈N is the Fourier basis for the same boundaty conditions, then for some

constant C < ∞, ‖un − vn‖2 ≤ Cn−2 for all n. Hence, the condition in part (c) is applicable, and the

completeness of {vn}n∈N follows from the known completeness of {un}n∈N.

6. Let H be a Hilbert space, and let {un}n∈N be orthonormal in H. Let {vn}n∈N be any sequence of

vectors in H.

(a) Prove that the following are equivalent:

(1) There exists some C ∈ (0,∞), whenever N ∈ N and {α1, . . . , αN} ∈ CN ,∥∥∥∥∥
N∑
n=1

αnvn

∥∥∥∥∥
2

≤ C
N∑
n=1

|αn|2 . (∗)

(2) For all f ∈ H, Af :=
∑∞
n=1〈f, un〉vn is norm-convergent, and f 7→ Af is a bounded linear operator

on H.

Show moreover that in this case ‖A‖ is the least value of C for which (∗) is valid.

(b) Prove that (∗) is satisfed in case {vn}n∈N is norm-bounded, and
∑
m6=n |〈vm, vn〉|2 <∞.

7. Let H be a Hilbert space, and let V and W be closed subspaces of H. Let PV be the orthogonal

projection onto V , and let PW be the orthogonal projection onto W . Let P denote the ortohogonal

projection onto V ∩W . Define T = PV PW .

(a) Show that if Q is the orthogonal projection onto any closed subspace of H, then for all f ∈ H,

‖Qf − f‖2 = ‖f‖2 − ‖Qf‖2 .
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(b) Use the telscoping sum Tf = (PV PW f −PW f) + (PW f − f) and part (a) to show that for all f ∈ H,

‖Tf − f‖2 ≤ 2(‖f‖ − ‖Tf‖2) .

(c) Show that for all f ∈ H, limn→∞ ‖Tnf‖ exists, and then that limn→∞ ‖Tn(T − I)f‖ = 0.

(d) Show that ker(T ∗ − I) = V ∩ W , and that for g ∈ ran(T − I), limn→∞ Tng = 0. Finally, prove

that for all f ∈ H, limn→∞ Tnf = Pf . (This result is due to von Neumann; the proof suggested by

the components of the problem is due to Kakutani. This proof may be readily genralized to products of

arbitrarily many projections.)

8. Let H be a Hilbert space. The closed convex hull of a A ⊂ H, denoted co(A), is the intersection over

all of the closed convex sets containing A.

(a) For A ⊂ H, g ∈ H is said to be a finite convex combination of elements of A in case for some finite

sets {f1, . . . , fn} ⊂ A and {t1, . . . , tn} ⊂ [0, 1],
∑n
k=1 tk = 1 and

∑n
k=1 tkfk = g. Show that for all A ⊂ H,

co(A) is the norm closure of the set of finite convex combinations of elements of A.

(b) Let {fn}n∈N be a weakly convergent sequence in H with weak limit f . For each N ∈
N , let

KN := co ({fn}n≥N ) .

Show that each KN is bounded and weakly compact, and that f ∈ KN for all N ∈ N . Then show that

there exists a sequence {gn}n∈N such that for each n ∈ N, gn is a finite convex combination vectors in

{fn}n≥N and such that limn→∞ ‖gn − f‖ = 0.

9. (a) Let T be an operator on a Hilbert space H such that 〈f, Tf〉 ∈ R for all f ∈ H. Let S = T − T ∗,
Show that 〈f, Sf〉 = 0 for all f ∈ H.

(b) Let S be an operator on a complex Hilbert space H such that 〈f, Sf〉 = 0 for all f ∈ H considering

f = g + h and f = g + ih, show that 〈g, Sh〉 = 0, and then that S = 0.

(c) A bounded operator T Hilbert space H is said to be positive in case 〈f,Af〉 ≥ 0 for all f ∈ H. Show

that every positive bounded operator T on a complex Hilbert space is slef-adjoint; i.e., T = T ∗.

10. Let T be a positive bounded operator on a complex Hilbert space H. (See Exercise 9.)

(a) For all f, g ∈ H, define a sesquilinear form 〈·, ·〉T on H by 〈f, Tg〉T = 〈f, g〉. Show that 〈·, ·〉T is an

inner product on H.

(b) Define a function F on H by F (f) = 1
2 〈f, Tf〉 = 〈f, Tg〉T . Show that F is convex on H.

(c) Show that the function F is sequentially weakly lower semicontinuous on H. That is, if {fn}n∈N

converges weakly to f , then F (f) ≤ lim infn→∞ F (fn). To do this, use part (b) and Exercise 8.

11. An operator T on a Hilbert space H is uniformly positive or coercive in case for some ε > 0,

〈f, Tf〉 ≥ ε‖f‖2 for all f ∈ H. Let T be coercive on H.

(a) Show that for all f ∈ H there is a unique gf ∈ H such that for all g 6= gf ,

<〈f, g〉 − F (g) < <〈f, gf 〉 − F (gf ) .

and that Tgf = f and ‖gf‖ ≤ ε−1f .
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(b) Show that T has a bounded inverse and that

1

2
〈g, T−1g〉 = sup

f∈H
{<〈f, g〉 − 〈f, Tf〉} .

12. Let T ∈ B(H) be self-adjoint. Show that T + iI is invertible. Then define an operator UT by

UT := (T − iI)(T + iI)−1 .

Show that UT is unitary, and that UT − I is invertible. Finally, show that T = i(I + UT )(I − UT )−1, and

that if U is unitary and U − I is invertible, then i(I +U)(I −U)−1 is self adjoint. Thus the map T 7→ UT

is a one-to-one map from the set of self adjoint memebers of B(H) onto the set of unitary operators

U ∈ B(H) such that U − I is invertible.



Chapter 4

Compact operators on Hilbert Space

4.0.1 Norms of self-adjoint operators on Hilbert space

Let T ∈ B(H), H a Hilbert space. Since for all f ∈ H, there is a unit vector v such that 〈v, f〉 = ‖f‖,
and since |〈v, f〉| ≤ ‖f‖ for all unit vectors v, ‖Tu‖ = sup{|〈v, Tu〉| : ‖v‖ = 1}. Therefore,

‖T‖ = sup{|〈v, Tu〉| : ‖u‖ = 1 , ‖v‖ = 1} . (4.0.1)

When T is self-adjoint; i.e., when T = T ∗, there is a simpler formula:

4.0.1 LEMMA. Let T ∈ B(H), T = T ∗. Then

‖T‖ = sup{|〈u, Tu〉| : ‖u‖ = 1 } . (4.0.2)

Proof. Temporarily define CT := sup{|〈u, Tu〉| : ‖u‖ = 1 }. Let u, v be unit vectors in H such that

v 6= ±u. Since T is self-adjoint,

〈u+ v, T (u+ v)〉 = 〈u, Tu〉+ 〈v, Tv〉+ 2<(〈v, Tu〉)

〈u− v, T (u− v)〉 = 〈u, Tu〉+ 〈v, Tv〉 − 2<(〈v, Tu〉) .

Therefore,

<(〈v, Tu〉) =
1

4
(〈u+ v, T (u+ v)〉 − 〈u− v, T (u− v)〉) .

Defining f = u+ v and g = u− v, neither of which is zero, we obtain

<(〈v, Tu〉) =
1

4

(
‖f‖2 〈f, Tf〉

‖f‖2
− ‖g‖2 〈g, Tg〉

‖g‖2

)
≤ 1

4
(‖f‖2 + ‖g‖2)CT = CT .

Replacing v by eiθv and varying θ, we obtain that |〈v, Tu〉| ≤ CT for all unit vectors u and v, the excluded

case v = ±u being trivial. Now (4.0.2) follows from (4.0.1).

If T ∈ B(H), then ‖T ∗‖ = ‖T‖, which follows from (4.0.1) since |〈v, T ∗u〉| = |〈u, Tv〉|. Also, for all

unit vectors u and all S, T ∈ B(H), ‖STu‖ ≤ ‖S‖‖Tu‖ ≤ ‖S‖‖T‖ so that ‖ST‖ ≤ ‖S‖‖T‖. In particular,

‖T 2‖ ≤ ‖T‖2, and then by a simple induction, ‖Tn‖ ≤ ‖T‖n for all n ∈ N. The inequality can be strict:

For example, if T is nilpotent of order n, so that Tn = 0, but T 6= 0, then 0 = ‖Tn‖ < ‖T‖n.

83
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4.0.2 THEOREM. For all T ∈ B(H), H a Hilbert space, ‖T ∗T‖ = ‖T‖2.

Proof. Since T ∗T is self-adjoint, ‖T ∗T‖ = sup{|〈u, T ∗Tu〉| : ‖u‖ = 1 }. However, 〈u, T ∗Tu〉 = 〈Tu, Tu〉 =

‖Tu‖2, so that

‖T ∗T‖ = sup{‖Tu‖2 : ‖u‖ = 1 } = ‖T‖2 .

In particular, if T is self-adjoint, then ‖T 2‖ = ‖T‖2, and then it follows that ‖Tn‖ = ‖T‖n for all

n ∈ N. The identity ‖T ∗T‖ = ‖T‖2 is known as the C∗ algebra identity because of its crucial role in the

Gelfand-Naimark theory of C∗ algebras.

4.0.2 Compact operators

4.0.3 DEFINITION (Compact operator). An operator T ∈ B(H), H a Hilbert space, is compact in

case whenever {fn}n∈N is a weakly convergent sequence in H, {Tfn}n∈N is a strongly convergent sequence

in H.

4.0.4 EXAMPLE. Let (Ω,M , µ) be a measure space, and let H = L2(Ω,M , µ). Let K be a square

integrable function on the product space (Ω× Ω,M ⊗M , µ⊗ µ) and define

‖K‖2 =

∫
Ω×Ω

|K|2dµ⊗ µ .

Then for each h ∈ H, and each x ∈ Ω,∣∣∣∣∫
Ω

K(x, y)h(y)dµ(y)

∣∣∣∣ ≤ (∫
Ω

|K(x, y)|2dµ(y)

)1/2

‖h‖ . (4.0.3)

By Fubini’s Theorem, the right hand side is a square integrable function of x, and hence for all f ∈ H,

the function Kf defined by

Kf(x) :=

∫
Ω

K(x, y)f(y)dµ(y) (4.0.4)

belongs to H, and moreover, ‖Kf‖ ≤ ‖K‖‖f‖. Therefore, the map f 7→ Kf is a bounded linear transfor-

mation on H.

In fact, K is compact. To see this, let {fn} be a sequence that converges weakly to f ∈ H. By

Fubini’s Theorem, for almost every x ∈ X, y 7→ K(x, y) is square integrable, and thus we may write Kf =

〈K(x, ·), f〉, and then by the weak convergence, Kf(x) = limn→∞Kfn(x) for almost every x. Moreover,

since weakly convergence sequences are uniformly bounded, there exists C <∞ such that ‖fn‖ ≤ C for all

n, and then ‖f‖ ≤ C as well since ‖f‖ ≤ lim infn→∞ ‖fn‖. Therefore, by (4.0.3)

|K(f − fn)(x)|2 ≤ 4C2

(∫
Ω

|K(x, y)|2dµ(y)

)
.

Then by the Lebesgue Dominated Convergence Theorem, limn→∞ ‖Kf − Kfn‖2 = 0. Thus, {Kfn}n∈N

converges strongly to f . This proves that K is a compact operator.

The class of compact operators considered in this example is called the class of Hilbert-Schmidt integral

operators.
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An even simpler example is given by the class of finite rank operators on a Hilbert space H. First, we

fix a useful notational convention. Given two vectors f, g ∈ H, let |g〉〈f | denote the operator on H given

by

|g〉〈f |h = 〈f, h〉g for all h ∈ H . (4.0.5)

An operator T ∈ B(H) has finite rank if its range, ran(T ), is a finite dimensional subspace of H, or

equivalently, if the orthogonal complement of its null-space, ker(T )⊥, is finite dimensional. If T is finite

rank and {f1, . . . , fm} is an orthonormal basis for ker(T )⊥, then we may write T in the form

T =

m∑
j=1

|gj〉〈fj | , (4.0.6)

where for each j, gj = Tfj . Conversely, every operator of the form (4.0.6), even without the assumption

that {f1, . . . , fm} is orthonormal, is finite rank. It is very simple to show that every finite rank operators

is compact; this is left to the reader.

4.0.5 THEOREM. Let T ∈ C (H). Then T ∗ ∈ C (H), and for all S ∈ B(H), ST and TS belong to

C (H). Finally, C (H) is an operator norm closed subspace of B(H).

Proof. To show that T ∗ ∈ C (H) whenever T ∈ C (H), let T ∈ C (H) and let {fn}n∈N be a sequence in H
that converges weakly to f ∈ H. We must show that limn→∞ ‖T ∗(fn − f)‖ = 0. If this is not the case,

then for some ε > 0, there is a subsequence {fnk}k∈N such that ‖T ∗(fnk − f)‖ ≥ ε for all k. Passing to

this subsequence, ‖T ∗(fk − f)‖ ≥ ε for all k. Then there exists a sequence {uk}k∈N of unit vectors such

that

|〈Tuk, fk − f〉| = |〈uk, T ∗(fk − f)〉| = ‖T ∗(fk − f)‖ ≥ ε

for all k. The norm closed unit ball B in H is weakly sequentially compact, and hence there ex-

ists a (further) subsequence {uk`}`∈N that converges weakly to some u ∈ B. Since T is compact,

lim`→∞ ‖T (uk` − u)‖ = 0 and ‖fk` − f‖ is bounded uniformly in `. Therefore, for all sufficiently large `,

‖T (uk` − u)‖‖fk` − f‖ < ε/2, and then for all such `,

|〈Tu, fk` − f〉| ≥ |〈Tuk` , fk` − f〉| − |〈T (uk` − u), fk` − f〉|

≥ |〈Tuk` , fk` − f〉| − ‖T (uk` − u)‖‖fk` − f‖ ≥
1

2
ε .

However this is impossible since {fn}n∈N converges weakly to f . This contradiction shows that T ∗ is

compact.

It is evident that since S takes norm convergent sequences to norm convergent sequences, then ST is

compact for all S ∈ B(H) and T ∈ C (H). Since TS = (S∗T ∗)∗, the first part of the proof shows that TS

is compact for all S ∈ B(H) and T ∈ C (H).

Now let {Tn}n∈N be a norm convergent sequence in C (H) and let T be the limit in B(H). We must

show that T ∈ C (H). Let {fk}k∈N be a weakly convergent sequence with limit f . Then there is a finite

constant C such that ‖fk‖ ≤ C for all k, and also ‖f‖ ≤ C.

Pick ε > 0, and then pick N so that ‖Tn − T‖ < ε whenever n ≥ N . Then for all k, `,

‖Tfk − Tf`‖ ≤ ‖(T − TN )fk‖+ ‖TN (fk − f`)‖+ ‖(T − TN )f`‖ ≤ Cε+ ‖TN (fk − f`)‖+ Cε .
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Since TN is compact, there is a finite M so that whenever k, ` ≥M , ‖TN (fk − f`)‖ < ε. Altogether,

k, ` ≥M ⇒ ‖Tfk − Tf`‖ ≤ (2C + 1)ε .

Since ε > 0 is arbitrary, this shows that {Tfk} is a Cauchy sequence. Let g denote the limit. Then for all

h ∈ H,

〈h, g〉 = lim
n→∞

〈h, Tfn〉 = lim
n→∞

〈T ∗h, fn〉 = 〈T ∗h, f〉 = 〈h, Tf〉 ,

and therefore Tf = g = limn→∞ Tfn.

A number λ ∈ C is called an eigenvalue of T ∈ B(H) in case there is a non-zero vector f ∈ H such

that Tf = λf , and in this case, f is called an eigenvector of T with the eigenvalue λ.

If λ is an eigenvalue of T , the corresponding eigenspace Hλ is the subspace of H spanned by all of the

eigenvectors of T with eigenvalue λ. That is,

Hλ = ker(λI − T ) ,

which shows that Hλ is always closed.

4.0.6 THEOREM. Let T be a compact operator on a Hilbert space H. If if λ is an non-zero eigenvalue

of T , then dim(ker(λI − T )) <∞. Moreover, for each r > 0, there are at most finitely many λ ∈ C such

that λ is an eigenvalue of T and |λ| ≥ r.

Proof. If for any non-zero λ, dim(ker(λI−T )) =∞, then there exists an orthonormal sequence {un}n∈N of

eigenvectors of T , Tun = λnun, such that infn∈N{|λn|} > 0. Then {un}n∈N converges weakly to zero, but

{Tun}n∈N does not converge strongly. If T is self-adjoint, so that eigenvectors with distinct eigenvalues

are necessarily orthogonal, essentially the same argument can be used for the second part.

To prove the second part in general, suppose that there are infinitely many eigenvalues {λn}n∈N with

|λn| ≥ r for all n. For each n, let un be a unit vector with Tun = λnun. Passing to a subsequence, we

may suppose that un converges weakly to u ∈ B as n → ∞. Define Kn = span({u1, . . . , un}). Since any

set of eigenvectors with distinct eigenvalues is linearly independent, Kn+1 ∩ K⊥n 6= {0} for any n. Define

v1 = u1, and for all n ∈ N, choose any unit vector vn+1 ∈ Kn+1 ∩ K⊥n . Since vn converges weakly to 0

as n → ∞, Then limn→∞ ‖Tvn‖ = 0. Now note that (λnI − T )vn ∈ Kn−1 for each n ≥ 2. Hence vn is

orthogonal to (λnI − T )vn, and hence

‖Tvn‖2 = ‖(T − λn)vn + λnvn‖2 = ‖(T − λn)vn‖2 + ‖λnvn‖2 ≥ r .

This contradiction shows that there do not exist infinitely many eigenvalues λ with |λ| ≥ r.

4.0.3 The Hilbert-Schmidt Spectral Theorem

In an infinite dimensional Hilbert space, bounded operators, even bounded self-adjoint operators, need

not have any eigenvalues at all. For example, let H := L2([0, 1],B, µ) where µ is Lebesgue measure.

Define Tf(t) = tf(t). Then it is easily checked that ‖T‖ = 1 and T = T ∗. However, if Tf = λf , then

(t− λ)f(t) = 0 for almost every t, and this is impossible unless f = 0. However, for compact self-adjoint

operators, the situation is different.
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4.0.7 THEOREM. Let T be a self-adjoint compact operator on a Hilbert space H. Then either ‖T‖ or

−‖T‖ is an eigenvalue of T (or both are).

Proof. By Lemma 4.0.1, ‖T‖ = sup{|〈u, Tu〉| : ‖u‖ = 1 }. Therefore, either

‖T‖ = sup{〈u, Tu〉 : ‖u‖ = 1 } or ‖T‖ = sup{−〈u, Tu〉 : ‖u‖ = 1 } , (4.0.7)

or both. Suppose first that ‖T‖ = sup{〈u, Tu〉 : ‖u‖ = 1 }. We may assume that T 6= 0 to avoid

trivialities.

It follows that there exists a sequence of unit vectors {un}n∈N such that limn→∞〈un, Tun〉 = ‖T‖.
Since every bounded sequence contains a weakly convergent subsequence, we may select a subsequence

{unk}k∈N that converges weakly to some u ∈ H with ‖u‖ ≤ 1.

We now show that in fact ‖u‖ = 1 and 〈u, Tu〉 = ‖T‖. Note that

〈u, Tu〉 − 〈unk , Tunk〉 = 〈u− unk , Tu〉+ 〈unk , T (u− unk)〉 .

Since {u − unk}k∈N converges weakly to 0, limk→∞〈u − unk , Tu〉 = 0. Moreover, since T is compact,

{T (u− unk)}k∈N converges strongly to zero and hence

lim sup
k→∞

|〈unk , T (u− unk)〉| ≤ lim sup
k→∞

‖T (u− unk)‖ = 0 .

Therefore

〈u, Tu〉 − ‖T‖ = lim
k→∞

(〈u, Tu〉 − 〈unk , Tunk〉) = 0 .

Hence ‖T‖ = 〈u, Tu〉. By the Cauchy-Schwarz inequality, ‖T‖ = |〈u, Tu〉| ≤ ‖T‖‖u‖2. Since ‖u‖ ≤ 1, we

must have ‖u‖ = 1.

Now that we have found a unit vector u such that 〈u, Tu〉 = ‖T‖ ≥ 〈v, Tv〉 for all unit vectors v ∈ H,

let h be any unit vector, and define the function ϕ on (−1/2, 1/2) by

ϕ(t) =
〈u+ th, T (u+ th)〉

‖u+ th‖2
, (4.0.8)

and note that ϕ(0) ≥ ϕ(t) for all t ∈ (−1/2, 1/2). Since T is self adjoint, and since 〈u, Tu〉 = ‖T‖,

〈u+ th, T (u+ th)〉 = 〈u, Tu〉+ t〈h, Tu〉+ t〈u, Th〉+ t2〈h, Th〉

= ‖T‖+ t〈h, Tu〉+ t〈Tu, h〉+ t2〈h, Th〉

= ‖T‖+ 2t<(〈Tu, h〉) + t2〈h, Th〉 .

Therefore,

ϕ(t) =
‖T‖+ 2t<(〈Tu, h〉+ t2〈h, Th〉

1 + t2<(〈u, h〉) + t2
,

Computing the derivative, we find 0 = <(〈Tu, h〉 − ‖T‖<(〈u, h〉). Replacing h by ih, we see that also

=(〈Tu, h〉 = ‖T‖=(〈u, h〉, and altogether that 〈Tu− ‖T‖u, h〉 = 0 for all unit vectors h, and hence for all

vectors h. Taking h = Tu − ‖T‖u, we conclude that Tu = ‖T‖u. Thus, u is an eigenvector of T with

eigenvalue ‖T‖.
Now suppose that the second alternative in (4.0.7) is valid. This is the same as ‖T‖ = − inf{〈u, Tu〉 :

‖u‖ = 1}. The same reasoning proves the existence of a unit vector u such that −‖T‖ = 〈u, Tu〉. Defining

ϕ(t) exactly as in (4.0.8), we have this time that ϕ(0) ≤ ϕ(t) for all t ∈ (−1/2, 1/2). Again, this means

ϕ′(0) = 0, and computing the derivative as above we find that Tu = −‖T‖u.



88

The following simple lemmas will be frequently useful.

4.0.8 LEMMA. Let T be a self-adjoint operator on a Hilbert space H. Suppose that K is a subspace of

H such that K is invariant under T , meaning that Tf ∈ K for all f ∈ K. Then K⊥ is also invariant

under T .

Proof. Let f ∈ V , and g ∈ V ⊥. Then 0 = 〈Tf, g〉 = 〈f, Tg〉 so that Tg ∈ V ⊥.

In particular, if T is a self-adjoint operator on H, and K = ker(T ), then K⊥ is invariant under T ,

and being a closed subspace of H, K⊥ is a Hilbert space in its own right. If T is a compact self-adjoint

operator, the restriction of T to K⊥, T |K⊥ , is an injective compact self-adjoint operator on K⊥.

Next, any eigenvalues of a self-adjoint operator on a Hilbert space H are necessarily real:

4.0.9 LEMMA. Let T be a self-adjoint operator on a Hilbert space H. Suppose that f 6= 0 and that

Tf = λf for some λ ∈ C. Then λ ∈ R.

Proof. Let u = ‖f‖−1f . Then λ = 〈u, Tu〉 = 〈Tu, u〉 = 〈u, Tu〉 = λ.

4.0.10 THEOREM (Hilbert-Schmidt Spectral Theorem). Let T be a self-adjoint compact operator on a

Hilbert space H. Let K = ker(T ). If dim(K⊥) =: m < ∞, define the index set J to be {1, . . . ,m}.
Otherwise, define J := N. Then there exists an orthonormal basis {un}n∈J for K⊥ consisting of

eigenvectors of T with Tuj = λjuj for all j ∈ N such that λj is real, |λk| ≤ |λj | for all j < k ∈ J

and |λ1| = ‖T‖. Moreover,

T =
∑
j∈J

λj |uj〉〈uj | , (4.0.9)

where, in case J = N, the sum converges in the operator norm and limn→∞ λn = 0.

Proof. By restricting T to (ker(T ))⊥, we may assume without loss of generality that ker(T ) = {0}, which

we do in order to simplify the notation.

By Theorem 4.0.7, either ‖T‖ or −‖T‖ is an eigenvalue of T , or both are. Let u1 be an eigenvector

of T with eigenvalue λ1, where either λ1 = ‖T‖ or λ1 = −‖T‖. If dim(H) = 1, we are done.

Otherwise, define K1 = span({u1}). Then K1 is invariant under T , and then by Lemma 4.0.8, K⊥1 is

a invariant under T . Since the orthogonal complement of any set is closed, K⊥1 is closed, and hence is a

Hilbert space. Since K⊥1 is invariant under T , the restriction of T to K1, T
∣∣
K⊥1

, is a self-adjoint compact

operator on K⊥1 .

Therefore, we may apply Theorem 4.0.7 to T
∣∣
K⊥1

: Either
∥∥∥T ∣∣K⊥1 ∥∥∥ or −

∥∥∥T ∣∣K⊥1 ∥∥∥ is an eigenvalue of

T
∣∣
K⊥1

. Choose u2 to be an eigenvector of T
∣∣
K⊥1

with eigenvalue λ2 = ±
∥∥∥T ∣∣K⊥1 ∥∥∥. Evidently,

∥∥∥T ∣∣K⊥1 ∥∥∥ ≤ ‖T‖
and hence |λ2| ≤ |λ1|. If dim(H) = 2, we are done. Otherwise we iterate.

Suppose we have found an orthonormal set {u1, . . . , um} consisting of eigenvectors of T with Tuj = λuj

and |λj | ≤ |λk| for all 1 ≤ j < k ≤ m. Suppose that dim(H) > m. Define Km := span({u1, . . . , um}),
which, being spanned by eigenvectors, is evidently invariant under T . By Lemma 4.0.8, K⊥m is a closed

subspace of H that is invariant under T .

Therefore, we may apply Theorem 4.0.7 to T
∣∣
K⊥m

: Either
∥∥∥T ∣∣K⊥m∥∥∥ or −

∥∥∥T ∣∣K⊥m∥∥∥ is an eigenvalue of

T
∣∣
K⊥m

. Choose um+1 to be an eigenvector of T
∣∣
K⊥m

with eigenvalue λm+1 = ±
∥∥∥T ∣∣K⊥m∥∥∥. Then Tum+1 =
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λm+1um+1 so that um+1 is also an eigenvector of T . Evidently,∥∥∥T ∣∣K⊥m∥∥∥ ≤ ∥∥∥T ∣∣K⊥m−1

∥∥∥
and hence |λm+1| ≤ |λm|. Thus, {u1, . . . , um+1} is an orthonormal set consisting of eigenvectors of T with

Tuj = λuj and |λj | ≤ |λk| for all 1 ≤ j < k ≤ m+ 1.

If dim(H) := N < ∞, the inductive construction terminates in N steps producing an orthonormal

basis for H. Otherwise it continues indefinitely producing an infinite orthonormal sequence {un}n∈N with

Tun = λnun and n 7→ |λn| non-increasing on N. By Theorem 4.0.6, for each r > 0, there can be only

finitely many n such that |λn| ≥ r. It follows that limn→∞ λn = 0.

We now claim that {un}n∈N is complete. To see this, let K denote the orthogonal complement of

the span of {un}n∈N, and note that since the span of {un}n∈N is invariant under T , so is K. Since

ker(T ) = {0}, if K 6= {0}, ‖T |K‖ > 0. We could then apply Theorem 4.0.7 to produce an unit vector u

that is an eigenvector of T with Tu = ±‖T |K‖u, and with 〈u, un〉 = 0 for all n. But this is impossible

since by the construction of {un}n∈N, for all unit vectors u ∈ H with 〈u, uj〉 = 0 for j = 1, . . . ,m,

|〈u, Tu〉| ≤ |λm| and we have seen that limn→∞ |λn| = 0. Hence K = {0}, which means that {un}n∈N is

complete.

Since {uj}j∈J is an orthonormal basis for H, we have that for all f ∈ H, f =
∑
j∈J 〈uj , f〉uj , and

hence

Tf = T

∑
j∈J

〈uj , f〉uj

 =
∑
j∈J

〈uj , f〉Tuj =
∑
j∈J

λj |uj〉〈uj |f .

If J is finite, this proves (4.0.9).

For the case J = N, we now show that the sum in (4.0.9) converges in the operator norm. To do

this, for each n ∈ N, define Tn =

n∑
j=1

λj |uj〉〈uj |. Then all n > m and unit vectors u,

|〈u, (Tn − Tm)u〉| =

∣∣∣∣∣∣
n∑

j=m+1

λj |〈uj , u〉|2
∣∣∣∣∣∣ ≤ |λm+1|

∞∑
j=1

|〈uj , u〉|2 = |λm+1| .

By Lemma 4.0.1, ‖Tn − Tm‖ ≤ |λm+1| and then since limn→∞ λn = 0, {Tn}n∈N is a Cauchy sequence in

B(H). This sequence therefore converges in operator norm to a limit that must agree with T on the dense

span of {uj}j∈N , and must therefore be T . This proves (4.0.9) in the infinite dimensional case.

There are several corollaries:

4.0.11 COROLLARY. For all self-adjoint T ∈ C (H), there exists an orthonormal basis for H consisting

of eigenvectors of H.

Proof. Let K := ker(T ), which is a closed subspace of H, and therefore a Hilbert space in its own right.

Combine any orthonormal basis for this space with the orthonormal basis of K⊥ that is provided by

Theorem 4.0.10.

4.0.12 COROLLARY. C (H) is the operator norm closure of the set F (H) of finite rank operators on

H.
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Proof. We have seen that F (H) ⊂ C (H), and that C (H) is closed so that F (H) ⊂ C (H). The formula

(4.0.9) displays every self adjoint compact operator T as the operator norm limit of finite rank operators,

and if T is compact, so are R := T + T ∗ and S := i(T ∗ − T ). As self-adjoint compact operators, R and S

can be approximated in operator norm by finite rank operators, but then since T = R+ iS, so can T .

If T ∈ C (H), and T = T ∗, and ϕ is a continuous function on defined on [−‖T‖, ‖T‖], then we define

ϕ(T ) =
∑
j∈N

ϕ(λj)|uj〉〈uj | .

4.0.4 The Fredholm Alternative

The Fundamental Theorem of Linear Algebra says that a linear transformation T between finite dimen-

sional vector spaces V and W is invertible if and only if V and W have the same dimension and T is either

injective or surjective. In other words, for linear maps between vector spaces of the same finite dimension,

infectivity implies subjectivity and vice-versa.

In infinite dimensions, this is not true in general, but there is an important case in which is is true.

4.0.13 THEOREM. Let T be a compact operator on a Hilbert space H. Then (I − T ) is invertible if

and only if (I − T ) is injective, and (I − T ) is invertible if and only if (I − T ) is surjective. Moreover

dim(ker(I − T )) = dim((ran(I − T ))⊥) . (4.0.10)

4.0.14 Remark. The first part of the theorem can be expressed as saying that either (I−T ) is invertible,

or else 1 is an eigenvalue of T . This is the Fredholm alternative. For λ 6= 0, (λI − T ) = λ(I − λ−1T ), and

hence (λI − T ) is invertible if and only if (I − λ−1T ) is invertible, and λ−1T is compact if and only if T

is compact. Hence if T is compact, and λ 6= 0, either λ is an eigenvalue of T or else λI − T is invertible.

4.0.15 LEMMA. Let T be a compact operator on a Hilbert space H. Then either there exists C > 0

such that for all f ∈ H,

‖(I − T )f‖ ≥ C‖f‖ (4.0.11)

or else ker(I − T ) 6= {0}.

Proof. Suppose that there is no C > 0 such that (4.0.11) is valid for all f ∈ H. The there exists a sequence

of unit vectors {un}n∈N such that limn→∞ ‖(I − T )un‖ = 0. Since the closed unit ball B in H is weakly

sequentially compact, by passing to a subsequence, we may assume that {un}n∈N converges weakly to

some u ∈ B, and then, since T is compact, that limn→∞ ‖Tun − Tu‖ = 0. Then since

|1− ‖Tun‖| = |‖un‖ − ‖Tun‖| ≤ ‖un − Tun‖ = ‖(I − T )un‖ ,

limn→∞ ‖Tun‖ = 1, and hence ‖Tu‖ = 1.

Since T commutes with (I−T ), and is bounded, the hypothesis that limn→∞ ‖(I−T )un‖ = 0 implies

that

0 = lim
n→∞

‖T (I − T )un‖ = lim
n→∞

‖(I − T )Tun‖ = ‖(I − T )Tu‖ .

Since ‖Tu‖ = 1, this means that Tu is a non-zero vector in ker(I − T ).
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4.0.16 LEMMA. Let T be a compact operator on a Hilbert space H. If ker(I−T ) = {0}, then ran(I−T )

is closed.

Proof. Let {gn}n∈N be a sequence in ran(I − T ) that converges in norm to some g ∈ H. We must show

that g ∈ ran(I − T ). Since (I − T ) is injective, for each n ∈ N, there is a unique fn ∈ H such that

(I −T )fn = gn. Then by (4.0.11), {fn}n∈N is a Cauchy sequence in H, and hence there exists f ∈ H such

that limn→∞ ‖fn − f‖ = 0. Then

g = lim
n→∞

(I − T )fn = (I − T )f ,

showing that g ∈ ran(I − T ).

4.0.17 LEMMA. Let T ∈ B(H) Then

(ran(T ))⊥ = ker(T ∗) . (4.0.12)

Proof. Let f ∈ ker(T ∗). For all g ∈ H, 0 = 〈T ∗f, g〉 = 〈f, Tg〉, and hence f ⊥ Tg. Thus ker(T ∗) ⊂
(ran(T ))⊥. Let f ∈ (ran(T ))⊥. For all g ∈ H, 0 = 〈f, Tg〉 = 〈T ∗f, g〉, and hence T ∗f = 0. Thus,

(ran(T ))⊥ ⊂ ker(T ∗).

Proof of Theorem 4.0.13. Suppose that I − T is injective. By Lemma 4.0.16, V1 := ran(I − T ) is a closed

subspace of H, and hence a Hilbert space. Since T is a continuous vector space isomorphism of H onto V1,

it has a bounded inverse: By Lemma 4.0.15, the unique f such the (I − T )f = g; i.e., (I − T )−1g satisfies

‖(I − T )−1g‖ ≤ C−1‖g‖, showing that (I − T )−1 ∈ B(H). (One could also invoke the Open Mapping

Theorem.)

Suppose that V1 is a proper subspace of H. Then since I − T is injective, V2 := (I − T )V1 is a proper

subspace of V1 = (I−T )H, and it is closed since (I−T ) is a topological homeomorphism. We inductively

define Vn+1 := (I − T )Vn for each n ∈ N, and then, as above, we have that each Vn+1 is a proper, closed

subspace of Vn.

Then Vn ∩ V ⊥n+1 is a non-zero subspace for all n ∈ N. Choose any unit vector un ∈ Vn ∩ V ⊥n+1. Since

Vn ⊂ Vm for all n ≥ m, {un}n∈N is an orthonormal sequence. Since un ∈ Vn and Tun − un ∈ Vn+1, un

and Tun − un are orthogonal, and hence

‖Tun‖2 = ‖(Tun − un) + un‖2 = ‖Tun − un‖2 + ‖un‖2 ≥ 1 .

However, since {un}n∈N is orthonormal, it converges weakly to 0, and then since T is compact

limn→∞ ‖Tun‖ = 0. This contradiction shows that ran(I − T ) = V1 = H, and hence that I − T is

surjective onto H as well as injective, and we have already seen that (I − T )−1 ∈ B(H). This proves that

I − T is invertible if and only if it is injective.

Next, suppose that I − T is surjective. Then by Lemma 4.0.17, I − T ∗ = (I − T )∗ is injective, and

since T ∗ is also compact, what we have proved above shows that I − T ∗ is invertible in B(H). But then

I − T is invertible in B(H), with inverse ((I − T ∗)−1)∗.

Finally, suppose that I − T is not invertible. Then ker(I − T ) and (ran(I − T ))⊥ = ker(I − T ∗) are

eigenspace of the compact operators T and T ∗, and hence are finite dimensional. Let {u1, . . . , um} be

any orthonormal basis of ker(I − T ), and let {v1, . . . , vn} be any orthonormal basis of (ran(I − T ))⊥. Let
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p := min{m,n}, and define F =

p∑
j=1

|vj〉〈uj |. Note that (I − T + F ) is injective if and only if if p = m,

and (I − T + F ) is surjective if and only if p = n. Then since T − F is compact, by what we have proved

above, p = m = n, and this proves (4.0.10).

4.0.18 Remark. For S ∈ B(H), the nullity of S is defined by nullity(S) = dim(ker(S)), and the rank

of S is defined by rank(S) = dim(ran(S)). When H = Cn, so that we may identity B(H) with the

n × n matrices, we have the simple identity that for any subspace K of H, dim(K) + dim(K⊥) = n,

and hence rank(S) = n − dim((ran(S))⊥). Defining T = I − S, so that S = I − T , and noting that

in finite dimensions every linear operator is compact, the identity (4.0.10) of Theorem 4.0.13 says that

nullity(S) + rank(S) = n.

By Lemma 4.0.17, and what we have said above, and equivalent formulation is that

nullity(S) = nullity(S∗) . (4.0.13)

This formulation has the advantage of not referring explicitly to the dimension, and as Theorem 4.0.13

shows, it remains true in infinite dimensions when S = I − T with T compact. For λ 6= 0, write

S = λ−1(λI − T ). Then by (4.0.13), nullity(λI − T ) = nullity(λ∗I − T ∗), and hence if T is compact

operator, then λ is a eigenvalue of T if and only if λ∗ is an eigenvalues of T ∗ and in that case, these

eigenvalues have the same (finite) geometric multiplicity, just as in finite dimensions.



Chapter 5

Convexity

5.1 Convex functions on R

5.1.1 Continuity and lower-semicontinuity of convex functions

5.1.1 DEFINITION (Convex Function). A function φ on defined on a real vector space X with values

in (−∞,∞] is convex in case for all x, y ∈ C and all λ ∈ (0, 1),

φ(λx+ (1− λ)y) ≤ λφ(x) + (1− λ)φ(y) , (5.1.1)

and φ is strictly convex in case this inequality is strict for all x 6= y and all λ ∈ (0, 1). A convex function

φ on X is proper in case φ(x) <∞ for at least one x ∈ X.

5.1.2 DEFINITION (Epigraph). Let φ be a function from some set X to (−∞,∞]. The epigraph of φ,

Epi(φ), is the subset of X × R consisting of points (x, t) such that φ(x) ≥ t. Note that Epi(φ) = ∅ if and

only if φ(x) =∞ for all x, and that φ is convex if and only if Epi(φ) is a convex subset of X × R.

5.1.3 LEMMA. Let (X,O) be a topological vector space. Then a function φ on X with values in (−∞,∞]

is convex if and only if Epi(φ) is convex, and is lower-semicontinuous if and only if Epi(φ) is closed in

the product topology.

Proof. This is elementary and is left to the reader.

Let (X,O) be a topological vector space, and let φ be a convex function on X. Then Epi(φ) is convex,

and since the closure of a convex set is convex, Epi(φ) is closed and convex. Define a convex function φ

by

φ(x) =

 ∞ {x} × R ∩ Epi(φ) = ∅

inf{t : (x, t) ∈ x ∈ Epi(φ)} otherwise .

Then φ is a lower-semicontinuous convex function such that φ(x) ≤ φ(x) for all x. By construction

and Lemma 5.1.3, φ is the largest (in the usual ordering) lower-semicontinuous convex function that is

dominated by φ pointwise. The function φ is lower-semicontinuous regularization of φ.
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5.1.4 EXAMPLE. Define φ : R→ (−∞,∞] by

φ(x) =


0 x ∈ (−1, 1)

1 x ∈ {−1, 1}

∞ x /∈ [−1, 1] .

Then φ(x) =

0 x ∈ [−1, 1]

∞ x /∈ [−1, 1] .

5.1.2 Convex functions on R

The special case in which the vector space X is simply R is especially important. In this case the set C

on which φ is finite is an interval.

5.1.5 THEOREM. Let φ be a real valued convex function on an interval C ⊂ R. Then φ is continuous

on the interior of C. Moreover, for a, b, c, d ∈ C

b− a = d− c and a < c ⇒ φ(b)− φ(a) ≤ φ(d)− φ(c) . (5.1.2)

That is, the increment of φ over an interval increases as the interval is translated to the right. If φ is

strictly convex, the inequality in (5.1.2) is strict. Conversely, let φ be any function that is continuous and

finite on an open interval C, and is such that (5.1.2) is valid for all a, b, c, d ∈ C. Then φ is convex.

Proof. We first prove (5.1.2) Note that b, c ∈ [a, d], and hence for some λ, β ∈ (0, 1), b = λa + (1 − λ)d

and c = βa+ (1− β)d. Solving for λ and β, we find

λ = 1− β =
d− b
d− a

.

Since λ = 1− β, b = λa+ (1− λ)d and c = λd+ (1− λ)a. It now follows from the definition of convexity

that

φ(b) ≤ λφ(a) + (1− λ)φ(d) and φ(c) = λφ(d) + (1− λ)φ(a) .

Adding these two inequalities yields φ(b)+φ(c) ≤ φ(a)+φ(d), with strict inequality if φ is strictly convex,

and this proves the first assertion, and evidently if φ is strictly convex, all of the inequalities are strict.

Fix any a in the interior of C; we shall show that φ is continuous at a. For any b ∈ C, b 6= a, use a

telescoping sum expansion to write

φ(b)− φ(a) =

n∑
j=1

[
φ

(
a+ (b− a)

j

n

)
− φ

(
a+ (b− a)

j − 1

n

)]
. (5.1.3)

Choose δ > 0 so that a ± δ ∈ C. By (5.1.2), for b = a + δ, the first term in the sum is the least,

and hence φ(a+ δ/n)− φ(a) ≤ φ(a+ δ)− φ(a)

n
Likewise, for b = a − δ, the same reasoning yields

φ(a)− φ(a− δ)
n

≤ φ(a)− φ(a− δ/n). Again by (5.1.2), φ(a)− φ(a− δ) ≤ φ(a+ δ/n)− φ(a). Altogether,

φ(a)− φ(a− δ)
n

≤ φ(a)− φ(a− δ/n) ≤ φ(a+ δ/n)− φ(a) ≤ φ(a+ δ)− φ(a)

n
. (5.1.4)

Taking n→∞, we conclude limn→∞ φ(a− δ/n) = φ(a) = limn→∞ φ(a+ δ/n).

We now claim that limx↓a φ(x) = φ(a). Suppose that lim supx↓a φ(x) > φ(a). Then for some ε > 0,

there is an infinite sequence {tm}m∈N contained in (a, a+δ) such that limm→∞ tm = a and φ(tm) ≥ φ(a)+ε
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for allm ∈ N. Choose n so that φ(a+δ/n) ≤ φ(a)+ε/2. Then there existsm ∈ N such that tm ∈ (a, a+δ/n)

and thus λ ∈ (0, 1) such that tm = λa + (1 − λ)(a + δ/n). Then φ(tm) ≤ λφ(a) + (1 − λ)(φ(a) + ε/2) <

φ(a) + ε/2. This contradiction shows that lim supx↓a φ(x) ≤ φ(a).

Next, suppose that lim infx↓a φ(x) < φ(a). Then for some ε > 0, there is an infinite sequence {tm}m∈N

contained in (a, a + δ) such that limm→∞ tm = a and φ(tm) ≤ φ(a) − ε for all m ∈ N. Choose n so that

φ(a+δ/n) ≥ φ(a)−ε/2. Choose n ∈ N so that φ(a+δ/n) ≥ φ(a)−ε/2, and a+δ/n < t1. Choose m so that

tm < a+δ/n. Then a+δ/n ∈ (tm, t1) and there exists λ ∈ (0, 1) such that a+δ/n = λtm+(1−λ)t1. Then

φ(a+ δ/n) ≤ λφ(tm) + (1− λ)φ(tm) < φ(a)− ε/2. This contradiction shows that lim infx↓a φ(x) ≥ φ(a).

Altogether, we have shown that φ is right continuous at a. We could repeat the same analysis to show

that φ is also left continuous at a, but observe that the function ψ(x) := φ(2a− x) is convex and finite on

an open interval about a. (Epi(ψ) is just the reflection of Epi(φ) about the vertical line x = a). By what

we have just proved, ψ is right continuous at a. But then since φ is the reflection of φ about x = a, φ is

left continuous at x = a. Altogether, the continuity of φ is proved.

For the converse, let x < y ∈ C and λ ∈ (0, 1). We must show that when (5.1.2) is valid for all

a, b, c, d ∈ C, then φ(λx + (1 − λ)y) ≤ λφ(x) + (1 − λ)φ(y). By the continuity of φ, it suffices to do this

when λ is a dyadic rational; i.e., λ = k/2n for some k, n ∈ N with k < 2n. For n = 1, define z = (x+ y)/2

and note that

1

2
φ(x) +

1

2
φ(y)− φ

(
x+ y

2

)
=

1

2
(φ(y)− φ(z))− 1

2
(φ(z)− φ(x)) ≥ 0

because y − z = z − x. That is, when (5.1.2) is valid for all a, b, c, d ∈ C, then

φ(λx+ (1− λ)y) ≤ λφ(x) + (1− λ)φ(y) (5.1.5)

for all x, y ∈ C and λ = 1/2.

This is the first step of an inductive proof that the same is true whenever λ = j2−m, j,m ∈ N and

j < 2m. We suppose that this has been shown whenever m < n.

Now fix λ = j/2−n ∈ (0, 1). Let k, ` ∈ N such that k + ` = j and k, ` ≤ 2n−1. (If j is even take

k = ` = j/2, and if j is odd, take k to be the integer part of j/2.) Then for all x, y,

λx+ (1− λ)y =
jx+ (2n − j)y

2n
=

1

2

(
kx+ (2n−1 − k)y

2n−1

)
+

1

2

(
`x+ (2n−1 − `)y

2n−1

)
(5.1.6)

Since (5.1.5) is true for λ = 1/2,

φ(λx+ (1− λ)y) ≤ 1

2
φ

(
kx+ (2n−1 − k)y

2n−1

)
+

1

2
φ

(
`x+ (2n−1 − `)y

2n−1

)
.

By the inductive hypothesis,

φ

(
kx+ (2n−1 − k)y

2n−1

)
≤ k

2n−1
φ(x) +

2n−1 − k
2n−1

φ(y)

and likewise with ` in place of k. Using these inequalities in (5.1.6) shows that (5.1.5) is valid for λ = j2−n,

completing the inductive proof.
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5.1.3 The subgradient of a convex function

5.1.6 THEOREM. Let φ be a real valued convex function on an interval C ⊂ R. For all a, b, c ∈ C,

a < b < c,
φ(c)− φ(a)

c− a
≥ φ(b)− φ(a)

b− a
, (5.1.7)

If φ is strictly convex, the inequality in (5.1.7) is strict.

Proof. Because φ is continuous, it suffices to consider rational values of b − a and c − a. Choosing a

common denominator n, we can write b− a =
k

n
and c− a =

m

n
with m > k. Define a sequence {aj} by

aj = φ

(
a+

j

n

)
− φ

(
a+

j − 1

n

)
.

By (5.1.2), this is an increasing sequence, and hence,

φ(b)− φ(a)

b− a
= n

φ(a+ k/n)− φ(a)

k
= n

1

k

k∑
j=1

aj

 .

Likewise,
φ(c)− φ(a)

c− a
= n

 1

m

m∑
j=1

aj

. Since aj increases with j,
1

k

k∑
j=1

aj ≤
1

m

m∑
j=1

aj for m ≥ k. This

proves (5.1.7). By theorem 5.1.5, if φ is strictly convex, then aj+1 > aj for all j, and then there is strict

inequality in (5.1.7).

Let φ be convex on R and finite on C, For each s ∈ C◦, define

σφ+(s) = lim
h→0+

φ(s+ h)− φ(s)

h
and σφ−(s) = lim

h→0+

φ(s)− φ(s− h)

h
. (5.1.8)

The limit defining σφ+ exists by (5.1.7), and then limit defining σφ− also exists by (5.1.7), but applied to

the convex functions φ(−s). We refer to σφ+(s) as the right derivative of φ at s, and to σφ−(s) as the

left derivative of φ at s. If is clear from Theorem 5.1.5 that in general, σφ+(s) ≥ σφ−(s). Evidently φ is

differentiable at s if and only if σφ+(s) = σφ−(s), so that in this case, φ′(s) = σφ+(s) = σφ−(s) represents the

slope of φ at s. Since the left derivative of φ at s is minus the right derivative of t 7→ φ(−t) at t = −s, we

may economize in the formulation of the following theorem by referring only to right derivatives.

5.1.7 THEOREM (One-sided Derivatives). Let φ be a convex function on R that is finite on an interval

C. for all a, b ∈ C◦, a < b.

σφ+(a) ≤ σφ−(b) (5.1.9)

and for all s ∈ [σφ−(a), σφ+(a)],

φ(b) ≥ φ(a) + s(b− a) . (5.1.10)

Moreover, if φ is strictly convex, then both of these inequalities are strict. Finally, for all a ∈ C◦,

σφ+(a) = inf
b>a

σφ+(b) and σφ−(a) = sup
b<a

σφ−(b) . (5.1.11)

In other words, σφ+ is a right-continuous non-decreasing function, and σφ− is a left-continuous non-

decreasing function.
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Proof. By Theorem 5.1.5, for all 0 < h < b − a, φ(a + h) − φ(a) ≤ φ(b) − φ(b − h). Dividing by h and

taking the limit h ↓ 0 yields (5.1.9).

Next, by the telescoping sum identity (5.1.3) and Theorem 5.1.5 to obtain, for b > a,

φ(b)− φ(a) ≥ n(φ(a+ (b− a)/n)− φ(a)) . (5.1.12)

Multiplying by 1 = (b− a)/(b− a), yields

φ(b) ≥ φ(a) + (b− a)

[
φ(a+ (b− a)/n)− φ(a)

(b− a)/n

]
Taking the limit n→∞ yields φ(b) ≥ φ(a) + σφ+(a)(b− a).

For b < a, (5.1.3) and Theorem 5.1.5 yield

φ(a)− φ(b) ≤ n(φ(a)− φ(a− (a− b)/n)) . (5.1.13)

Multiplying and dividing by −1 = (b− a)/(a− b), yileds

φ(b) ≥ φ(a) + (b− a)

[
φ(a)− φ(a− (a− b)/n)

(a− b)/n

]
Taking the limit n→∞ yields φ(b) ≥ φ(a) + σφ−(a)(b− a). Therefore, for any s ∈ [σφ−(a), σφ+(a)], (5.1.10)

is valid.

Next, for a ∈ C◦, choose ε > 0, and then h > 0 so that σφ+(a) + ε ≥ (φ(a + h) − φ(a))/h. By the

continuity of φ, there is a δ > 0 so that (φ(a+ h)− φ(a))/h+ ε ≥ (φ(a+ δ+ h)− φ(a+ δ))/h. Therefore,

σφ+(a) + 2ε ≥ (φ(a+ δ + h)− φ(a+ δ))/h ≥ σφ+(a+ δ)

The fact that for all δ > 0, σφ+(a) ≤ σφ+(aδ) is an immediate consequence of (5.1.9). This proves the first

identity in (5.1.11). The second is proved in the same manner.

Theorem 5.1.7 has the following interpretation: Let φ be convex and finite on an interval C ⊂ R

with non-empty interior Co. Then for all x0 ∈ Co, and all s ∈ [σφ−(a), σφ+(a)], the affine function h(x) =

s(x − x0) + φ(x0) satisfies h(x) ≤ φ(x) for all x, with h(x0) = φ(x0): The graph of h, a line, lies below

the graph of φ but touches it at the point (x0, φ(x0)). Such a line is called a supporting line for the graph

of φ.

The inequality (5.1.10) is called the “above the tangent line inequality” because it expresses the fact

that the graph of φ lies everywere above its tangent line at each pontx0 where φ is differentiaible – and

more generally lies above each of its supporing lines.

5.1.8 DEFINITION (Subgradient). Let φ be a convex function on R that is finite on an interval C. For

x ∈ C, the subgradient of φ at x, ∂φ(x), is the set of numbers s such that

φ(y) ≥ φ(x) + s(y − x)

for all y ∈ R. In other words, s ∈ ∂φ(x) if and only if the line with slope s that passes through (x, φ(x))

is a supporting line for φ. If φ(x) =∞, we define ∂φ(x) = ∅. For A ⊂ R, define

∂φ(A) =
⋃
x∈A

∂φ(x) . (5.1.14)
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5.1.9 LEMMA. Let φ be a convex function on R that is finite on in a interval C. Then for all x ∈ Co,
∂φ(x) = [σφ−(x), σφ+(x)]. In particular, for x ∈ Co, ∂φ(x) 6= ∅.

Proof. This follows immediately from (5.1.10).

5.1.10 EXAMPLE. Let φ(x) =

a x = x0

∞ x 6= x0 .
. Then φ is lower-semicontinuous, and for all s, x ∈ R,

φ(x) ≤ φ(x0) + s(x−x0) so that ∂φ(x0) = R and for x 6= x0, ∂φ(x) = ∅. In this case, we have ∂φ(R) = R,

but whole contribution to the union comes from the single point x0.

For a complementary example, consider ψ(x) = a(x − x0) for given a, x0 ∈ R. This is a continuous

convex function. Since ψ is differentialbe at each point x with ψ′(x) = a, ∂ψ(x) = {a} for all x ∈ R, and

hence ∂ψ(R) = {a}.

We close this secton with a simple but imprtant application of the “above the tangent line inequality”

(5.1.10):

5.1.11 THEOREM (Jensen’s Inequality). Let (Ω,M, µ) be a measure space with µ(Ω) = 1. Then for all

real valued convex functions φ on R, and all measurable function f , the negative part of φ(|f |) is integrable,

so that
∫

Ω
φ(|f |)dµ is well defined, though it may be infinite. Moreover,

φ

(∫
Ω

|f |dµ
)
≤
∫

Ω

φ(|f |)dµ . (5.1.15)

and if φ is strictly convex there is equality if and only if

|f(x)| =
∫

Ω

|f |dµ (5.1.16)

for almost every x.

Proof. Let a :=
∫

Ω
|f |dµ. By (5.1.10), φ(|f(x)|) ≥ φ(a) + σφ+(a)(|f(x)| − a). Integrating this pointwise

inequality yields (5.1.15). If φ is strictly convex, this pointwise inequality is strict wherever |f(x)| 6= a,

and hence the inequality (5.1.15) is strict unless |f(x)| = a almost everywhere.

5.1.4 The Legendre Transform

Let φ be a proper convex function. Let C be the set on which φ is finite, which is not empty since φ is

proper. Since φ is convex, C is an interval. If C has empty interior, then C = [x0, x0] for some x0, and

then φ is of the form given in Example 5.1.10; φ(x0) = a for some a, x0 ∈ R, and φ(x) =∞ otherwise. In

this case we have seen that ∂φ(x0) = R. Otherwise, the set C has a non-empty interior Co, and then by

Lemma 5.1.9, for each x ∈ Co, ∂φ(x) 6= ∅.

5.1.12 DEFINITION (Legendre Transform). Let φ be a proper convex function on R. The Legendre

transform φ∗ of φ is the function defined by

φ∗(y) = sup
x∈R
{yx− φ(x)} . (5.1.17)

which takes values in (−∞,∞].
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Notice that φ∗ is lower-semicontinuous since it is the pointwise supremem of a set of lower-

semicontinuous functions (They are actually continuous, and even affine, in this case). Also, since each

affine function is trivially convex, and since the pointwise supremum of any set of convex functions is

convex, φ∗ is convex. We now show that φ∗ is proper.

By the remarks made at the beginning of this section, ∂φ(R) 6= ∅. Pick some point x0 such that

∂φ(x0) 6= ∅, and then pick y ∈ ∂φ(x0). Then by (5.1.10), for all x ∈ R, φ(x) ≥ φ(x0) + y(x − x0).

Therefore,

yx− φ(x) ≤ yx− (φ(x0)− y(x− x0)) = yx0 − φ(x0) .

Therefore, taking the supremum over all x ∈ R, φ∗(y) ≤ yx0 − φ(x0) <∞. Hence, φ∗ is proper. We have

proved:

5.1.13 THEOREM. Let φ be a proper convex function on R. The its Legendre transform φ∗ is a proper,

lower-semicontinuous convex function on R, and φ∗ is finite at every point in ∂φ(R).

5.1.14 EXAMPLE. For 1 < p <∞, define φp(x) := p−1|x|p. Note that φp is continuously differentiable

with φ′p(x) = |x|p−1sgn(x) which is strictly monotone increasing. Hence limx↑∞ σφ+(x) = limx↑∞ φ′p(x) =

∞, and limx↓−∞ σφ−(x) = limx↓−∞ φ′p(x) = −∞. Thus, ∂φp(R) = R and φ∗p will be defined on all of R.

To compute it, note that for all y ∈ R, the function x 7→ xy − φ(x) is continuously differentiable, and

its derivative is y − |x|p−1sgn(x), and hence the unique maximum occurs where x has the same sign as y,

and |x| = |y|1/(p−1). Evaluating xy − φp(x) as this x, we find

φ∗p(y) = |y|1+1/(p−1) − 1

p
|y|p/(p−1) =

p− 1

p
|y|p/(p−1) .

Hence if we define q = p/(p− 1), we have that

1

p
+

1

q
= 1 and φ∗p = φq . (5.1.18)

Since the relation (5.1.18) is symmetric in p and q, (φ∗p)
∗ = φp. We shall soon see that this is no

coincidence.

5.1.15 EXAMPLE. Now consider the two limiting functions φ1(x) = limp↓1 φp(x) = |x|, and φ∞(x) =

limp↑1 φp(x), so that

φ∞(x) :=

0 x ∈ [−1, 1]

∞ x /∈ [−1, 1] .
(5.1.19)

Both φ1 and φ∞ are lower-semicontinuous convex functions. (In fact, φ1 is even continuous.) Fix y ∈ R,

and note that yx− φ(x) = (ysgn(x)− 1)|x| ≤ (|y| − 1)|x|, with equality when sgn(x) = sgn(y). It follows

that supx∈R{yx− φ1(x)} = φ∞(y) . That is, φ∗1 = φ∞.

It is also true that φ∗∞ = φ1. To see this, fix x ∈ R, and note that xy − φ∞(y) = xy for |y| ≤ 1 and

xy − φ∞(y) = −∞ for |y| > 1. Hence

φ∗∞(x) = sup{xy : |y| ≤ 1} = |x| = φ1(x) .

We shall see below that the fact that φ∗∗1 = φ1 is no coincidence.
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5.1.16 THEOREM (Young’s Inequality). Let φ be a proper convex function, and let φ∗ be the Legendre

transform of φ. Then for all x, y ∈ R,

xy ≤ φ(x) + φ∗(y) . (5.1.20)

Moreover, there is equality in (5.1.20) if and only if y ∈ ∂φ(x), and in this case, x ∈ ∂φ∗(y).

Proof. The inequality (5.1.20) is an immediate consequence of the definition (5.1.17). Suppose for some

x0, y0 ∈ R, x0y0 = φ(x0) + φ∗(y0), so that necessarily φ(x0) and φ∗(y0) are both finite. By (5.1.20), for

all x, y ∈ R,

φ(x) + φ∗(y)− xy ≥ φ(x0) + φ∗(y0)− x0y0 .

Setting y = y0, and cancelling φ∗(y0) from both sides yields φ(x) ≥ φ(x0) + y0(x− x0), which shows that

y0 ∈ ∂φ(x0). Setting x = x0 and cancelling φ(x0) from both sides yields φ∗(y) ≥ φ∗(y0)+x0(y−y0) which

shows that x0 ∈ ∂φ∗(y0)

Conversely, if y0 ∈ ∂φ(x0), then by definition, φ(x) ≥ φ(x0) + y0(x− x0) for all x, and hence

x0y0 ≥ φ(x0) + y0x− φ(x) .

Taking the supremum over x, we find x0y0 ≥ φ(x0) + φ∗(y0). Together with (5.1.20), this proves that

x0y0 = φ(x0) + φ∗(y0).

Suppose that φ and φ∗ are both continuously differentiable. For instance, this is the case when

φ(x) = p−1|x|p, p ∈ (1,∞), so that φ∗(y) = q−1|y|q, q = p/(p− 1). Then for all x, y, ∂φ(x) = {φ′(x)} and

∂φ∗(y) = {(φ∗)′(y)}. Then the statement about cases of equality in Young’s inequality says that

[φ∗]′(φ′(x)) = x and φ′[(φ∗)′(y)] = y .

In other words, the functions φ′ and (φ∗)′ are inverse to one another. For the dual pair in Example 5.1.14,

this can be checked by simple computations.

5.1.17 THEOREM (Fenchel-Moreau Theorem). Let φ be a proper, lower-semicontinuous function on

R and let φ∗ be its Legendre transform. Let φ∗∗ be the Legendre transform of φ∗. Then

φ∗∗ = φ . (5.1.21)

Proof. Example 5.1.10 takes care of the cases in which φ is finite only at one single point. Therefore,

suppose φ is finite on an interval C with Co = (a, b). Let x ∈ (a, b) and y ∈ ∂φ(x). Then φ(x)+φ∗(y) = xy,

and x ∈ ∂φ∗(y). By Young’s inequality applied to the pair φ∗ and φ∗∗, xy = φ∗(y) + φ∗∗(x), and

φ(x) + φ∗(y) = xy = φ∗(y) + φ∗∗(x) .

By Theorem 5.1.13, φ∗(y) <∞, so that it may be cancelled from both sides. This proves that at all points

of (a, b), φ(x) = φ∗∗(x). Since both φ and φ∗∗ are lower-semicontinuous. φ = φ∗∗ on [a, b].
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5.2 Lp norms and their close relatives

5.2.1 The Lp norm and Hölder’s Inequality

5.2.1 DEFINITION (Lp(Ω,M, µ)). Let (Ω,M, µ) be a measure space. For 1 ≤ p < ∞, Lp(Ω,M, µ)

consists of the equivalence classes, identified under equivalence almost everywhere, of measurable functions

f such that |f |p is integrable. The Lp norm is the function f 7→ ‖f‖p where

‖f‖p :=

(∫
Ω

|f |pdµ
)1/p

. (5.2.1)

As we have already observed, the function t 7→ tp is convex on [0,∞), and hence for f, g ∈ Lp(Ω,M, µ),

x ∈ Ω, ∣∣∣∣ |f(x)|+ |g(x)|
2

∣∣∣∣p ≤ 1

2
|f(x)|p +

1

2
|g(x)|p .

This shows that |f + g|p is integrable whenever |f |p and |g|p are, and thus Lp(Ω,M, µ) is closed under

vector addition. It is also evidently closed under scalar multiplication, and thus is a vector space over C.

The next inequality will allow us to show that the Lp norm is, in fact, a norm on this vector space.

5.2.2 THEOREM (Hölder’s Inequality). Let (Ω,M, µ) be a measure space. Let 1 < p, q < ∞, with
1

p
+

1

q
= 1. Let f and g be functions on (Ω,M, µ) such that |f |q and |g|p are integrable. Then fg is

integrable, and ∫
Ω

|fg|dµ ≤ ‖f‖q‖g‖p . (5.2.2)

There is equality in (5.2.2) if and only if for almost every x,

‖g‖pp|f(x)|q = ‖f‖qq|g(x)|p . (5.2.3)

Proof. If either
∫

Ω
|f |qdµ = 0 or

∫
Ω
|g|pdµ = 0, then (5.2.2) is true for trivial reasons. Therefore, suppose

that both integrals are strictly positive.

Apply Young’s inequality with the dual pair φp and φq = φ∗p from Example 5.1.14. By (5.1.18), for

any a > 0, and all x ∈ Ω,

|f(x)||g(x)| = (a|f(x)|)
(

1

a
|g(x)|

)
≤ aq 1

q
|f(x)|q + a−p

1

p
|g(x)|p . (5.2.4)

By Theorem 5.1.16, there is equality if and only if a|f(x)| ∈ ∂φp(a−1|g(x)|), and hence in case

a|f(x)| = φ′p(a
−1|g(x)|) = a1−p|g(x)|p−1 . (5.2.5)

Integrating both sides of (5.2.4),∫
Ω

|fg|dµ ≤ aq
(

1

q

∫
Ω

|f |qdµ
)

+ a−p
(

1

p

∫
Ω

|g|pdµ
)

= aq
1

q
‖f‖qq + a−p

1

p
‖g‖pp . (5.2.6)

We now choose the value of a so as to make the right hand side as small as possible. A simple calculus

exercise shows that the best choice is a = ‖f‖−1/p
q ‖g‖1/qp . With this choice of a, (5.2.6) becomes (5.2.2),

and (5.2.5) becomes ‖g‖p/qp |f(x)| = ‖f‖q|g(x)|p−1, and since q = p/(p − 1), raising both sides to the qth

power yields (5.2.3).
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Consider any non-zero f ∈ Lp(Ω,M, µ), 1 < p < ∞, and let q = p/(p − 1). By Hölder’s inequality,

for all h ∈ Lq(Ω,M, µ) with ‖h‖q = 1,

<
(∫

Ω

hfdµ

)
≤
∫

Ω

|h||f |dµ ≤ ‖f‖p ,

and there is equality in the second inequality if and only if ‖f‖pp|h(x)|q = ‖h‖qq|f(x)|p = |f(x)|p for almost

every x. In this case, |h(x)| = ‖f‖1−pp |f(x)|p−1. There will be equality in the first inequality if and only

if <(h(x)f(x)) = |h(x)||f(x)| almost everywhere. This forces that

g(x) := ‖f‖1−pp |f(x)|p−1sgn(f(x)) ,

almost everywhere. (The signum function, z 7→ sgn(z) on C is defined by z ∈ C, define sgn(z) = z/|z| for

z 6= 0, and sgn(0) = 0.)

5.2.3 DEFINITION. For 1 < p < ∞, q = p/(p − 1) define the function Dp mapping Lp(Ω,M, µ)\{0}
to the unit sphere in Lq(Ω,M, µ) by

Dp(f) = ‖f‖1−pp |f |p−1sgn(f) . (5.2.7)

f 7→ Dp(f) is called the gradient map for reasons that will become clear.

Altogether, we have proved:

5.2.4 THEOREM. Let 1 < p <∞, q = p/(p− 1). For all f ∈ Lp(Ω,M, µ),

‖f‖p = sup

{
<
(∫

Ω

hfdµ

)
: h ∈ Lp(Ω,M, µ), ‖h‖q = 1

}
(5.2.8)

Moreover, the supremum in (5.2.8) is a maximum, and when f 6= 0, the unique maximizer is h = Dp(f).

5.2.5 THEOREM (Minkowski’s Inequality). Let 1 < p <∞, q = p/(p− 1). For all f, g ∈ Lp(Ω,M, µ),

‖f + g‖p ≤ ‖f‖p + ‖g‖p (5.2.9)

and there is equality if and only if either f = 0, or else g is a non-negative multiple of f .

Proof. We may suppose that neither f = 0 nor g = 0. By Theorem 5.2.4,

‖f + g‖p =

∫
Ω

Dp(f + g)(f + g)dµ =

∫
Ω

Dp(f + g)fdµ+

∫
Ω

Dp(f + g)gdµ ≤ ‖f‖p + ‖g‖p .

There is equality if and only if Dp(f + g) = Dp(f) = Dp(g). The second equality forces sgn(f) = sgn(g)

and |f |p−1 = a|g|p−1 for some a > 0, and hence |f | = a1/(p−1)|g|.

It is easy to prove that for 1 < p <∞, Lp(Ω,M, µ) is a complete metric space, and hence a Banach

space. In fact the proof is very much like the one we have already given for completeness of L2(Ω,M, µ),

and it extends to a much wider class of norms that we now introduce.
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5.2.2 Orlicz spaces

Throughout this section, let (Ω,M, µ) be a given measure space, and define L0(Ω,M, µ) to be the vector

space of measurable complex valued functions f on Ω, identified under almost-everywhere equivalence.

5.2.6 DEFINITION. An Orlicz function φ is a convex lower-semicontinuous function on R such that is

symmetric (φ(−x) = φ(x) for all x), with φ(0) = 0, φ(1) <∞ with 1 ∈ ∂φ(1), and limx↑∞ φ(x) =∞. For

any Orlicz function φ, define

Bφ =

{
f ∈ L0(Ω,M, µ) :

∫
Ω

φ(|f |)dµ ≤ φ(1)

}
.

Define Lφ to be the subspace of L0(Ω,M, µ) spanned by Bφ.

Every Orlicz function φ is non-negative: Since φ is convex and even, φ(0) ≤ 1
2 (φ(x) +φ(−x)) = φ(x),

Hence 0 is a minimizer for any symmetric convex function, and since φ is a Orlicz function, φ(0) = 0.

Evidently the x-axis is a supporting line for the graph of φ, and so 0 ∈ ∂φ(0).

We claim that φ∗ is also an Orlicz function. First, φ∗ is evidently convex proper, symmetric and

lower semicontinuous. By the remark above, φ∗(0) ≤ φ∗(y) for all y. Since 0 ∈ ∂φ(0), the conditions for

equality in Young’s inequality give us 0 = φ(0) + φ∗(0), so that φ∗(0) = 0. Also, since 1 ∈ ∂φ(1), the

conditions for equality in Young’s inequality give 1 = φ(1) + φ∗(1), so that φ∗(1) and φ(1) are not only

finite, but both lie in [0, 1], and 1 ∈ ∂φ∗(1). Finally, since 1 ∈ ∂φ∗(1), φ∗(y) ≥ φ∗(1) + (y − 1), and hence

limy↑∞ φ∗(y) =∞. Summarizing, we have:

5.2.7 LEMMA. Let φ be an Orlicz function, and let φ∗ be its Legendre transform. Then φ∗ is also an

Orlicz function and

φ(1) + φ∗(1) = 1 . (5.2.10)

5.2.8 EXAMPLE. Let 1 ≤ p <∞, and let φp(x) = p−1|x|p, which is easily seen to be an Orlicz function

since it is continuously differentiable at x = 1, and φ′p(1) = 1, showing that ∂φp(1) = {1}. A measurable

function f belongs to Bφp if and only if

1

p

∫
Ω

|f |pdµ ≤ 1

p
,

and hence f ∈ Bφp is and only if ‖f‖p ≤ 1. Thus, Bφp is precisely the closed unit ball in Lp(Ω,M, µ).

Therefore, Lφp = Lp(Ω,M, µ). As we have seen in Example 5.1.15, φ∗1 = φ∞ where φ∞ is defined in

(5.1.19). Then φ∞(1) = 0, and hence ∫
Ω

φ∞(|f |)dµ ≤ φ∞(1)

if and only if φ∞(|f |) = 0 almost everywhere, and this is the case if an only if the essential supremum

‖f‖∞ of |f | belongs to [0, 1]. The subspace of L0(Ω,M, µ) of functions with ‖f‖∞ <∞ defines the space

L∞(Ω,M, µ), and hence L∞(Ω,M, µ) = Lφ∞ . In particular, each Lp space, 1 ≤ p ≤ ∞ is an Orlicz

space. We now introduce norms which will turn out to be the Lp norms on the Lp spaces.

5.2.9 LEMMA. Let φ be any Orlicz function. Then Bφ is a balanced convex subset of L0(Ω,M, µ), and

∩r>0rBφ = {0}.
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Since Bφ is absorbing in Lφ by definition, the function f 7→ ‖f‖φ in Lφ given by

‖f‖φ = inf {r > 0 : f ∈ rBφ } (5.2.11)

is a norm on Lφ called the Luxembourg norm on Lφ. Notice that

f ∈ rBφ ⇐⇒ 1

r
f ∈ Bφ ⇐⇒

∫
Ω

φ

(
|f |
r

)
dµ ≤ φ(1) .

Therefore, an equivalent form of (5.2.11) is

‖f‖φ = inf

{
r > 0 :

∫
Ω

φ

(
|f |
r

)
dµ ≤ φ(1)

}
. (5.2.12)

5.2.10 EXAMPLE. Continuing with Example 5.2.8, it is clear that ‖ · ‖φp = ‖ · ‖p.

5.2.11 LEMMA. Let φ be an Orlicz function. For all f ∈ Lφ,∫
Ω

φ

(
f

‖f‖φ

)
dµ ≤ φ(1) . (5.2.13)

and for all non-negative measurable functions f and g,

f ≤ g ⇒ ‖f‖φ ≤ ‖g‖φ , (5.2.14)

Proof. By (5.2.12), for all n ∈ N,

∫
Ω

φ

(
|f |

‖f‖φ + 1/n

)
dµ ≤ φ(1), and then (5.2.13) follows from Fatou’s

Lemma and the lower-semicontinuity of φ.

Next, since φ is monotone on [0,∞), for all t > 0,

∫
Ω

φ

(
|f |
t

)
dµ ≤

∫
Ω

φ

(
|g|
t

)
dµ. From this and

(5.2.12), we obtain (5.2.14).

The next theorem shows that when φ is an Orlicz function, (Lφ, ‖ · ‖φ) is complete, and hence is a

Banach space. By what has been shown in the examples above, this extends the Riesz-Fischer Theorem

from L2 to Lp for all 1 ≤ p ≤ ∞.

5.2.12 THEOREM (Completeness of Orlicz spaces). Let φ be an Orlicz function, and let (Ω,M, µ) be

a measure space, Let (Lφ, ‖ · ‖φ) be the Orlicz space associated to φ and (Ω,M, µ). Then (Lφ, ‖ · ‖φ) is

a Banach space, and from every Cauchy sequence {fn}n∈N in Lφ, one may extract a subsequence that

converges almost everywhere.

Proof. For each k, pick nk so that j, ` ≥ nk ⇒ ‖fj − f`‖φ ≤ 2−k. Without loss of generality, we may

suppose that nk+1 > nk for each k. For N ∈ N, define the function FN (x) by

FN (x) = |fn1
(x)|+

N∑
k=1

|fnk+1
(x)− fnk(x)| .

By Minkowski’s inequality,

‖FN‖φ ≤ ‖fn1
‖φ +

N∑
k=1

‖fnk+1
− fnk‖φ ≤ ‖fn1

‖φ +

N∑
k=1

2−k ≤ ‖fn1
‖φ + 1 .
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Let c = ‖fn1
‖φ + 1. By (5.2.12),

∫
Ω

φ

(
FN (x)

c

)
dx ≤ φ(1). Define F (x) = limN→∞ FN (x). Since φ is

lower-semicontinuous, φ

(
F (x)

c

)
≤ lim inf

N→∞
φ

(
FN (x)

c

)
, and then by Fatou’s Lemma,

∫
Ω

φ

(
F (x)

c

)
dx ≤ lim inf

N→∞

∫
Ω

φ

(
FN (x)

c

)
dx ≤ φ(1) .

Hence ‖F‖φ ≤ c , and since limt↑∞ φ(t) =∞, F is finite almost everywhere.

Next define f by

f(x) := lim
k→∞

fnk = fn1
+

∞∑
k=1

(fnk+1
− fnk) ,

where the sum on the right converges absolutely wherever F is finite; that is, almost everywhere. Since

|f | ≤ F , f ∈ Lφ by Lemma 5.2.11.

By the definition of the subsequence {fnj}j∈N, for all k ∈ N,

∫
Ω

φ

(
|fn` − fnk |

2−k

)
dµ ≤ φ(1). Again

since φ is lower-semicontinuous, φ

(
|f − fnk |

2−k

)
≤ lim inf

`→∞
φ

(
|fnx − fnk |

2−k

)
, and by Fatou’s Lemma once

more, ‖f − fnk‖φ ≤ 2−k.

lim
k→∞

‖fnk − f‖φ = 0 .

Since the sequence is Cauchy, we have this convergence along the whole sequence as well.

5.2.3 Duality in Orlicz spaces

Let φ be an Orlicz function, and let φ∗ be its Legendre transform. Any such pair of Orlicz functions is

called a dual pair of Orlicz functions. Associated to such a pair of Orlicz functions is the pair of normed

spaces (Lφ, ‖ · ‖φ) and (Lφ∗ , ‖ · ‖φ∗).
What is the relation between L∗φ and Lφ∗? The first step towards answering this question provided

by the generalized Hölder inequality:

5.2.13 THEOREM (Generalized Hölder’s Inequality). Let φ, φ∗ be any dual pair of Orlicz functions.

Then for all functions f ∈ Lφ and g ∈ Lφ∗ , fg is measurable and∫
Ω

|fg|dµ ≤ ‖f‖φ‖g‖φ∗ . (5.2.15)

There is equality in (5.2.15) if and only if for almost every x,
|g(x)|
‖g‖φ∗

∈ ∂φ
(
|f(x)|
‖f‖φ

)
,

∫
Ω

φ

(
|f |
‖f‖φ

)
dµ = φ(1) and

∫
Ω

φ∗
(
|g|
‖g‖φ∗

)
dµ = φ∗(1) (5.2.16)

The following lemma will be useful here and elsewhere:

5.2.14 LEMMA. Let φ be an Orlicz function. Lor all a, b > 0, define the function φa,b by φa,b(s) =

bφ(as). Then

φ∗a,b(t) = bφ∗
(
t

ab

)
.
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Proof.

φ∗a,b(t) = sup
s≥0
{ts− bφ(as)} = sup

s≥0

{
b
t

ab
as− bφ(as)

}
= bφ∗

(
t

ab

)
.

Proof of Theorem 5.2.13. By Young’s inequality applied to φa,b with a, b > 0, we have from Lemma 5.2.14

that

st ≤ bφ(as) + bφ∗
(
t

ab

)
for all s, t ≥ 0, and there is equality only if t ∈ ∂φa,b(s) Then for any f ∈ Lφ and g ∈ Lφ∗ ,∫

Ω

|fg|dµ ≤ b
∫

Ω

φ(|af |)dµ+ b

∫
Ω

φ∗
(
|g|
ab

)
dµ .

By Lemma 5.2.11,

∫
Ω

φ

(
|f |
‖f‖φ

)
dµ ≤ φ(1) and

∫
Ω

φ∗
(
|g|
‖g‖φ∗

)
dµ ≤ φ∗(1). Choosing a =

1

‖f‖φ
and

b = ‖f‖φ‖g‖φ∗ , we obtain ∫
Ω

|fg|dµ ≤ ‖f‖φ‖g‖φ∗ (φ(1) + φ∗(1)) = ‖f‖φ‖g‖φ∗ ,

where we have used the fact that 1 = φ(1)+φ∗(1) since 1 ∈ ∂φ(1). There is equality if and only if (5.2.16)

is valid and equality holds in the application of Young’s inequality at almost every x, which means that

|g(x)| ∈ ∂φa,b(|f(x)|). Then since s ∈ ∂φa,b(t) if and only if
s

ab
∈ ∂φ(at), there is equality in (5.2.15) if

and only if (??) is valid.

Suppose that φ and φ∗ are a dual pair of Orlicz functions. For all g ∈ Lφ∗ , define the linear functional

Lg on Lφ by

Lg(f) =

∫
Ω

gfdµ , (5.2.17)

which is well-defined by Theorem 5.2.13, and in fact, by Theorem 5.2.13,

|Lg(f)| ≤ ‖f‖φ‖g‖φ∗ .

Therefore, Lg ∈ L∗φ, and

‖Lg‖L∗φ ≤ ‖g‖φ∗ .

Thus, the mapping g 7→ Lg is a linear contraction from Lφ∗ into L∗φ. It is not hard to show that it

is injective, at least when µ has the property that every measurable set with positive measure contains

a measurable set with finite positive measure. One might hope that this map would also be surjective

under these same mild conditions. In that case, by the Open Mapping Theorem, it would be a Banach

space isomorphism, and thus we would identify L∗φ with Lφ∗ . But then the same argument would identify

L∗φ∗ with Lφ∗∗ = Lφ, and we would have that the natural injection of Lφ into L∗∗φ would be a Banach

space isomorphism, i.e., that Lφ would be reflexive. This is not true in general: It fails for φ1 and φ∞,

but it is the case for φp, 1 < p <∞. A powerful key to this and other issues lies in the notion of uniform

convexity, to which we now turn.
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5.3 Uniform convexity and uniform smoothness

5.3.1 Uniform convexity

The unit ball of any normed vector space V is convex, though it need not be strictly convex, which would

mean that for all unit vectors u and v in V ,

‖u− v‖ > 0⇒ ‖(u+ v)/2‖ < 1 . (5.3.1)

Indeed, strict convexity fails for L1(Ω,M, µ) and L∞(Ω,M, µ), even for a two-point measure space.

To see this in L1(Ω,M, µ), take any two non-negative unit vectors u(x) and v(x). Then of course∥∥∥∥u+ v

2

∥∥∥∥ =
1

2

∫
Ω

(u(x) + v(x))dµ =
1

2

∫
Ω

u(x)dµ+
1

2

∫
Ω

v(x)dµ = 1 .

To see this in L∞(Ω,M, µ), take any two u(x) and v(x) to be the indicator functions of two mea-

surable sets E and F respectively such that µ(E ∩ F ) > 0. Then u(x) and v(x) are both unit vectors in

L∞(Ω,M, µ), as is their average, (u+ v)/2.

In some normed spaces however, a uniform version of strict convexity holds, and this has significant

consequences.

5.3.1 DEFINITION (Uniform convexity). Let (V, ‖ · ‖) be a normed vector space. The modulus of

convexity of (V, ‖ · ‖) is the function δV defined by

δV (ε) = inf

{
1−

∥∥∥∥v + w

2

∥∥∥∥ : ‖v − w‖ ≥ 2ε

}
(5.3.2)

for 0 < ε ≤ 1. We say that V is uniformly convex in case δV (ε) > 0 for all 0 < ε < 1.

Since v =
v + w

2
+
v − w

2
, 1−

∥∥∥∥v + w

2

∥∥∥∥ ≤ ∥∥∥∥v − w2

∥∥∥∥
δV (ε) ≤ ε (5.3.3)

for all ε ∈ (0, 1]. In fact, we shall soon see that limε→0 ε
−1δV (ε) = 0. By definition, the function

δV : [0, 1]→ [0, 1] is monotone non-decreasing.

5.3.2 LEMMA. Let (V, ‖ · ‖) be a uniformly conves normed vector space. Let {un}n∈N and {vn}n∈N be

teo sequences of unit vectors. Then

lim
n→∞

∥∥∥∥un + vn
2

∥∥∥∥ = 1 ⇒ lim
n→∞

‖un − vn‖ = 0 . (5.3.4)

Proof. An immediate consequence of the definition is that for any two unit vectors u and v,

1−
∥∥∥∥u+ v

2

∥∥∥∥ ≥ δV (‖u− v‖2

)
. (5.3.5)

Therefore, if lim
n→∞

∥∥∥∥v + w

2

∥∥∥∥ = 1, then by (5.3.5) lim
n→∞

δV

(
‖un − vn‖

2

)
= 0. If V is unifromly convex, then

since ε 7→ δV (ε) is strictly positve for ε > 0 and monotone increasing, limn→∞ ‖un − vn‖ = 0.
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Lemma 5.3.2 is the basis of many aplications of uniform convexity. Before we begin to apply uniform

convexity, we should first explain the uniformly convex normed spaces exist. By what we have seen above,

neither L1(M,M, µ) nor L∞(M,M, µ) is uniformly convex. It turns out, however, that for 1 < p < ∞,

Lp(M,M, µ) is uniformly convex. This is easiest to show for L2(M,M, µ), and we begin with that:

For any f and g in we have the parallelogram identity ‖f − g‖22 + ‖f + g‖22 = 2‖f‖22 + 2‖g‖22. Take f

and g to be unit vectors. Divide through by 4 to obtain∥∥∥∥f + g

2

∥∥∥∥2

2

+

∥∥∥∥f − g2

∥∥∥∥2

2

=
‖f‖22 + ‖g‖22

2
= 1 .

Therefore,

∥∥∥∥f + g

2

∥∥∥∥
2

=

√
1−

∥∥∥∥f − g2

∥∥∥∥2

2

. For any number a with 0 < a < 1,
√

1− a < 1−a/2 , and hence,

∥∥∥∥f + g

2

∥∥∥∥
2

≤ 1− 1

2

∥∥∥∥f − g2

∥∥∥∥2

2

.

Since f and g are arbitrary unit vecotors, this gives us the exact modulus of convexity for L2(M,M, µ),

namely

δL2(ε) = 1−
√

1− ε2 ≥ 1

2
ε2 . (5.3.6)

5.3.2 First applications of uniform convexity

5.3.3 THEOREM (Convergence of norms plus weak convergence yields strong convergence). Let V be

a uniformly convex normed space. Let {fn}n∈N converge weakly to f in V . Then {fn}n∈N is strongly

convergent if and only if ‖f‖ = limn→∞ ‖fn‖.

Proof. If {fn}n∈N is strongly convergent, it must converge strongly to f , and then ‖f‖ = limn→∞ ‖fn‖.
The converse is more subtle, and it is here that uniform convexity comes in. If f = 0, the strong

convergence is obvious. This case aside, suppose that ‖f‖ > 0, and then, dividing through by ‖f‖, that

‖f‖ = 1. Since limn→∞ ‖fn‖ = ‖f‖ = 1, we may delete a finite number of terms from the sequence to

arrange that ‖fn‖ 6= 0 so any n.

Consider the sequence {gn}n∈N where

gn =
fn/‖fn‖+ f

2
.

Since limn→∞ ‖fn‖ = ‖f‖ = 1, {gn}n∈N also converges weakly to f . By the weak lower semiconti-

nuity of the norms, lim inf
n→∞

‖gn‖ ≥ ‖f‖ = 1. By Minkowski’s inequality, 1 =
‖fn‖/‖fn‖+ ‖f‖

2
≥ ‖gn‖.

Altogether, limn→∞ ‖gn‖ = 1. Then by Lemma 5.3.2, limn→∞ ‖fn/‖fn‖ − f‖ = 0. But

‖fn − f‖ ≤
|‖fn‖ − 1|
‖fn‖

+ ‖fn/‖fn‖ − f‖. Hence it follows that limn→∞ ‖fn − f‖ = 0.

Our next application is very important: It is the generalization of the Projection Lemma to general

uniformly convex spaces.

5.3.4 THEOREM (Projection Lemma for uniformly convex spaces). Let V be a uniformly convex Banach

space, and let K be a non-empty, closed convex set in V . Then there exists a unique element of minimal

norm in K. That is, there exists an element v ∈ K with ‖v‖ < ‖w‖ for all w ∈ K with w 6= v. Moreover,

if {vn}n∈N is any sequence in K such that limn→∞ ‖vn‖ = ‖v‖, limn→∞ ‖vn − v‖ = 0.
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Proof. Let D = inf{‖w‖ | w ∈ K}. Let {vn}n∈N be any sequence in K with limn→∞ ‖vn‖ = D. If D = 0,

limn→∞ vn = 0. Since K is closed, this means 0 ∈ K, and this is our unique element of minimal norm.

Therefore, assume that D > 0.

Normalize the vn to obtain unit vectors, as needed for the application of uniform convexity. Let

un = vn/‖vn‖. For large n, we have that un ≈ vn/D since limk→∞ ‖vk‖ = D. Indeed, adding and

subtracting,

un =
1

D
vn +

D − ‖vn‖
D‖vn‖

vn .

Therefore, for any m and n,

1

D

∥∥∥∥vn + vm
2

∥∥∥∥ =

∥∥∥∥un + um
2

− D − ‖vn‖
2D‖vn‖

vn −
D − ‖vm‖
2D‖vm‖

vm

∥∥∥∥
≤

∥∥∥∥un + um
2

∥∥∥∥+
(‖vn‖ −D) + (‖vm‖ −D)

2D
.

Since K is convex, (vn + vm)/2 ∈ K and hence ‖(vn + vm)/2‖ ≥ D. Therefore,

(‖vn‖ −D) + (‖vm‖ −D)

2D
≥ 1−

∥∥∥∥un + um
2

∥∥∥∥ ≥ δV (un − um2

)
.

Since lim
m,n→∞

(‖vn‖ −D) + (‖vm‖ −D)

2D
= 0, limm,n→∞ ‖un − um‖ = 0, as in the proof of Lemma 5.3.2.

Hence {un}n∈N is a Cauchy sequence. Since V is complete, {un}n∈N converges in norm to u ∈ V ,

and this implies that {vn}n∈N converges in norm to v := Du. Since K is closed, Du ∈ K, and since

‖u‖ = 1, ‖v‖ = ‖Du‖ = D. This proves the existence of an element v of K with minimal norm, and that

limn→∞ vn = v.

To prove the uniqueness, let ṽ also be in K with ‖ṽ‖ = D. Define vn = n for v even and vn = ṽ for n

odd. By what we proved above {vn}n∈N converges, and hence ṽ = v.

Recall that for any normed space V , and any v ∈ V , there exists an f ∈ V ∗ with ‖f‖∗ = 1 and

f(v) = ‖v‖. This is a consequence of the Hahn-Banach Theorem. However, given f ∈ V ∗, there may or

may not be any unit vector u in V such that f(u) = ‖f‖∗, as we have seen in the case of V = C([0, 1])

with the uniform norm. If V is uniformly convex, things are much better.

5.3.5 THEOREM (Uniform Convexity and Unit Normal Vectors). Let V be a uniformly convex Banach

space, and let L be any non–zero linear functional in V ∗. Then there is a unique unit vector vL ∈ V so

that

L(vL) = ‖L‖∗ .

Moreover, the function L 7→ vL from V ∗ to V is continuous at L 6= 0, and in fact, for all non zero

L,M ∈ V ∗,
‖L−M‖∗ ≤ ‖Lf‖∗δV (ε) ⇒ ‖vL − vM‖ ≤ 2ε . (5.3.7)

The vector whose existence is asserted by the theorem is called the unit normal vector at L for reasons

that will soon be explained.

Proof. Let K be given by K = { v ∈ V : L(v) = ‖L‖∗ }. K is closed, convex and non–empty. By the

projection lemma, K contains a unique element v of minimal norm.
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Note that ‖L‖∗ = L(v) ≤ ‖L‖∗‖v‖, so ‖v‖ ≥ 1. By the definition of ‖L‖∗, and homogeneity of

L, for all ε > 0, there is a unit vector u with L(u) > ‖L‖∗ − ε. Then taling ε < ‖L‖∗ and defining

w := ‖L‖∗(L(u))1u, L(w) = ‖L‖∗ and ‖w‖ ≤ ‖L‖∗(‖L‖∗ − ε)1. Hence infv∈K{‖v‖} ≤ 1, Then ‖v‖ = 1,

and L(v) = ‖L‖.
This proves existence and unqueness of vL. We now show that L 7→ vL is continuous. Let L,M ∈ V ∗

be given, L,M 6= 0, and let vL and vM be the corresponding unit vectors in V . Then

‖L+M‖∗‖vL + vM‖ ≥ < ((L+M)(vL + vM ))

= < (L(vL) + L(vM ) +M(vL) +M(vM ))

= 2(‖L‖∗ + ‖M‖∗) + < (L(vM ) +M(vL)− L(vL)−M(vM ))

= 2(‖L‖∗ + ‖M‖∗)−< ((L−M)(vL − vM ))

≥ 2‖L+M‖∗ − ‖L−M‖∗‖vL − vM‖ . (5.3.8)

Dividing through by 2‖L+M‖∗ snd rearranging terms,(
‖L−M‖∗
‖L+M‖∗

)∥∥∥∥vL − vM2

∥∥∥∥ ≥ 1−
∥∥∥∥vL + vM

2

∥∥∥∥ ≥ δV (∥∥∥∥vL − vM2

∥∥∥∥) .

Therefore,

‖L−M‖∗
2‖L‖∗ − ‖L−M‖∗

≥
∥∥∥∥vL − vM2

∥∥∥∥−1

δV

(∥∥∥∥vL − vM2

∥∥∥∥) . (5.3.9)

for all M ∈ V ∗ with ‖M − L‖∗ < ‖L‖∗. Since in any case ‖vL − vM‖ ≤ 2, we also have the cruder but

simpler inequality
‖L−M‖∗

2‖L‖∗ − ‖L−M‖∗
≥ δV

(∥∥∥∥vL − vM2

∥∥∥∥) . (5.3.10)

If ε ∈ (0, 1), and ‖L − M‖∗ < δV (ε)‖L‖∗, then the left side of (5.3.10) is at most δV (ε), and hence

‖vf − vg‖ ≤ 2ε, which proves (5.3.7).

5.3.6 Remark. Since for any two unit vectors v, w ∈ V , there exist unit vectors L,M ∈ V ∗ such that

‖L‖ = ‖M‖ = 1, L(v) = 1 and M(w) = 1, so that v = vL and w = vM , follows from (5.3.9) that

limε↓0 ε
−1δV (ε) = 0, as mentioned earlier.

5.3.3 Uniform smoothness

Let (V, ‖ · ‖) be a normed vector space. A functional F on V is Frechét differentiable at u ∈ V in case

there is a linear functional LF,u ∈ V ∗ so that

F (u+ v)− F (u) = LF,u(v) + o(‖v‖)

or, in other words, if

lim
v→0

|F (u+ v)− F (u)− LF,u(v)|
‖v‖

= 0 , (5.3.11)

where the limit is taken in the norm sense.

There is another notion of differentiability, corresponding to the usual directional derivative. A

functional F is said to be Gateaux differentiable at u ∈ V in case for there is a linear functional LF,u ∈ V ∗

so that for each v ∈ V ,

F (u+ tv)− F (u) = tLF,u(v) + o(t)
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or, in other words, if

lim
v→0

|F (u+ tv)− F (u)− tLF,u(v)|
t

= 0 . (5.3.12)

If a functional F is Frechét differentiable, then it is Gateaux differentiable, and the two derivatives

coincide. However, there are functionals that are Gateaux differentiable, but not Frechét differentiable.

To check differentiability from the definition, one to know the derivative LF,u, and this is impracticle

in many situations. There is, however, a necessary condition for differentiability that can be stated solely

in terms of F itself. If F is Frechét differentiable at u, then for any w,

F (u+ w)− F (u) = LF,u(w) + o(‖w‖)

and

F (u− w)− F (u) = −LF,u(w) + o(‖w‖) .

Summing, the terms involving LF,u cancel, and we have

F (u+ w) + F (u− w)− 2F (u) = o(‖w‖) .

In particular, a necessary condition for Frechét differentiability the norm functional on a Banach space is

that ∥∥∥∥u+ w

2

∥∥∥∥+

∥∥∥∥u− w2

∥∥∥∥− ‖u‖ = o(‖w‖) .

Taking u to be a unit vector, and writing w = tv, v a unit vector, bring us to:

5.3.7 DEFINITION (Uniform Smoothness). Let V be a Banach space with norm ‖ · ‖. The modulus

of smoothness of V is the function ρV (τ) defined by

ρV (τ) = sup

{∥∥∥∥u+ τv

2

∥∥∥∥+

∥∥∥∥u− τv2

∥∥∥∥− 1 : ‖u‖ = ‖v‖ = 1

}
(5.3.13)

for each τ ≥ 0. Then V is said to be uniformly smooth in case ρV (τ) = o(τ), i.e., if

lim
τ→0

ρV (τ)

τ
= 0 . (5.3.14)

It is easy to see that uniform smoothness fails for L1(Ω,M, µ) and L∞(Ω,Mµ), even for a two-point

measure space, while L2(Ω,M, µ) is uniformly smooth. This is left as an exercise. In fact, it is a good

exercise to compute the moduli of smoothness for these spaces. The results are:

(1) When V = L1(Ω,M, µ), δV (ε) = 0 and ρV (τ) = τ .

(2) When V = L2(Ω,M, µ), δV (ε) = 1−
√

1− ε2 and ρV (τ) =
√

1 + τ2 − 1.

(3) When V = L∞(Ω,M, µ), δV (ε) = 0 and ρV (τ) = τ .

There is a close relation between uniform convexity and uniform smoothness. In order to specifying

it, we introduce the notion of a dual pair of Banach spaces.
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5.3.8 DEFINITION (Dual Pairs). A dual pair of Banach spaces is a pair of Banach spaces V and W

with norms ‖ · ‖V and ‖ · ‖W respectively, and a bilinear form 〈·, ·〉 on V ×W so that for all v ∈ V ,

‖v‖V = sup{ |〈v, w〉| : w ∈W , ‖w‖W ≤ 1 } (5.3.15)

and for all w ∈W
‖w‖W = sup{ |〈v, w〉| : v ∈ V , ‖v‖V ≤ 1 } . (5.3.16)

The primary example is that in which W = V ∗, and

〈v, w〉 = w(v) .

Then (5.3.16) holds by the definition of the norm on V ∗, while (5.3.15) holds by the Hahn-Banach Theorem,

which asserts the existence of a w ∈ V ∗ with ‖w‖ = 1 and w(v) = ‖v‖.
When V and W are a dual pair, there is a map from V into W ∗ which assigns to v the linear functional

fv(·) = 〈v, ·〉. By (5.3.16), and the definition of the dual norm ‖ · ‖∗, ‖fw‖∗ = ‖w‖W . Hence the map

w 7→ 〈·, w〉, which is clearly linear, is also an isometry.

However, it need not be the case that its image is all of V ∗. In summary:

5.3.9 LEMMA. When V and W are a dual pair, W may be identified with a subspace (which may be

proper) of V ∗ through the isometric linear transformation

w 7→ 〈·, w〉 .

We now prove that when V and W are a dual pair, the moduli of smoothness and convexity of the

one space can be determined from those of the other.

5.3.10 THEOREM (Lindenstrauss–Day Theorem). Let V and W be a dual pair of Banach spaces. Then

ρW (τ) = sup
0≤ε≤1

{ ετ − δV (ε) } . (5.3.17)

Consequently, W is uniformly smooth if and only if V is uniformly convex.

5.3.11 Remark. It is easy to deduce the final statement in Theorem 5.3.10 from the formula (5.3.17):

By (5.3.17), for all ε, τ ∈ (0, 1), ρW (τ) + δV (ε) ≥ τε, so that

δV (ε) ≥ τ
(
ε− ρW (τ)

τ

)
.

If ρW (τ) = o(τ) there is some τ > 0 such that ρ(τ)/τ < ε/2, and then δ(ε) > τε/2 > 0. Thus, uniform

smootness of W implies uniform convexity of V .

Now suppose that W is not uniformly smooth. By (5.3.17), ρW is convex and finite on [0, 1]. It

follows that limτ→0 ρ(τ)/τ =: a exists and belongs to ∂ρW (0). Hence ρW (τ) ≥ aτ for all τ ∈ [0, 1]. Then

for all r, τ ∈ (0, 1), there exists εr,τ ∈ [0, 1] nearly achieving the supremum defining ρW (τ), such that

raτ < εr,ττ − δV (εr,τ ). Thus, δV (εr,τ ) < (εr,τ − ra)τ . The right side must be positive, so that εr,τ > rA.

Since δV is montone and εrτ ≤ 1, then δv(ra) ≤ τ . Thus, δV (ε) = 0 for all ε < a.

Before proving (5.3.17), we give three simple but important applications of Theorem 5.3.10.
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5.3.12 THEOREM (Uniqueness and continuity of unit tangent functionals). If V is a uniformly smooth

Banach space, then for each non-zero v ∈ V , there exists a unique unit vector Lv ∈ V ∗ such that Lv(v) =

‖v‖. Moreover, the map v 7→ Lv is continuous in the norm topologies.

Proof. The Hahn-Banach Theorem tell us that the linear functional Lv exists; the points to be shown are

the uniqueness and the continuity. By the Lindenstrauss-Day Theorem, V ∗ is uniformly convex. If L and

M are two unit vectors in V ∗ such that L(v) = M(v) = ‖v‖, then

‖v‖ =
1

2
(L+M)(v) ≤ 1

2
‖L+M‖∗‖v‖ ≤ ‖v‖ − ‖v‖δV ∗

(
1

2
‖L−M‖∗

)
.

Hence L = M . This proves uniqueness.

Now that the map v 7→ Lv is well-defined, we proceed as in (5.3.8) to obtain

‖Lv + Lw‖∗‖v + w‖ ≥ 2‖w + w‖ − ‖Lv − Lw‖∗‖v − w‖ .

Dividing thtough by 2‖v +w‖, rearranging terms, and using ‖v +w‖ ≥ 2‖v‖ − ‖v −w‖, all very much as

in the proof of Theorem!5.3.5, we obtain

‖v − w‖
2‖v‖ − ‖v − w‖

≥
(∥∥∥∥Lv − Lw2

∥∥∥∥)−1

δV ∗

(∥∥∥∥Lv − Lw2

∥∥∥∥) ≥ δV ∗ (∥∥∥∥Lv − Lw2

∥∥∥∥) ,

and this proves the continuity.

5.3.13 THEOREM (Differentiability of the Norm). Let V be a uniformly smooth Banach space. Then

the norm on V is continuously Frechét differentiable at all v 6= 0 in V , and the derivative is given by

< ◦ Lv, where Lv is the unique unit vector in V ∗ with Lv(v) = ‖v‖

Proof. Since V ∗ is uniformly convex, for each u ∈ V , there exists a unique unit vector Lu ∈ V ∗ so that

Lu(u) = ‖u‖. Hence,

‖v + w‖ = fv+w(v + w) = < (fv+w(v + w)) = < (Lv+w(v)) + < (Lv+w(w)) ≤ ‖v‖+ < (Lv+w(w)) .

On the other hand,

‖v + w‖ ≥ < (Lv(v + w)) = < (Lv(v)) + < (Lv(w)) = ‖v‖+ < (Lv(w)) .

Altogether,

0 ≤ ‖v + w‖ − ‖v‖ − < (Lv(w)) ≤ < (Lv+w(w))−< (Lv(w)) ≤ ‖Lv+w − Lv‖∗‖w‖ .

Hence |‖v + w‖ − ‖v‖ − < (Lv(w))| ≤ ‖Lv+w − Lv‖∗‖w‖ = o(‖w‖) by Theorem 5.3.12.

5.3.14 EXAMPLE. Let (Ω,M, µ) be a measure space, and for 1 < p < ∞, let Lp = Lp(Ω,M, µ). We

have seen that for non-zero f ∈ Lp, the unique unit vector u in Lp/(p−1) such that
∫

Ω
ufdµ = ‖f‖p is

given by

u = ‖f‖1−pp |f |p−1sgn(f) .

By Theorem 5.3.13, the map f 7→ ‖f‖1−pp |f |p−1sgn(f) is continuous from Lp\{0} to Lp/(p−1).
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5.3.15 THEOREM (Millman). A uniformly convex Banach space is reflexive.

Proof. By the Lindenstrauss–Day Theorem, V ∗∗ is uniformly convex. Fix any unit vector φ ∈ V ∗∗, For

each n ∈ N, pick a unit vector Ln ∈ V ∗ so that φ(Ln) > 1− 1/n. Since V is uniformly convex, there is a

unit vector vn ∈ V with Ln(vn) = 1. Let φvn be the image of vn in V ∗∗ under the cannonical embedding

of V into V ∗∗. Since φvn(Ln) = Ln(vn) = 1 for all n,∥∥∥∥φ+ φvn
2

∥∥∥∥
∗∗
≥
(
φ+ φvn

2

)
(Ln) ≥ 1− 1

2n
.

By Lemma 5.3.2, limn→∞ ‖φ − φvn‖ = 0. Then image of V under its canonical embedding into V ∗∗ is

claosed, and hence φ belongs to this image. Since φ is an arbitrary unit vector in V ∗∗, the canonical

embedding is surjective.

Proof of Theorem 5.3.10. We will use f and g to denote elements of W , and u and v to denote elements

of V . We will leave subscripts off the norms as this convention makes it clear which norm is intended.

On account of the remark following Theorem 5.3.17, it remains to prove (5.3.17). We first show that

ρW (τ) + δV (ε) ≥ τε for all τ, ε ∈ (0, 1). Fix any τ, ε ∈ (0, 1). Take any u and v in V with ‖u‖ = ‖v‖ = 1

and ‖u− v‖ ≥ 2ε.

Since V and W are a dual pair, for any η > 0, there are unit vectors f and g in W with

〈f, (u+ v)/2〉 ≥
∥∥∥∥u+ v

2

∥∥∥∥− η and 〈f, (u− v)/2〉 ≥
∥∥∥∥u− v2

∥∥∥∥− η .
Then

ρW (τ) ≥
∥∥∥∥f + τg

2

∥∥∥∥+

∥∥∥∥f − τg2

∥∥∥∥− 1

≥ 〈(f + τg)/2, u〉+ 〈(f − τg)/2, v〉 − 1

= 〈f, (u+ v)/2〉+ τ〈g, (u− v)/2〉 − 1

≥
∥∥∥∥u+ v

2

∥∥∥∥+ τ

∥∥∥∥u− v2

∥∥∥∥− 1− 2η ≥
∥∥∥∥u+ v

2

∥∥∥∥+ τε− 1− 2η

(5.3.18)

Hence ρW (τ) +

(
1−

∥∥∥∥u+ v

2

∥∥∥∥) ≥ τε− 2η. By the definition of δV , and the fact that η > 0 is arbitrary,

this proves that ρW (τ) + δV (ε) ≥ τε for all τ, ε ∈ (0, 1).

The second step is to prove an upper bound on ρW . To do this, fix any τ > 0 and any unit vectors f

and g in W . Fix any η > 0, and choose unit vectors uτ and vτ in V with

〈(f + τg), uτ 〉 ≥ ‖f + τg‖ − η and 〈(f − τg), vτ 〉 ≥ ‖f − τg‖ − η . (5.3.19)

Then ∥∥∥∥f + τg

2

∥∥∥∥+

∥∥∥∥f − τg2

∥∥∥∥ ≤ 〈(f + τg), uτ 〉
2

+
〈(f − τg), vτ 〉

2
+ η

=
〈f, uτ + vτ 〉

2
+ τ
〈g, uτ − vτ 〉

2
+ η ≤

∥∥∥∥uτ + vτ
2

∥∥∥∥+ τ

∥∥∥∥uτ − vτ2

∥∥∥∥+ η

Now define ετ :=

∥∥∥∥uτ − vτ2

∥∥∥∥ so that 0 ≤ ετ ≤ 1 and

∥∥∥∥uτ + vτ
2

∥∥∥∥ ≤ 1− δV (ετ ). Therefore,(∥∥∥∥f + τg

2

∥∥∥∥+

∥∥∥∥f − τg2

∥∥∥∥− 1

)
≤ τετ − δV (ετ ) + η . (5.3.20)
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By the definition of ρW , ρW (τ) ≤ τετ − δV (ετ ) + η ≤ sup
0≤ε≤1

{ ετ − δV (ε) }+ η. Since η > 0 is arbitrary,

this proves that ρW (τ) ≤ sup0≤ε≤1{ ετ − δV (ε) }, and together with the lower bound (5.3.20), this proves

(5.3.17).

5.4 Uniform convexity and smoothness in Lp spaces

5.4.1 Uniform convexity in Lp, 1 < p <∞

In any Hilbert space, in particular L2(Ω,M, µ), we have the parallelogram identity:∥∥∥∥f + g

2

∥∥∥∥2

2

+

∥∥∥∥f − g2

∥∥∥∥2

2

=
‖f‖22 + ‖g‖22

2
.

If f and g are unit vectors, this yields∥∥∥∥f + g

2

∥∥∥∥
2

≤

(
1−

∥∥∥∥f − g2

∥∥∥∥2

2

)1/2

≤ 1− 1

2

∥∥∥∥f − g2

∥∥∥∥2

2

,

and hence δL2(ε) ≥ 1

2
ε2.

There is a close analog of the paralleleogram law in Lp(Ω,M, µ), p > 2: Recall that for counting

measure, ‖f‖p ≥ ‖f‖q for p < q, while for any probability measure, ‖f‖p ≤ ‖f‖q for p < q.

Therefore, for all a, b > 0, when p > 2,(∣∣∣∣a+ b

2

∣∣∣∣p +

∣∣∣∣a− b2

∣∣∣∣p)1/p

≤

(∣∣∣∣a+ b

2

∣∣∣∣2 +

∣∣∣∣a− b2

∣∣∣∣2
)1/2

=

(
a2 + b2

2

)1/2

≤
(
ap + bp

2

)1/p

.

Next, for all z, w ∈ C, and all p ≥ 2,

|z + w|p + |z − w|p ≤ ||z|+ |w||p + ||z| − |w||p .

Combining, we obtain,

∣∣∣∣f(x) + g(x)

2

∣∣∣∣p +

∣∣∣∣f(x)− g(x)

2

∣∣∣∣p ≤ |f(x)|p + |g(x)|p

2
. Integrating in x yields

Clarkson’s inequality: ∥∥∥∥f + g

2

∥∥∥∥p
p

+

∥∥∥∥f − g2

∥∥∥∥p
p

≤
‖f‖pp + ‖g‖pp

2
.

If f and g are unit vectors, this becomes∥∥∥∥f + g

2

∥∥∥∥
p

≤

(
1−

∥∥∥∥f − g2

∥∥∥∥p
p

)1/p

≤ 1− 1

p

∥∥∥∥f − g2

∥∥∥∥p
p

.

Thus we see that

δLp(ε) ≥ 1

p
εp .

Uniform convexity for 1 < p < 2 is more subtle, and the result is somewhat surprising: It turns out

that for 1 < p ≤ 2,

δLp(ε) ≥ p− 1

2
ε2 .

Notice that the exponent is 2, as in the Hilbert space case. However, as p decreases towards 1, the constant

(p− 1)/2 decreases to zero. Both the exponent 2, and the constant (p− 1)/2 are best possible, and both
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have significant implications. The result is can be obtained from a result of Hanner, who exactly computed

δLp(ε) for all 1 < p <∞. The final remark in his 1955 paper is (in slightly different notation) that

δLp(ε) =
p− 1

2
ε2 +O(ε3) , (5.4.1)

which certinaly shows that δLp(ε) is bounded below by some multiple of ε2. The fact that the remainder

term is positive and may be droped, yielding the asserted lower bound, may be folklore, but appears

in work by Ball and Pisier in the 1990’s. They used Hanner’s exact computationof δLp and controlled

the sign of the remainder term in (5.4.1). However, the sharp bound may be proved directly, as we now

explain.

Let f and g be simple functions of the form

f(x) =

n∑
j=1

zj1Aj (x) and g(x) =

n∑
j=1

wj1Aj (x) ,

where for each j, zjw
∗
j is not real. This guarantees that zj + twj 6= 0 for any real t, and thus for all

x ∈ ∪nj=1Aj , and all t ∈ R, f(x) + tg(x) 6= 0. Define

Y (t) = ‖f + tg‖pp and q =
p

2
,

so that ‖f + tg‖2p = Y 1/q(t). Differentiating twice,

d2

dt2
‖f + tg‖2p =

1

q

(
1

q
− 1

)
Y 1/q−2(Y ′)2 +

1

q
Y 1/q−1Y ′′

≥ 1

q
Y 1/q−1Y ′′

A simple calculation yields Y ′′(t) ≥ p(p− 1)

∫
|f + tg|2q−2|g|2dµ. To this we apply the reverse Hölder

inequality, which says that for 0 < r < 1 and s = r/(r − 1), whenever aj ≥ 0 for j = 1, . . . , n, and bj > 0

for j = 1, . . . , n,

n∑
j=1

ajbj ≥

 n∑
j=1

arj

1/r n∑
j=1

bsj

1/s

.

The result is that, for all t,
d2

dt2
‖f + tg‖2p ≥ 2(p− 1)‖g‖2p. Let ψ′′(t) ≥ 2c for all t, and define

ϕ(t) := ψ(t) + ct(1− t) .

Then ϕ is convex, and thus

ϕ(1/2) ≤ ϕ(0) + ϕ(1)

2
, that is, ψ(1/2) +

c

4
≤ ψ(0) + ψ(1)

2
.

We conclude that with f and g as above,∥∥∥∥f +
1

2
g

∥∥∥∥2

p

+
p− 1

4
‖g‖2p ≤

‖f‖2p + ‖f + g‖2p
2

.

The simple function approximation is now easily removed.
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Now let u and v be vectors in Lp space, 1 < p ≤ 2, and let f = u and g = v − u. Then∥∥∥∥u+ v

2

∥∥∥∥2

p

+ (p− 1)

∥∥∥∥u− v2

∥∥∥∥2

p

≤
‖u‖2p + ‖v‖2p

2
.

If u and v are unit vectors, the right hand side is 1, and this implies∥∥∥∥u+ v

2

∥∥∥∥
p

≤ 1− p− 1

2

∥∥∥∥u− v2

∥∥∥∥2

p

,

which proves that

δLp(ε) ≥ p− 1

2
ε2 .

We now have the following result:

5.4.1 THEOREM (Uniform convexity of Lp, 1 < p < ∞). For any measure space (M,M, µ) and any

Lp(M,M, µ) is uniformly convex. For 1 < p < 2, one has the bound

δLp(ε) ≥ p− 1

2
ε2 (5.4.2)

while for 2 < p <∞, one has the bound

δLp(ε) ≥ 1

p
εp (5.4.3)

Proof. In the discussion just above, we have proved the bounds on uniform convexity, and the left halves

of (5.4.2) and (5.4.3).

5.4.2 COROLLARY. For 1 < p <∞, Lp is reflexive.

Proof. This is an immediate consequence of the uniform convexity of Lp, 1 < p < ∞ and Millman’s

Theorem.

The main result of the next section given an even stronger result: It identifies the dual of Lp, 1 < p <

∞ with Lq where q = p/(p− 1).

5.4.2 The Riesz Representation Theorem in Lp, 1 < p <∞

.

We are now give two proofs of the Riesz Representation Theorem for Lp, 1 < p <∞.

5.4.3 THEOREM (Riesz Representation Theorem for Lp, 1 < p < ∞). Let (Ω,M, µ) be any measure

space. Let 1 ≤ p ≤ ∞, and let q = p/(1− p). Then the map from Lq into (Lp)∗ given by g 7→ ϕg where

ϕg(f) =

∫
Ω

fgdµ , f ∈ Lp ,

is an isometry from Lq into (Lp)∗.

We give two proofs. As a preface to both of them, note that by Theroem 5.2.4, or Hölder’s inequality

with the cases of equality, that for every g ∈ Lq, ‖ϕg‖(Lp)∗ = ‖g‖q, and hence g 7→ ϕg is an isometric map

into (Lp)∗. It only remains to be shown that this map is onto (Lp)∗.
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First Proof of Theorem 5.4.3. Let 1 < p < ∞. Let V be the range of the mapping g 7→ ϕg in (Lp)∗.

Since the map is an isometry, and since Lq is complete, V is a closed subspace of (Lp)∗. If V is a proper

subspace of (Lp)∗, there exists a non-zero ϕ ∈ (Lp)∗\V and then by the Hahn-Banach Theorem, there is

an L ∈ (Lp)∗∗ such that

L(ϕ) = ‖ϕ‖(Lp)∗ 6= 0 , (5.4.4)

and L(ϕg) = 0 for all g ∈ Lq.
However, by Millman’s Theorem, since Lp is uniformly convex, it is reflexive, and so there exists an

f ∈ Lp so that

L(ψ) = ψ(f) for all ψ ∈ (Lp)∗ .

Therefore, for all g ∈ Lq, since ϕg ∈ V , 0 = L(ϕg) = ϕg(f) =
∫

Ω
gfdµ. But since

‖f‖p = sup

{ ∫
Ω

gfdµ : ‖g‖q = 1

}
,

it would follow that ‖f‖p = 0, and hence L = 0. This is contradicts (5.4.4), and hence V is not a proper

subspace of (Lp)∗.

Second Proof of Theorem 5.4.3. Let 1 < p < ∞. Since Lp is uniformly convex, for each ϕ ∈ (Lp)∗, there

exists a unique fϕ ∈ Lp with fϕ ∈ Lp and ϕ(fϕ) = ‖ϕ‖(Lp)∗ . Then, for any g ∈ Lp, the function

t 7→ ϕ

(
fϕ + tg

‖fϕ + tg‖p

)
has a maximum at t = 0.

If we assume for the moment that t 7→ ‖fϕ + tg‖p is differentiable at t = 0, then

0 =
d

dt
ϕ

(
fϕ + tg

‖fϕ + tg‖p

) ∣∣∣∣
t=0

= <ϕ(g)− ‖ϕ‖(Lp)∗
d

dt
‖fϕ + tg‖p

∣∣∣∣
t=0

.

By the convexity of x 7→ |x|p, for all 0 < t < 1 and all x ∈M ,

|fϕ(x)|p − |fϕ(x)− g(x)|p ≤ |fϕ(x) + tg(x)|p − |fϕ(x)|p

t
≤ |fϕ(x) + g(x)|p − |fϕ(x)|p .

Then, since |fϕ − g|p, |fϕ − g|p and |fϕ|p are all integrable, The Dominated Convergence Theorem yields

us

lim
t→0

∫
Ω

|fϕ(x) + tg(x)|p − |fϕ(x)|p

t
dµ =

∫
Ω

lim
t→0

|fϕ(x) + tg(x)|p − |fϕ(x)|p

t
dµ .

Now one easily computes that for all x,

lim
t→0

|fϕ(x) + tg(x)|p − |fϕ(x)|p

t
= <|fϕ|p−2fϕ(x)g(x) .

Thus, for all g ∈ Lq, we have

<ϕ(g) = ‖ϕ‖(Lp)∗

∫
Ω

<|fϕ|p−2fϕ(x)g(x)dµ .

Substituting g by ig, we obtain the same result for the imaginary part, and hence

ϕ(g) = ‖ϕ‖(Lp)∗

∫
Ω

|fϕ|p−2fϕ(x)g(x)dµ .

It is now easily checked that |fϕ|p−2fϕ is a unit vector in Lq, and hence ϕ is in the range of our isometry

into (Lp)∗. But since ϕ is an arbitrary element of (Lp)∗, we see that our isometry is onto (Lp)∗.
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5.4.4 COROLLARY (Riesz Representation Theorem for L1). Let (Ω,M, µ) be a σ-finite measure space.

The map g 7→ ϕg ∈ (L1)∗ from L∞ to (L1)∗ given by φg(f) =
∫

Ω
gfdµ is an isometry onto from L∞ (L1)∗.

Proof. Suppose first that µ(Ω) = 1. By Jensen’s inequality, for all measurable f and all 1 ≤ p < q,(∫
Ω

|f |pdµ
)q/p

≤
∫

Ω

|f |qdµ .

Therefore, Lq ⊂ Lp ⊂ L1, and for any f ∈ Lq, ‖f‖1 ≤ ‖f‖p ≤ ‖f‖q.
Let L be any bounded linear functional on L1. Let f ∈ Lq. By the inclusion proved above, |L(f)| ≤

‖L‖∗‖f‖1 ≤ ‖L‖∗‖f‖q. By Theorem 5.4.3, there is a unique gq ∈ Lq/(q−1) such that ‖gq‖q/(q−1) ≤ ‖L‖∗,
and such that L(f) =

∫
Ω
fgqdµ for all f ∈ Lq. By the same reasoning, for all 1 < p < q, there is a

unique gp ∈ Lp/(p−1) such that ‖gp‖p/(p−1) ≤ ‖L‖∗, and such that L(f) =
∫

Ω
fgpdµ for all f ∈ Lp. By

the inclusion of Lq in Lp and the uniqueness, gq = gp, and hence gp is independent of p > 1. Therefore,

we drop the subscript and denote this function by g. We have that ‖g‖p/(p−1) ≤ ‖L‖∗ for all p, and since

limp↓1 ‖g‖p/(p−1) = ‖g‖∞, ‖g‖∞ ≤ ‖L‖∞.

For all f ∈ L1 and n ∈ N, define fn(x) = f(x) if |f(x)| < n and f(x) = 0 otherwise. Then by

the Lebesgue Dominated Convergence Theorem, limn→∞ ‖fn − f‖1 = 0, and for each n, fn ∈ Lp for all

1 ≤ p ≤ ∞. Hence

L(f) = lim
n→∞

L(fn) = lim
n→∞

∫
Ω

fngdµ =

∫
Ω

fgdµ

by the Lebesgue Dominated Convergence Theorem once more. Thus, the map g 7→ ϕg, which we know to

be an isometry from L∞ to (L1)∗ is surjective.

It is a simple matter to extend this proof to the case in which µ is finite, and then to the case in

which µ is sigma-finite noting that if E ⊂ Ω is any subset of Ω, the restriction of L to to the subspace of

L1 consisting of functions that vanish outside E has a norm that is not greater than ‖L‖∗ independent of

the choice of E. The details are left to the reader.

5.4.3 Uniform smoothness in Lp, 1 < p <∞.

As a consequence of Theorem 5.4.1 the Lindenstrauss-Day Theorem, we obtain the following result:

5.4.5 THEOREM (Uniform smoothness of Lp, 1 < p <∞). For any measure space (M,M, µ) and any

Lp(M,M, µ) is uniformly smooth. For 1 < p < 2,one has the bound

ρLp(τ) ≤ 1

2(p− 1)
τ2 , (5.4.5)

while for 2 < p <∞ and q = p/(p− 1), one has the bound

ρLp(τ) ≤ 1

q
τ q . (5.4.6)

Proof. The uniform smoothness follows directly from Theorems 5.3.10 and 5.4.1. To obtain (5.4.5) use

(5.3.17) to deduce

ρLp(τ) ≤ sup
0≤ε≤1

{ετ − δLq (ε) } .

Then by (5.4.2) and a simple calculation, one obtains and (5.4.5). The proof of (5.4.6) is similar.
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This result has useful implications the theory of partial differential equations. Very often the solution

of a partial differential equation give rise to a curve f(t, cdot) where for each t > 0, f(t, cdot) ∈ Lp for

some Lp space – ona all of R, in some bounded set Ω, or soemthing else. Let is simple write f(t) to denote

the t-dependent element of Lp. That is t 7→ f(t) is a curve in Lp.

5.4.6 DEFINITION. Let (Ω,M, µ) be anty meaasure space. Let (a, b) ⊂ R, 1 ≤ p ≤ ∞, and let

t 7→ f(t) be a function from (a, b) to Lp := Lp(Ω,M, µ). The map t 7→ f(t) is strongly differentiable at

t0 ∈ (a, b) in case for some v(t0) ∈ Lp,

lim
h→0

1

|h|
‖f(t0 + h)− f(t0)− v(t0)h‖p = 0 .

In this case we define v(t0) to be the derivative of t 7→ f(t) at t = t0, ad we write
d

dt
f(t0) = v(t0). The

map t 7→ f(t) is strongly continously differentiable on (a, b) in case it is differentiable at each t ∈ (a, b),

and t 7→ v(t) is norm-continuous in Lp.

5.4.7 THEOREM (The chain-rule in Lp). Let (Ω,M, µ) be anty meaasure space. Let (a, b) ⊂ R,

1 < p < ∞, and let t 7→ f(t) be a function from (a, b) to Lp := Lp(Ω,M, µ). If t 7→ f(t) is strongly

differentialble at each t ∈ (a, b), then t 7→ ‖f(t)‖p is differetniable at each t ∈ (a, b). If t 7→ f(t) is strongly

continuously differentialble on (a, b), then t 7→ ‖f(t)‖p is continuosly differetniable on (a, b).

Proof. For any t0 ∈ (a, b) and h 6= 0 such that t0 + h ∈ (a, b), the Frechét differentiability of the Lp norm

that follows from the uniform smoothness of Lp means that for all ε > 0, there is a δε > 0 such that

‖f(t0 + h)− f(t0)‖p < δε ⇒∣∣∣∣‖f(t0 + h)‖p − ‖f(t0)‖p − 〈Dp(f(t0)), f(t0 + h)− f(t0)〉
∣∣∣∣ < ε‖f(t0 + h)− f(t0)‖p .

Then since t 7→ f(t) is strongly differentiable, for all ε > 0, there is an ηε > 0 such that

|h| < ηε ⇒ 1

|h|
‖f(t0 + h)− f(t0)− hv(t0)‖ < ε

Then for all h with |h| < ηε, ‖f(t0 + h) − f(t0)‖ ≤ |h|(‖v(t0)‖ + ε). Decreasing ηε as necessary, we can

ensure that the right hand side is less than δε. Then for all h with |h| < ηε,∣∣∣∣‖f(t0 + h)‖p − ‖f(t0)‖p − h〈Dp(f(t0)), v(t0)〉
∣∣∣∣ ≤ ε|h|(‖v(t0)‖+ ε) + |h|ε .

Thus,

lim sup
|h|→0

1

|h|

∣∣∣∣‖f(t0 + h)‖p − ‖f(t0)‖p − h〈Dp(f(t0)), v(t0)〉
∣∣∣∣ ≤ ε|(‖v(t0)‖+ ε) + ε .

Since ε > 0 is arbitrary,

lim
h→0

‖f(t0 + h)‖p − ‖f(t0)‖p
h

= 〈Dp(f(t0)), v(t0)〉 .

Therefore, if t 7→ f(t) is strongly differentiable at t0, then t 7→ ‖f(t)‖p is differentiable at t = t0.

By Theorem 5.3.13, it follows that since t 7→ f(t) is continuous into Lp, t 7→ Dp(f(t)) is continuous

into Lp/(p−1). Then if t 7→ v(t) is continuous into Lp, t 7→ 〈Dp(f(t)), v(t)〉 is continuous into R.



Chapter 6

Topics in Classical Analysis

6.1 Convolution and related operations

6.1.1 Markov kernels

6.1.1 DEFINITION. Let (Ω,M, µ) be a measure space. A Markov kernel on (Ω,M, µ) is a non-negative

function K on (Ω× Ω,M⊗M) such that for each x ∈ Ω,∫
Ω

K(x, y)dµ(y) = 1 . (6.1.1)

That is, for each x, K(x, y)dµ(y) is a probability measure on (Ω,M). A Markov kernel K is doubly

stochastic in case both ∫
Ω

K(x, y)dµ(y) = 1 and

∫
Ω

K(x, y)dµ(x) = 1 (6.1.2)

for all x, y. A Markov kernel K is symmetric in case K(x, y) = K(y, x) for all x, y ∈ Ω. Every symmetric

Markov kernel is doubly stochastic.

In probability theory, Markov kernels arise in the description of Markov jump process with a state

space Ω. When a jump from state x occurs, the probability of jumping from x into a measurable set

E ⊂ Ω is given by
∫
E
K(x, y)dµ(y). Markov kernels play a prominent role in analysis as well; the results

in the rest of this section give a first indication of why this is the case.

6.1.2 THEOREM. Let K be a doubly stochastic Markov kernel on (Ω,M, µ). For each p ∈ [1,∞],

define a linear operator PK on Lp(Ω,M, µ) ∩ L∞(Ω,M, µ) by

PKf(x) =

∫
Ω

K(x, y)f(y)dµ(y) . (6.1.3)

Then ‖PKf‖p ≤ ‖f‖p, so that PK extends by continuity to a contraction on Lp(Ω,M, µ).

Proof. Suppose f is bounded and measurable. Then for each x, f is integrable with respect to

K(x, y)dµ(y), and

|PKf(x))| =
∣∣∣∣∫

Ω

K(x, y)f(y)dµ(y)

∣∣∣∣ ≤ ∫
Ω

K(x, y)‖f‖∞dµ(y) ≤ ‖f‖∞ .

c© 2017 by the author.
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Now suppose that for p ∈ [1,∞), f ∈ Lp(Ω,M, µ). Since t 7→ |t|p is convex on R, Jensen’s inequality

implies ∣∣∣∣∫
Ω

K(x, y)f(y)dµ(y)

∣∣∣∣p ≤ (∫
Ω

K(x, y)|f(y)|dµ(y)

)p
≤
∫

Ω

K(x, y)|f(y)|pdy .

Then by the Fubini-Toninelli Theorem,

‖PKf‖pp =

∫
Ω

∣∣∣∣∫
Ω

K(x, y)f(y)dµ(y)

∣∣∣∣p dµ(x) ≤
∫

Ω

(∫
Ω

K(x, y)dµ(x)

)
|f(y)|pdµ(y) = ‖f‖pp .

Let K be a symmetric Markov kernel on (Ω,M, µ), and let PK also denote the corresponding con-

traction H := L2(Ω,M, µ). It is easy to see that PK is self-adjoint.

Convolution operators provide an important class of examples. Let ρ be a non-negative Borel function

on R such that
∫

R ρdx = 1. In this case, we say that ρ is a probability density on (R,B,dx). Given such

a function ρ, define K(x, y) = ρ(x − y). Then it is evident that K(x, y) is a doubly stochastic Markov

kernel. Therefore, for each p ∈ [1,∞] we may define an operator Tρ acting on Lp(R,B,dx) by

Tρf(x) =

∫
R
ρ(x− y)f(y)dy =: ρ ∗ f(x) . (6.1.4)

Then ρ ∗ f is called the convolution of ρ and f , and Tρ is the operator of convolution by ρ. As an

immediate consequence of Theorem 6.1.2 we have that for any probability density ρ, and p ∈ [1,∞] and

and f ∈ Lp(R,B,dx),

‖ρ ∗ f‖p ≤ ‖f‖p . (6.1.5)

If ρ is any probability density, then for all λ > 0,

ρλ(x) = λ−1ρ(x/λ) (6.1.6)

is also a probability density. If ρ has support in a compact interval [−L,L], ρλ has support in a the

interval [−λL, λL]. Let f be a continuous compactly supported function on R. Then for all ε > 0, there

is a δ > 0 so that |x− y| < δ ⇒ |f(x)− f(y)| < ε. Then for λ such that λL < δ,

|ρλ ∗ f(x)− f(x)| =
∣∣∣∣∫

R
ρλ(x− y)(f(y)− f(x))dy

∣∣∣∣ ≤ ∫
R
ρλ(x− y)|f(y)− f(x)|dy ≤ ε

since ρλ(x − y) = 0 if |y − x| ≥ δ. Also note that if f is supported in the interval [−R,R], then ρλ ∗ f
is supported in the interval [−λL − R, λL + R] since ρλ(y − x)f(y) = 0 if |x| > R + λL. It follows that

|ρλ ∗ f − f | is bounded by ε and is supported in [−R − 1, R + 1] for all λ such that λL < min{δ, 1}. For

such λ, ‖ρλf − f‖p ≤ ε(2R+ 2)1/p. We have proved an important special case of the following theorem:

6.1.3 THEOREM. For any probability density ρ on R, let ρλ be defined for λ > 0 by (6.1.6). Then for

all p ∈ [1,∞), and all f ∈ Lp(R,M,dx),

lim
λto0
‖ρλ ∗ f − f‖p = 0 .

Proof. Define ηL =
∫

[−L,L]c
ρ(x)dx, and note that limL→∞ ηL = 0. For all L large enough that ηL < 1,

Define

ρ(L)(x) := (1− ηL)−11[−L,L](x)ρ(x) and r(L)(x) := η−1
L 1[−L,L]c(x)ρ(x) .



123

Then evidently both ρ(L) and r(L) are probability densities ρ = (1−ηL)ρ(L)+ηLr
(L) is a convex combination

of them. Hence for all f ∈ Lp(R,M,dx), Likewise, for all λ > 0, ρλ = (1− ηL)ρ
(L)
λ + ηLr

(L)
λ , and then for

all p ∈ [1,∞), and all f ∈ Lp(R,M,dx),

‖ρλ ∗ f − f‖p = ‖(1− ηL)(ρ
(L)
λ ∗ f − f) + ηL(r

(L)
λ ∗ f − f)‖p

≤ (1− ηL)‖ρ(L)
λ ∗ f − f‖p + ηL‖r(L)

λ ∗ f − f‖p

≤ (1− ηL)‖ρ(L)
λ ∗ f − f‖p + ηL2‖f‖p ,

where we used (6.1.5) in the last step,

Now fix ε > 0, and choose L sufficiently large that ηL2‖f‖p < ε/3. Since Cc(R) is dense in Lp(R,B,dx),

we may choose g ∈ Cc(R) such that ‖f − g‖p < ε/3. Then using Minkowski’s inequality and (6.1.5),

‖ρ(L)
λ ∗ f − f‖p ≤ ‖ρ(L)

λ ∗ (f − g)‖p + ‖ρ(L)
λ ∗ g − g‖p + ‖f − g‖p ≤ ‖ρ(L)

λ ∗ g − g‖p + 2ε/3 .

Altogether, we have that

‖ρλ ∗ f − f‖p ≤ ‖ρ(L)
λ ∗ g − g‖p + ε ,

and since ρL has support in [−L,L] and since g ∈ Cc(R), by what we have explained just before the

statement of the theorem, limλ→0 ‖ρ(L)
λ ∗ g − g‖p = 0. Since ε > 0 is arbitrary, the proof is complete.

6.1.2 The basic facts about convolution

Throughout this section, Lp denotes Lp(R,B,dx). Let f, g ∈ L1 ∩ L∞. Then the integral

g ∗ f(x) :=

∫
R
g(x− y)f(y)dy (6.1.7)

converges for all x, and we have the point-wise inequality

|g ∗ f(x)| ≤ |g| ∗ |f |(x) (6.1.8)

If g 6= 0, so that ‖g‖1 6= 0, ρ := ‖g‖−1
1 |g| is a probability density. Therefore, by (6.1.5), for all p ∈ [1,∞],

‖g ∗ f‖p ≤ ‖|g| ∗ |f |‖p = ‖g‖1‖ρ ∗ |f |‖p ≤ ‖g‖1‖f‖p . (6.1.9)

In particular, g ∗ f ∈ L1 ∩L∞. Thus, convolution is a product on L1 ∩L∞, making it an algebra. By the

Fubini-Toninelli Theorem, and the change of variables w = y − x,∫
R
f ∗ gdx =

∫
R

(∫
R
g(x− y)f(y)dx

)
dy =

(∫
R
g(w)dw

)(∫
R
f(y)dy

)
, (6.1.10)

so that when f and g are non-negative, ‖f ∗ g‖1 = ‖f‖1‖g‖1.

Making the change of variables y = x− w,

g ∗ f(x) =

∫
R
g(x− y)f(y)dy =

∫
R
f(x− w)g(w)dw = f ∗ g(x) (6.1.11)

Thus the convolution product on L1 ∩ L∞ is commutative. It is also associative: Let f, g, h ∈ L1 ∩ L∞.

We have already seen that f ∗ g ∈ L1∩L∞. Then making the change of variables y = u−w, and applying
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the Fubini-Toninelli Theorem,

(f ∗ g) ∗ h(x) =

∫
R

(∫
R
f(x− w − y)g(y)dy

)
h(w)dw

=

∫
R
f(x− u)

(∫
R
g(u− w)h(w)dw

)
du = f ∗ (g ∗ h)(x) . (6.1.12)

There is an important complement to (6.1.9): Since L1 ∩ L∞ ⊂ Lp for all p ∈ [1,∞], for p ∈ (1,∞),

g ∈ Lp/(p−1) and f ∈ Lp, and then by Hölder’s inequality, for all x,

|g ∗ f(x)| ≤
∫

R
|g(x− y)||f(y)|dy ≤ ‖g‖p/(p−1)‖f‖p .

Therefore,

‖g ∗ f‖∞ ≤ ‖g‖p/(p−1)‖f‖p . (6.1.13)

For all λ > 0 and all f ∈ L1, define

fλ(x) = λ−1f(x/λ) (6.1.14)

which reduces to (6.1.6) when f is a probability density. A simple change of variables shows that ‖fλ‖1 =

‖f‖1 for all λ > 0. A simple computation shows that for all f, g ∈ L1,

gλ ∗ fλ(x) = λ−2

∫
R
g(x/λ− y/λ)f(y/λ)dy = λ−1f ∗ g(x/λ) = (g ∗ f)λ(x) . (6.1.15)

Another simple computation shows that for f ∈ L1∩L∞, p ∈ [1,∞) and λ > 0, with fλ defined in (6.1.14),

‖fλ‖p = λ1/p−1‖f‖p . (6.1.16)

Now suppose that for some p, q, r ∈ [1,∞), there is a finite constant C such that for all f, g ∈ L1 ∩ L∞,

‖g ∗ f‖r ≤ C‖g‖q‖f‖p . (6.1.17)

Then replacing f and g by fλ and gλ, and using (6.1.15),

‖g ∗ f‖r = λ1−1/r‖(g ∗ f)λ‖r = λ1−1/r‖gλ ∗ fλ‖r ≤ C‖gλ‖q‖fλ‖p = λ1/q+1/p−1/r−1C‖g‖q‖f‖p .

Since the left side is independent of λ, the right had side must be independent of λ also, since if 1/q+1/p−
1/r−1 > 0, taking λ→ 0, we would conclude that ‖g∗f‖r = 0, and thus that g∗f = 0 almost everywhere.

If 1/q + 1/p − 1/r − 1 < 0, taking λ → ∞ brings us to the same conclusion. But for non-negative f, g,

‖g ∗ f‖1 = ‖g‖1‖f‖1, and so g ∗ f = 0 almost everywhere implies that f = g = 0.

Therefore, there is no finite constant C for which the inequality (6.1.17) can hold in general unless

1

p
+

1

q
=

1

r
+ 1 . (6.1.18)

It turns out that when (6.1.18) is satisfied, then (6.1.17) is also valid in general, with a constant C no

greater than 1. This is Young’s inequality for convolution. We have already seen several important cases,

namely the case in which r = p, q = 1, which is (6.1.9) and the case r =∞,q = p/(p−1), which is (6.1.13).

There are several ways to prove the remaining cases of Young’s inequality with the constant C = 1.

The inequality actually holds in these cases with an optimal constant C that is strictly less than 1, We

shall prove this sharp form of Young’s inequality, which is due to Beckner and Brascamo and Lieb later

in the Chapter. The main tool used in the proof that we give is the heat semigroup, our next topic. For

now, we close this section with the following lemma that summarizes our main conclusions.
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6.1.4 LEMMA. The convolution product on L1∩L∞ is commutative and associative, and the inequalities

(6.1.9) and (6.1.13) for all f, g ∈ L1 ∩ L∞. Moreover, since L1 ∩ L∞ is dense in Lr for all 1 < r < ∞,

the map (g, f) 7→ g ∗ f extends by continuity to a map from L1 × Lp to Lp for which (6.1.9) is valid, and

to a map from Lp/(p−1) × Lp to L∞ for which (6.1.13) is valid.

6.1.3 The Heat semigroup

The Gaussian probability density γ(x) associated to the normal distribution of probability theory is given

by

γ(x) =
1√
2π
e−x

2/2 .

For t > 0, define γt(x) = (2πt)−1/2e−x
2/2t. This is the Gaussian probability density with mean 0 and

variance t. That is, ∫
R
γt(x)dx = 1 ,

∫
R
xγt(x)dx = 0 and

∫
R
x2γt(x)dx = t . (6.1.19)

Note that the definition γt(x) = t−1/2γ(x/
√
t) duffers slightly from (6.1.6) due to the square roots on the

right. In the present context, this scaling will turn out to be more natural. The following lemma explains

why.

6.1.5 LEMMA. For all s, t > 0,

γt ∗ γs = γt+s . (6.1.20)

Proof. Note that γt(x− y)γs(y) =
1

2π
√
st
e−[(x−y)2/t+y2/s]/2, and

(x− y)2

t
+
y2

s
=
t+ s

st

(
y − s

t+ s
x

)2

+
1

t+ s
x2 .

∫
R
γt(x− y)γs(y)dy = γs+t(x)

√
s+ t

2πst

∫
R
e−(t+s)(y−sx/(t+s))2/(2st)dy = γs+t(x) .

6.1.6 DEFINITION (Heat semigroup). For each t > 0, define an operator Pt on L1 ∩ L∞ by

Ptf = γt ∗ f . (6.1.21)

For t > 0, define P0 = I. Then the family of operators {Pt}t≥0 constitute the heat semigroup. The name

will be justified shortly.

6.1.7 THEOREM. Let {Pt}t≥0 be the heat semigroup on L1 ∩ L∞. Then for all s, t ≥ 0,

PsPt = Ps+t . (6.1.22)

For all p ∈ [1,∞], Pt extends by continuity to an element of B(Lp), and, for all f ∈ Lp, ‖Ptf‖p ≤ ‖f‖p.

Moreover, for all p ∈ [1,∞) and all f ∈ Lp, limt→0 ‖Ptf − f‖p = 0. Finally, for all r > p ∈ [1,∞], and

all t > 0, Pt extends by continuity to an element of B(Lp, Lr) with operator norm

‖Pt‖p→r ≤ ‖γt‖1−p/rp/(p−1) . (6.1.23)
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6.1.8 Remark. Since evidently for all t > 0, γt ∈ L1 ∩ L∞, γt ∈ Lp for all p ∈ [1,∞]. The precise value

of ‖γt‖p is readily computed for all p ∈ [1,∞]; see the exercises. The main point that is relevant in the

next sections is the for all t > 0, the range of Pt acting on Lp lies in Lp ∩ L∞.

Proof. By Lemma 6.1.4 and the definition of the heat semigroup, and then Lemma 6.1.5, for all f ∈
L1 ∩ L∞,

PsPtf = γs ∗ (γt ∗ f) = (γs ∗ γt) ∗ f = γs+t ∗ f = Ps+tf .

This proves (6.1.22). The inequality ‖Ptf‖p ≤ ‖f‖p is a direct consequence of (6.1.5) for f ∈ L1∩L∞, and

then evidently Pt extends by continuity to an element of B(Lp). The statement concerning limt→0 ‖Ptf −
f‖p is a direct consequence of Theorem 6.1.3. finally, by (6.1.13),

‖Ptf‖∞ ≤ ‖γt‖p/(p−1)‖f‖p ,

which proves (6.1.23) for r =∞. For r ∈ (p,∞) |Ptf(x)|r ≤ |Ptf(x)|p‖Ptf‖r−p∞ , and hence

‖Ptf‖rr ≤ ‖Ptf‖pp‖Ptf‖r−p∞ ≤ ‖f‖pp(‖γt‖p/(p−1)‖f‖p)r−p ,

which proves (6.1.23) in general.

The case p = 2 will be particularly important in what follows. Since for all f, g ∈ L2, t > 0,

〈f, Ptg〉L2 =

∫
R
fPtg(x)dx =

∫
R

∫
R
f(x)γt(x− y)g(y)dxdy = 〈Ptf, g〉L2 ,

it follows that Pt is self-adjoint on L2.

Theorem 6.1.7 says that for each p ∈ [1,∞] and each f ∈ Lp, Ptf converges to f in the Lp norm as

t → 0. as t → 0. Later in this chapter we will have the means to easily generate examples showing that

for all t, ε > 0 and all 1 ≤ p < ∞, there exists h ∈ Lp, ‖h‖p = 1 and ‖Pth − h‖p > 1 − ε. This brings us

to the notion of the strong operator topology

6.1.9 DEFINITION (The strong operator topology). Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces.

For each x ∈ X, define the map ψx on B(X,Y ) by ψx(T ) = ‖Tx‖Y
The strong operator topology on B(X,Y ) is the weakest topology on B(X,Y ) making each of the

map ψx continuous.

By what we have seen in our study of topological vector spaces, this topology makes B(X,Y ) a

topological vector space, an a neighborhood base at the origin is given by the sets

Vx1,...,xn,ε =

n⋂
j=1

{T ∈ B(X,Y ) : ‖Txj‖ < ε}

for ε > 0 and finite sets {x1, . . . , xn} ⊂ X.

6.1.10 DEFINITION (Strongly continuous semigroup). Let (X, ‖ · ‖) be a Banach space. A strongly

continuous semigroup on X is a set {Pf : t ≥ 0} ⊂ B(X) such that P0 = I, t 7→ Pt is continuous with

respect to the strong operator topology on B(X), and such that for all s, t ≥ 0, PtPs = Ps+t.

6.1.11 EXAMPLE (The heat semigroup on Lp). For each 1 ≤ p ≤ ∞, t > 0, let Pt ∈ B(Lp) be

defined as in (6.1.23) and extended by continuity. Then by Theorem 6.1.7, t 7→ Pt is a strongly continuous

semigroup on Lp. It is called the heat semigroup on Lp.
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The heat semigroup gets its name from the fact that, considered as a function of t > 0 and x ∈ R,

γt(x) satisfies the heat equation:
∂

∂t
γt(x) =

1

2

∂2

∂x2
γt(x) . (6.1.24)

Indeed, a calculation gives ∂
∂tγt(x) = x2

2t2 γt(x), which, as a function of x, belongs to Lq for all

1 ≤ q ≤ 1, Moreover, for all 0 < s, t, s 6= t,

γt(x)− γs(x) =

∫ t

s

x2

2r2
γr(x)dr = (t− s) x

2

2t2
γt(x) +

∫ t

s

[
x2

2r2
γr(x)− x2

2t2
γt(x)

]
dr

Simple estimates now yield, for all 1 ≤ q ≤ ∞,∥∥γt − γs − (t− s) ∂∂tγt
∥∥
q

= o(|t− s|) . (6.1.25)

Using (6.1.25) for q = 1, we have that for all f ∈ Lp if we define f(t, x) = Ptf(x),

lim
s→t

f(s, x)− f(t, x)

s− t
=

∂

∂t
γt ∗ f(x)

in the Lp norm, making use once more of (6.1.5). We may also use (6.1.25) with q = p/(p − 1) to

prove point-wise convergence of this limit. This shows that t 7→ f(t, x) is differentiable for t > 0, and
∂

∂t
f(t, x) =

∂

∂t
γt ∗ f(x). The argument can be repeated to show that for all m ∈ N,

∂m

∂tm
f(t, x) =

∂m

∂tm
γt ∗ f .

A similar argument shows that x 7→ f(t, x) is infinitely differentiable everywhere on R, and in fact

∂m

∂xm
f(t, x) =

∂m

∂xm
γt ∗ f .

Together with (6.1.24) we have proved:

6.1.12 THEOREM. Let 1 ≤ p < ∞, f ∈ Lp, and define f(t, x) = Ptf(x). Then f(·, ·) is C∞ on

(0,∞)× R, satisfies the heat equation

∂

∂t
f(t, x) =

1

2

∂2

∂x2
f(t, x) (6.1.26)

on (0,∞)× R, and limt→0 ‖f(t, ·)− f‖p = 0.

6.1.13 LEMMA. For all t > 0, and 1 ≤ p ≤ 2, Pt is injective on Lp.

Proof. Suppose that f ∈ L2 and Ptf = 0. Then Pt/2f ∈ L2, and by by Theorem 6.1.7, and the fact that

each Pt/2 is self-adjoint,

0 = 〈f, Ptf〉 = 〈f, Pt/2Pt/2f〉 = 〈Pt/2f, Pt/2f〉 = ‖Pt/2f‖22 .

Hence Pt/2f = 0 as well. A simple induction shows that Pt/2nf = 0 for all n. Then by Theorem 6.1.7,

0 = lim
n→∞

‖Pt/2nf − f‖ = ‖f‖ ,

so that f = 0.

Now suppose that f ∈ Lp, 1 ≤ p < 2 and Ptf = 0. By the semigroup property, for all 0 < s < t

Ptf = Pt−s(Psf), and by Then by Theorem 6.1.7, Psf ∈ L2. Therefore, by what was proved just above,

Psf = 0 for all 0 < s < t, and so f = lims→0 Psf .
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6.2 Hermite polynomials and the Mehler semigroup

6.2.1 Hermite polynomials

Let ν be the normalized Gaussian probability measure that has the density γ(x) := (2π)−1/2e−|x|
2/2 with

respect to Lebesgue measure dx. Let H = L2(R,B, ν). In this section, ‖ · ‖ denotes the norm on H, and

〈·, ·〉 denotes the inner product on H. Also, in this section, Lp denotes Lp(R,B, ν).

6.2.1 DEFINITION (Hermite polynomials). For each n ∈ N, let Vn = span({1, x, . . . , xn}). Let Pn

be the orthogonal projection in H onto Vn. For n ∈ N, define the polynomial pn(x) = xn, and define

po(x) = 1. Note that ‖Hn‖ 6= 0. For all n ≥ 0, the nth Hermite polynomial Hn is given by

Hn := pn − Pn−1pn (6.2.1)

and the nth normalized Hermite polynomial hn is defined by

hn := ‖Hn‖−1Hn . (6.2.2)

By construction Hn is orthogonal to Hk for all k ≤ n, and hence 〈Hn, Hm〉 = 0 for all n 6= m. It

follows that {hn}n≥0 is an orthonormal sequence in H.

6.2.2 THEOREM. For 1 ≤ p <∞, the set P of polynomial functions is dense in Lp(R,B, ν).

Theorem 6.2.2 has the following immediate corollary:

6.2.3 COROLLARY. The normalized hermite polynomials {hn}n≥0 are an orthonormal basis for

L2(R,B,dν).

Before proving Theorem 6.2.2, we prove two simple lemmas

6.2.4 LEMMA. For y ∈ R, define the function gy = eyx. Then gy ∈ Lp for all p ∈ [1,∞), and defining

pn(x) = xn, the point-wise series expansion gy(x) =

∞∑
n=0

1

n!
ynpn(x) converges absolutely in Lp(R,B, ν).

That is, for all y ∈ R, and all p ∈ [1,∞),

∞∑
n=0

1

n!
|y|n‖pn‖p <∞ . (6.2.3)

Proof. ∫
R
|gy|pγ(x)dx =

1√
2π

∫
R
exyp−x

2/2 =
ey

2p2/2

√
2π

∫
R
e−(x−yp)/2 = ey

2p2/2 .

Thus gy ∈ Lp(R,B, ν). Since ν is a probability measure, if q > p, then ‖pn‖q ≥ ‖pn‖p for all n. Therefore,

it suffices to prove (6.2.3) when p is an even integer. Let us consider the case p = 2k, k ∈ N. Then

‖pn‖2k2k =
1√
2π

∫
R
x2kne−|x|

2/2dx = (2nk − 1)!! = (2nk − 1)(2mk − 3) · · · 1 .

(See the exercises for the evaluations ation of this integral.) The crude estimate ‖pn‖2k2k ≤ (2nk)nk. which

is true since ‖pn‖2k2k is the product of nk terms each of which is less than 2nk, suffices for our purposes,

and gives us ‖pn‖2k ≤ (2nk)n/2 = (2k)n/2nn/2. Therefore,

∞∑
n=0

1

n!
|y|n‖pn‖2k ≤

∞∑
n=0

nn/2

n!

(√
2k|y|

)n
.
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Since the power series

∞∑
n=0

nn/2

n!
zn has an infnite radius of convergence, (6.2.3) is true for all y.

The next lemma relates integration against gy with respect to dν to the action of the heat semigroup

on Lp(R,B,dx).

6.2.5 LEMMA. For q ∈ [1,∞) and h ∈ Lq and define the function h̃(x) = γ1/q(x)h(x) so that∫
R
|h̃(x)|qdx =

∫
R
|h(x)|qdν . (6.2.4)

(2π)(1−q)/2qe−qy
2/2

∫
R
h(x)gy(x)dν = Pqh̃(qy) , (6.2.5)

where {Pt}t≥0 is the heat semigroup.

Proof. Computing,∫
R
h(x)gy(x)dν =

∫
R
h̃(x)γ1/q(x)gy(x)dx

= (2π)−1/2q

∫
R
h̃(x)e−x

2/2q+xydx = (2π)−1/2qeqy
2/2

∫
R
h̃(x)e−(x−qy))2/2qdx .

Rearranging terms yields (6.2.5).

Proof of Theorem 6.2.2. Suppose that P is not dense in Lp(R,B, ν). Then by the Hahn-Banach Theorem

and the Riesz Representation Theorem, there would exist a unit vector h ∈ Lq, q = p/(p− 1), such that∫
R hfdν = 0 for all f ∈ P. By Lemma 6.2.4, gy is the Lp norm limit of a sequence of polynomials, and

therefore

∫
R
hgydν = 0 for all y ∈ R.

Then with h̃(x) = γ1/q(x)h(x), Lemma 6.2.4 says that Pqh̃ = 0. For q ∈ [1, 2], Pq is injective on Lq

by Lemma 6.1.13. Hence h̃ = 0, and then by (6.2.4), h = 0, which is a contradiction. Hence for 2 ∈ [1, 2]

there is no unit vector h ∈ Lq such that
∫

R hfdν = 0 for all f ∈P. Since q = p/(p− 1), q ∈ [1, 2] exactly

when p ∈ [2,∞], and therefore P is dense in Lp for p ∈ [2,∞].

For p ∈ [1, 2), f ∈ Lp, and ε > 0, pick g ∈ L2 such that ‖g − f‖p < ε/2. Then pick h ∈P such that

‖g − h‖2 < ε/2. Then since ν is a probability measure,

‖f − h‖p ≤ ‖f − g‖p + ‖g − h‖p ≤ ‖f − g‖p + ‖g − h‖2 ≤ ε

This proves the density of P in Lp for p ∈ [1, 2).

6.2.2 The Mehler semigroup

The Mehler semigroup was introduced by Gustav Mehler in 1866, shortly after Charles Hermite had

introduce the Hermite polynomials in 1864. It arises very naturally in the study of the normal distribution

dν, as we now explain.

For any (x, y) ∈ R2 and any θ ∈ [0, 2π) introduce new coordinates (u, v) on R2 by

u = cos θx+ sin θy and v = − sin θx+ cos θy

so that

x = cos θu− sin θv and y = sin θu+ cos θv .
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Since (u, v) is obtained by rotating (x, y) (clockwise) through the angle θ, u2 + v2 = x2 + y2 hence

γ(x)γ(y) =
1

2π
e−(x2+y2)/2 =

1

2π
e−(u2+v2)/2 = γ(u)γ(v) . (6.2.6)

Now let g and f be any polynomials. Then for any θ ∈ [0, 2π), g(x) and f(cos θx + sin θy) are

polynomials in x and y (in the first case with a trvial dependence on y). Therefore we may integrate their

product over R2 with respect to γ(x)γ(y)dxdy. We obtain:∫
R2

g(x)f(cos θx+ sin θy)γ(x)γ(y)dxdy =

∫
R

(
g(x)

∫
R
f(cos θx+ sin θy)dν(y)

)
dν(x) . (6.2.7)

Now let us write the left side using the rotated cooridnates u, v. Since a rotation has unit Jacobian, (6.2.6)

implies ∫
R2

g(x)f(cos θx+ sin θy)γ(x)γ(y)dxdy =

∫
R2

g(cos θu− sin θv)f(u)γ(u)γ(v)dudv

=

∫
R

(∫
R
g(cos θu− sin θv)dν(v)

)
f(u)dν(u)

=

∫
R

(∫
R
g(cos θu+ sin θv)dν(v)

)
f(u)dν(u)

where in the last line we have used the fact that γ(−v) = γ(v). Combining this with (6.2.7) and replacing

g by its complex conjugate g, we have the identitiy∫
R

(
g(x)

∫
R
f(cos θx+ sin θy)dν(y)

)
dν(x) =

∫
R

(∫
R
g(cos θu+ sin θv)dν(v)

)
f(u)dν(u) . (6.2.8)

Before porceeding further, let us simplify our notation. Consider angles θ ∈ [0, π/2) and define

λ = cos θ so that sin θ =
√

1− λ2. Then∫
R
f(cos θx+ sin θy)dν(y) =

∫
R
f(λx+

√
1− λ2y)dν(y)

This brings us to the following definition:

6.2.6 DEFINITION (Mehler operator). For λ ∈ [0, 1) Sλ is the transformation defined on the polyno-

mials P by

Sλf(x) =

∫
R
f(λx+

√
1− λ2y)γ(y)dy . (6.2.9)

6.2.7 LEMMA. For all λ ∈ [0, 1), if f is a polynomial of degree less than or equal to n ∈ N, then so is

Sλf .

Proof. Let pn(x) := xn. By the definition (6.2.9),

Sλpn(x) =

n∑
m=0

xn−m(1− λ2)m/2λn−m
(
n

m

)(∫
R
ymγ(y)dy

)

=

n∑
m=0 , m even

[
(1− λ2)m/2λn−m

(
n

m

)
(m− 1)!!

]
pn−m(x) , (6.2.10)

where we have used the fact that
∫

R y
mγ(y)dy = (m− 1)!! = (m− 1)(m− 3) · · · 1 for m even and is zero

for m odd. This displays Sλpn as a polynomial of degree n (unless λ = 0 in which case Sλpn is constant),

and proves the lemma.
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In particular, for all f ∈P, Sλf ∈P ⊂ H := L2(R,B, ν), and we may now rewrite (6.2.8) as

〈g, Sλf〉H = 〈Sλg, f〉H . (6.2.11)

By Lemma 6.2.7, for each n ∈ N, Vn := span({1, x, . . . , xn}) is in the domain of Sλ for each λ ∈ [0, 1),

and is invariant under Sλ. Thus, Sλ define a linear transformation on the finite dimensional vector space

Vn, and then (6.2.11) says that this linear transformation is self-adjoint with respect to the inner product

that Vn inherits from H as a subspace of H.

It follows that there exists an orthonormal basis of Vn consisting of eigenvectors of Sλ. Since for all

n ∈ N, Vn−1 ⊂ Vn, both Vn−1 and its orthogonal complelement in Vn, are invariant under Sλ because Sλ

is self-adjoint. However, by definition, the orthogonal complement of Vn−1 in Vn is the one dimensional

space spanned by hn, the normalized nth Hermite polynomial. Hence hn is an eigenvector of Sλ for each

n ∈ N. It is obvious from the definition that Sλh0 = h0. We have proved the first part of the following

theorem:

6.2.8 THEOREM. The Hermite basis {hn}n≥0 of H is a complete orthonormal set consisting eigenvec-

tors of the Mehler operators Sλ: For each λ ∈ (0, 1) and each n > 0

Sλhn = λnhn . (6.2.12)

Moreover, for all f ∈ P, ‖Sλf‖H ≤ ‖f‖ so that Sλ extends by continuity from its its definition on

P to a contraction in B(H).

Proof. Single out the m = 0 term in (6.2.10) to obtain

Sλpn(x) = λnxn + lower order . (6.2.13)

Then since Hn(x) = pn(x) + lower order, and since SλVn−1 ⊂ Vn−1,

SλHn = Sλpn + lower order = λnpn + lower order = λnHn + lower order . (6.2.14)

Since {h0, . . . , hn} spans Vn, SλHn =

n∑
m=0

〈hm, SλHn〉hm =

n∑
m=0

〈Sλhm, Hn〉, using the fact that Sλ is

self-adjoint. Then since Sλhm ∈ Vm, for m < n, 〈Sλhm, Hn〉 = 0. Therefore, SλHn is a multiple of Hn,

and the lower order terms on the right hand side of (6.2.14) must all be zero.

For the final part, let f =
∑N
n=0 αnhn be the expansion of f ∈ P in terms of the Hermite basis.

Then Sλf =
∑N
n=0 αnλ

nhn, and hence ‖Sλf‖2H =

N∑
n=0

λ2n|αn|2 ≤
N∑
n=0

|αn|2 = ‖f‖2H.

6.2.9 LEMMA. For all λ, µ ∈ (0, 1),

SµSλ = Sλµ , (6.2.15)

holds as an identity in B(H), and for all f ∈ H,

lim
λ→1
‖Sλf − f‖H = 0 . (6.2.16)
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Proof. For f ∈ H, consider the expansion f =
∑∞
n=1〈hn, f〉hn. Then

Sλf =

∞∑
n=0

〈hn, f〉Sλhn =

∞∑
n=0

〈hn, f〉λnhn .

Therefore SµSλf =

∞∑
n=0

〈hn, f〉(µλ)nhn = Sµλf Since L2 ∩ Lp is dense in Lp for all p ∈ [1,∞), this proves

(6.2.15).

To prove (6.2.16), we first consider the case in which f is a polynomial. Again let pn(x) := xn, and

combine (6.2.10) with Minkowski’s inequality to conclude

‖Sλpn − pn‖H ≤ (1− λn)‖pn‖H +

n∑
m=0,m even

(1− λ2)m/2
(
n

m

)
(m− 1)!!‖pn−m‖H

This shows that limλ→1 ‖Sλpn − pn‖H = 0. It follows that for all g ∈P, limλ→1 ‖Sλg − g‖H = 0.

Next fix ε > 0 and f ∈ H. Let g ∈P be such that ‖g − f‖H < ε. Then since ‖Sλ‖ = 1,

‖Sλf − f‖H ≤ ‖Sλ(f − g)‖H + ‖Sλg − g‖H + ‖t− g‖ ≤ 2ε+ ‖Sλg − g‖H .

For λ sufficiently close to 1, ‖Sλg − g‖H < ε, and then ‖Sλf − f‖H < 3ε. This proves (6.2.16).

6.2.10 Remark. One can reparameterize the family of operators {Sλ : λ ∈ (0, 1)} by defining Mt = Se−t

and M0 = I, the identitiy. Then the results we have proved so far show that {Mt}t≥0 is a strongly

continuous semigroup on H. This is further developed in the exercises, and justifies the title of this secion,

but for our purpose, the present parameterization is more suitable.

6.2.11 LEMMA. For all f ∈P, define

N f(x) = − ∂2

∂x2
f(x) + x

∂

∂x
f(x) . (6.2.17)

Then for all λ 7→ Sλf is left differentiable in H at λ = 1, and

lim
λ↑1

Sλf − f
λ− 1

= N f , (6.2.18)

where the limit is taken in H, and the same formula is valid point-wise.

Proof. Consider (6.2.10), and explicitly evaluate the terms for m = 0 and m = 2 in the sum on the right

to obtain

Sλpn − pn = (λn − 1)pn + (1− λ2)λn−2n(n− 1)

2
pn−2

+

n∑
m=4 , m even

[
(1− λ2)m/2λn−m

(
n

m

)
(m− 1)!!

]
pn−m . (6.2.19)

All of the terms in the second line of (6.2.19) contain at least two factors of (1− λ), and hence

lim
λ↑1

Sλpn − pn
λ− 1

= lim
λ↑1

[
λn − 1

λ− 1
pn − (1 + λ)λn−2n(n− 1)

2
pn−2

]
= N pn

since

npn(x)− n(n− 1)pn−2(x) = − ∂2

∂x2
pn(x) + x

∂

∂x
pn(x) .

Since the sum has only finitely many terms, the limit may be taken in H or pointwise. By linearity, these

formulae and conclusions extend to general f ∈P.
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Applying (6.2.18) with f = hn yields an important identity:

N hn = lim
λ↑1

Sλhn − hn
λ− 1

= lim
λ↑1

λn − 1

λ− 1
hn = nhn .

That is, the Hermite basis {hn}n≥0 is an orthonormal basis if H consisting of eigenfunctions of N .

This is the key to the proof of a number of basic identities concerning the Hemite polynomials.

6.2.12 LEMMA. For all f, g ∈P,

〈f,N g〉H =
〈

d
dxf,

d
dxg
〉
H (6.2.20)

and

〈f, d
dxg〉H =

〈(
x− d

dx

)
f, g
〉
H (6.2.21)

Proof. This is simply an integration by parts calculation.

6.2.13 THEOREM. Define h−1 = 0. Then for all n ≥ 0, and all x ∈ R,

d
dxhn(x) =

√
nhn−1(x) and

(
x− d

dx

)
hn(x) =

√
n+ 1hn+1(x) . (6.2.22)

Moroever,

xhn(x) =
√
nhn−1(x) +

√
n+ 1hn+1(x) . (6.2.23)

Proof. Since d
dxhn is a polynomial of degree n − 1, it may be expanded in the Hermite basis using only

{h0, . . . , hm−1}:

d
dxhn =

n−1∑
m=1

〈hm, d
dxhn〉Hhm . (6.2.24)

By (6.2.21), for m < n− 1,

〈hm, d
dxhn〉H =

〈(
x− d

dx

)
hm, hn

〉
H = 0

since when m < n− 1,
(
x− d

dx

)
hm is a polynomial of degree at most n− 1, and is therefore orthogonal

to hn. Hence (6.2.25) simplifies to

d
dxhn = 〈hn−1,

d
dxhn〉Hhn−1 . (6.2.25)

Combining this with (6.2.20),

n = 〈hn,N hn〉H =
〈

d
dxhn,

d
dxhn

〉
H =

∣∣〈hn−1,
d

dxhn〉H
∣∣2 . (6.2.26)

Since the leading coefficient of hn is positive for all n, combining (6.2.25) and (6.2.26) yields the first

identity in (6.2.22).

It now follows from (6.2.21) that for all m,n ≥ 0,

√
mδn,m−1 = 〈hn, d

dxhm〉H =
〈(
x− d

dx

)
hn, hm

〉
H (6.2.27)

and then by the completeness of the Hermite polynomials, this means that for all n ≥ 0,(
x− d

dx

)
hn =

√
n+ 1hn+1 .

Combining the identities in (6.2.22), we obtain (6.2.23).
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Theorem 6.2.13 can be used to prove a number of useful identities concerning the Hermit polynomials,

including explict expressions for the coeeficinents and, more important for us here, useful pointwise upper

bounds. The rest of this section is not needed in what follows, but illuminates it, and is a beautiful

example of classical analysis.

6.2.14 LEMMA. For all n ≥ 0, the normalized Hermite polynomial hn is realted to its un-normalized

parent Hn through

Hn =
√
n!hn , (6.2.28)

so that ‖Hn‖22 = n!. Moreover,

Hn(x) =

(
x− d

dx

)n
1 (6.2.29)

and
d

dx
Hn(x) = nHn−1(x) (6.2.30)

Proof. since h0 = 1, a simple inductive argument using the inequality on the right in (6.2.22) shows that(
x− d

dx

)n
1 =
√
n!hn .

The left hand side is a polynomial for which the coefficient of xn is 1. Hence the left hand side is the

multiple of hn in which the coeffcient of xn is 1, which is Hn. This proves (6.2.28) and (6.2.29). Finally,

(6.2.30) follows immediately from (6.2.28) and the inequality on the left in (6.2.22).

6.2.15 LEMMA (Addition formula). For all x, y ∈ R, n ≥ 0.

Hn(x+ y) =

n∑
m=0

(
n

m

)
Hn−m(x)ym . (6.2.31)

Proof. By Taylor’s Theorem, Hn(x+ y) =

n∑
m=0

1

m!
H(m)
n (x)ym where H

(m)
n denotes the mth derivative of

Hn. By (6.2.30), H(m)
n =

n!

(n−m)!
Hn−m.

6.2.16 LEMMA (Kapetyn’s formula). For all n ≥ 0,

γ ∗Hn(x) = xn . (6.2.32)

Proof. We compute, using the addition formula,

γ ∗Hn(x) =

∫
R
γ(y)Hn(x− y)dy =

n∑
m=0

(
n

m

)
xm
∫

R
Hn−m(y)γ(y)dy =

n∑
m=0

(
n

m

)
xmδm,n = xn ,

where we have used the orthogonality of the Hermite polynomials and the fact that H0 = 1.

6.2.17 LEMMA (Rodrigue’s formula). For all n ≥ 0,

Hn(x) = (−1)nex
2/2

(
d

dx

)n
e−x

2/2 . (6.2.33)
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Proof. We first prove a useful auxilary result. For each y ∈ R, the function fy(x) = exy−y
2/2 belongs to

L2(R,B, ν). Therefore it has a convergent expansion in terms of the Hermite polynomials:

exy−y
2/2 =

∞∑
n=0

βn(y)Hn(x) . (6.2.34)

for λ ∈ (0, 1), we compute

Sλfy(x) = e−y
2/2 1√

2π

∫
R
eλxy+

√
1−λ2uye−u

2/2du = fλy(x)
1√
2π

∫
R
e−(u−

√
1−λ2y)2/2du = fλy(x) .

From (6.2.34), and SλHn = λnH)n, we also have

Sλfy(x) =

∞∑
n=0

βn(y)λnHn(x) =

∞∑
n=0

βn(λy)Hn(x) .

Defining αn := βn(1), we then have that for all λ ∈ (0, 1),

exλ−λ
2/2 =

∞∑
n=0

αnλ
nHn(x) . (6.2.35)

Multiply both sides by Hm(x) and integrate against γ(x) to obtain, using Lemma 6.2.14,

γ ∗Hm(λ) = αmλ
mm! .

The using Kapetyn’s formula, we conclude αm = 1/m!, and hence

exλ−λ
2/2 =

∞∑
n=0

λn

n!
Hn(x) . (6.2.36)

This is the generating function for the Hermite polynomials. Multiplying through by e−x
2/2, we obtain

e−(x−λ)2/2 =

∞∑
n=0

λn

n!
Hn(x)e−x

2/2 .

Therefore, (
d

dx

)n
e−x

2/2 = (−1)n
(

d

dλ

)n
e−(x−λ)2/2

∣∣∣∣
λ=0

= Hn(x)e−x
2/2 .

6.2.18 LEMMA (Mehler’s formula). For all n ≥ 0,

1√
2π

∫
R
e−(ix−y)2/2(iy)ndy = Hn(x) . (6.2.37)

Proof.

1√
2π

∫
R
e−(ix−y)2/2(iy)ndy = ex

2/2 1√
2π

∫
R
(iy)neixye−y

2/2dy

= ex
2/2 1√

2π

∫
R
(iy)neixye−y

2/2dy

= ex
2/2

(
d

dx

)n(
1√
2π

∫
R
eixye−y

2/2dy

)
= ex

2/2

(
d

dx

)n
e−x

2/2 = (−1)nHn(x) ,

where we have used Rodrigue’s formula in the last line.
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6.2.19 LEMMA (Galbrun’s inequality). For all n ≥ 1, and all x ∈ R,

|hn(x)| ≤
√

2

π
ex

2/2 (6.2.38)

uniformly in n.

Proof. By Mehler’s formula (6.2.18),

|Hn(x)| ≤ ex
2/2

√
2π

∫
R
e−y

2/2|y|ndy =
ex

2/2

√
π

2n/2
∫ ∞

0

u(n−1)/2e−udu =
ex

2/2

√
π

2n/2Γ

(
n+ 1

2

)
.

Define αn :=
2n/2√
n!

Γ

(
n+ 1

2

)
. Then a simple calcluation shows that αn =

√
(n− 1)/nαn−2. Since

α1 =
√

2 and α2 =
√
π/2 < α1, it follws that αn ≤

√
2 for all n ∈ N, Recalling that Hn =

√
n!hn, the

inequality is proved.

6.2.20 Remark. A deeper inequality due to Hille and Cramér indepndently says that there is a constant

C (explicitly given) such that |hn(x)| ≤ Cex
2/4 uniformly in n and x. This follws from an analysis

of the Sturm-Liouville equation satsified by hn(x)e−x
2/4, and Hille actually proves the stronger result

|hn(x)| ≤ Cex
2/4n−1/12. However, Galbrun’s simpler inequality already tells us something of interest

here. The eigenfunction expansion of the operator Sλ gives Sλ =

∞∑
k=1

|hn〉〈hn| and Galbrun’s inequality

sats that the series
∞∑
n=1

λnhn(x)hn(y)

converges uniformly on compact subsets of R2, as well as in L2(R2,B, ν ⊗ ν).

6.2.3 The Mehler kernel

It turns out that the Mehler operator Sλ that was defined through (6.2.9) can be written in terms of a

Markov kernel:

6.2.21 THEOREM. For all λ ∈ [0, 1), and all f ∈P,

Sλf(x) =

∫
R
Kλ(x, z)f(z)γ(z)dz . (6.2.39)

where

Kλ(x, z) =
1√

1− λ2
exp

[
− λ2

2(1− λ2)

(
z2 + x2 − 2

λ
zx

)]
. (6.2.40)

Proof. We make a change of varialbles taking z to be the argunment of f in (6.2.9). Define z = λx +

√
1− λ2y so that

(
x

z

)
=

[
1 0

λ
√

1− λ2

](
x

y

)
. Computing the Jacobian of the transformation, we

find dxdy = (1− λ2)−1/2dxdz. Also,

x2 + y2 =
λ2

1− λ2

(
z2 + x2 − 2

λ
zx

)
+ x2 + z2 ,

Hence

γ(x)γ(y) = exp

[
− λ2

2(1− λ2)

(
z2 + x2 − 2

λ
zx

)]
γ(x)γ(z) .
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and for g, f ∈ P,

∫
R
g(x)Sλf(x)γ(x)dx =

∫
R

∫
R
g(x)Kλ(x, z)f(z)γ(x)γ(z)dzdx where Kλ(x, y) is given

by (6.2.40). Since the P is dense in H, this hold for all g ∈ H and this proves (6.2.39)

Note that Kλ(x, z)γ(z) =
1√
2π

1√
1− λ2

exp

[
− 1

2(1− λ2)
|z − λx|2

]
= γ1−λ2(z − λx). By (6.1.19) and

symmetry, ∫
R
Kλ(x, z)γ(z)dz =

∫
R
γ(x)Kλ(x, z)dx = 1 . (6.2.41)

This shows that Kλ(x, y) is a symmetric (and therefore doubly stochastic) Markov kernel on (R,B,dν).

Since Sλ is the operators associated to Kλ, Theorem 6.1.2 immediately yields:

6.2.22 LEMMA. For all p ∈ [1,∞], all continuous polynomaily bounded functions f , and all λ in(0, 1),

‖Sλf‖p ≤ ‖f‖p . (6.2.42)

Combining this with the density of P in Lp for p ∈ [1,∞), we have that for each λ ∈ (0, 1), Sλ

extends by continuity to a bounded linear operator of norm one on Lp. We denote the extension also by

Sλ. The Lp theory is further develooped in the exercises.

6.3 The Fourier Transform

6.3.1 The Hermite functions

The map U : f 7→ √γf is evidently a unitary transformation from L2(R,B, ν) to L2(R,B,dx). The image

under U of the Hermite polynomial basis {hn}n≥0 for L2(R,B, ν) is evidently an orthonormal basis for

L2(R,B,dx)

6.3.1 DEFINITION (Hermite functions). For integers n ≥ 0, define gn =
√
γhn. Then gn is the nth

Hermite function and {gn}n≥0 is the Hermite function basis of L2(R,B,dx).

6.3.2 LEMMA. For all n ≥ 0,

d

dx
gn(x) =

1

2

(√
ngn−1 −

√
n+ 1gn+1

)
(6.3.1)

and
x

2
gn(x) =

1

2

(√
ngn−1 +

√
n+ 1gn+1

)
(6.3.2)

Proof. We compute using (6.2.22) and (6.2.23):

d

dx
gn(x) =

√
γ(x)

d

dx
hn(x) +

(
d

dx

√
γ(x)

)
hn(x)

=
√
γ(x)
√
nhn−1(x)− x

2

√
γ(x)hn(x)

=
√
γ(x)
√
nhn−1(x)− 1

2

√
γ(x)

(√
nhn−1(x) +

√
n+ 1hn+1(x)

)
,

and this proves (6.3.1). Even more simply, (6.3.2) follows from (6.2.23).
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6.3.3 DEFINITION (Fourier Transform on L2(R,B,dx)). Define a unitary transformation F on

L2(R,B,dx) by and

Fgn = (−i)ngn (6.3.3)

for all n ≥ 0. This is the Fourier transform on L2(R,B,dx)

In what follows, we write
x

2
to denote the operator of multiplication by x/2. Then by the definition

of F and Lemma 6.3.2, for all n ≥ 0

x

2
Fgn = (−i)n 1

2

(√
ngn−1 +

√
n+ 1gn+1

)
=

1

2

(√
n(−i)iFgn−1 −

√
n+ 1(−i)iFgn+1

)
= −iF d

dx
gn .

In other words,

F∗ ◦ x
2
◦ Fgn =

1

i

d

dx
gn and F ◦ 1

i

d

dx
◦ F∗gn =

x

2
gn . (6.3.4)

This identity is the primary source of the utility of the Fourier transform; it diagonalizes differentiation

in the sense that it unitarily identifies differentiation with a multiplication operator. The formulae (6.3.4)

would be more useful as a pair of identities between operators. To reformulate them as such, we have to

take into account that neither multiplication by x/2 nor differentiation are defined on all of L2(R,B,dx).

Therefore, we introduce a Hilbert space on which they are defined.

6.3.4 DEFINITION. The Hilbert spaceH1 consists of the functions f ∈  L2(R,B,dx) having the Hermite

function expansion

f =

∞∑
n=0

αngn

such that
∑∞
n=0(n+ 1)|αn|2 <∞. For f, g in H1, the H1 inner product is defined by

〈f, g〉H1 =

∞∑
n=0

(n+ 1)αnβn ,

where αn = 〈gn, f〉L2 and βn = 〈gn, g〉L2 . We denote the norm on H1 by ‖ · ‖H1
. Observe that H1,

considered as a subspace of L2, is dense in L2.

Consider any finite linear combination f =
∑m
n=0 αngn for Hermite functions. Then

d

dx
f =

1

2

m∑
n=0

αn
(√
ngn−1 −

√
n+ 1gn+1

)

Now a simple computation shows that

∥∥∥∥ d

dx
f

∥∥∥∥
L2

≤ ‖f‖H1
. Likewise,

∥∥∥x
2
f
∥∥∥
L2
≤ ‖f‖H1

. Therefore, both

d

dx
and

x

2
belong to B(H1, L

2). Since {(n + 1)−1/2gn}n≥0 is an orthonormal basis for H1, F is unitary

on H1 as well as on L2. Therefore we have:

6.3.5 THEOREM. The operators
d

dx
and

x

2
in B(H1, L

2) are related through the Fourier transform F
by

F∗ ◦ x
2
◦ F =

1

i

d

dx
and F ◦ 1

i

d

dx
◦ F∗ =

x

2
. (6.3.5)
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The Fourier transform was originally introduced in a rather different way. We now explain the

connection with the original definition. Let D be the closed unit disk in C: D := {z ∈ C : |z| ≤ 1}. For

z ∈ D we define

Sz =

∞∑
n=0

zn|hn〉〈hn| . (6.3.6)

For z ∈ Do, the series in (6.3.6) converges in the operator norm, while for z = eiθ ∈ ∂D, the series

converges in the strong operator topology and Seiθ is unitary.

This family of operators can be transplanted from L2(R,B, ν) to L2(R,B,dx) using the unitary trans-

formation U : f 7→ √γf . For z ∈ D we define Tz = UMzU
∗, which is the same as

Tz =

∞∑
n=1

zn|gn〉〈gn| . (6.3.7)

As before, the series in (6.3.7) converges in the operator norm, while for z = eiθ ∈ ∂D, the series converges

in the strong operator topology and Teiθ is unitary. Now note that F = Ti.

6.3.6 LEMMA. The map z 7→ Tz is continuous from Do into B(L2) with the norm topology on the

range, and it is continuous from D into B(L2) with the strong operator topology on the range.

Proof. Consider z, w ∈ Do, Then for some r ∈ (0, 1), |z|, |w| ≤ r. Since ‖|gb〉〈gn|‖ = 1, Minkowski’s

inequality and the identity

zn − wn = (z − w)

n−1∑
m=0

zn−1−mwm (6.3.8)

gives us

‖Tz − Tw‖ ≤
∞∑
n=0

|zn − wn| ≤ |z − w|

( ∞∑
n=0

nrn

)
= |z − w| r

(1− r)2
.

This proves the norm continuity into B(L2).

Next, fix f ∈ L2, and for n ≥ 0, define αn = 〈gn, f〉L2 so that ‖f‖22 =
∑∞
n=0 |αn|2. Fix z ∈ D, which

we may as well assume to belong to ∂D. We must show that for all ε > 0, there exists δ > 0 such that for

all w ∈ D with |w − z| < δ, ‖Twf − Tzf‖2 < ε. Pick ε > 0, and then N such that
∑∞
n=N+1 |αn|2 < ε/4.

Then, using (6.3.8) once more in the last line

‖Twf − Tzf‖22 ≤
N∑
n=1

|zn − wn||αn|2 +

∞∑
n=N+1

|zn − wn||αn|2

≤ ‖f‖22
N∑
n=1

|zn − wn|+ 2

∞∑
n=N+1

|αn|2

≤ |z − w|‖f‖22
N∑
n=1

(n− 1) +
ε

2
.

Thus we may tale δ = ‖f‖22N(N − 1)ε/4.

For z = λ ∈ (0, 1), the operator Sz has the representation (6.2.40), in terms of the kernel Kλ(x, y)

defined there, and consequently, for any f, g ∈ L2(R,B,dx) and λ ∈ (0, 1),

〈f, Tλg〉L2(dx) =

∫
R

∫
R
f(x)
√
γ(x)Kλ(x, y)

√
γ(y)g(y)dxdy =

∫
R

∫
R
f(x)Mλ(x, y)g(y)dxdy
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where

Mλ(x, y) :=
1√
2π

1√
1− λ2

exp

[
− 1 + λ2

4(1− λ2)

(
y2 + x2

)
+

λ

1− λ2
yx

]
. (6.3.9)

The from (6.3.7) we obtain the identity

1√
2π

1√
1− λ2

exp

[
− 1 + λ2

4(1− λ2)

(
y2 + x2

)
+

λ

1− λ2
yx

]
=

∞∑
n=0

λngn(x)gn(y) . (6.3.10)

By Galbrun’s Inequality (6.2.19), |gn(x)gn(y)| is bounded uniformly in n ∈ N and x, y in any compact set

of the plane. (Bt the deeper Cramér-Hille inequality, which we have not proved but do not need, it is in

fact boundend informly in n ∈ N and x, y ∈ R2.) Therefore, z 7→
∑∞
n=0 z

ngn(x)gn(y) converges uniformly

on the set

{(z, x, y) : |z| < r ,
√
x2 + y2 < R }

for all r ∈ (0, 1) and all R ∈ (0,∞). In particular, both sides of (6.3.10) are equal and anlytic in λ for

λ ∈ (0, 1). Note that <(1− z2) > 0 for z ∈ D0, and hence
√

1− z2 is analytic on Do.) Therefore, we may

replace λ ∈ (0, 1) by z ∈ Do in (6.3.10) to define Mz(x, y), and then with this definition, for all f ∈ L2,

z ∈ D,

Tzf(x) =

∫
R
Mz(x, y)f(y)dxdy . (6.3.11)

By the previous lemma, T−if = limz→−i Tzf in the norm topology on L2, Hence if we let {zn}n∈N

be any sequence in Do with limn→∞ zn = −i, we have that

T−if(x) = lim
n→∞

∫
R
Mzn(x, y)f(y)dxdy

Since M−i(x, y) =
1

2
√
π
e−ixy/2, if we formally take the limit under the integral sign, we obtain

Ff(x) = Ttf(x) =
1

2
√
π

∫
R
e−ixy/2f(y)dy ,

If f ∈ L1 ∩ L2, there is nothing formal: We may take the limit n → ∞ two ways. Using the fact

that f ∈ L2, we have the L2 norm convergence of Tznf to Tif , and hence we have convergence almost

everywhere along a subsequence. Next, since f ∈ L1, and |Mz(x, y)| is uniformly bounded by a constant

for z in a neighborhood of i, we may apply the Lebesgue Dominated Convergence Theorem to conclude

the point-wise convergence

lim
z→−i

Tzf(x) = lim
z→−i

∫
R
Mzn(x, y)f(y)dxdy =

1

2
√
π

∫
R
e−ixy/2f(y)dy .

We have proved:

6.3.7 THEOREM. For all f ∈ L1(R,B,dx) ∩ L2(R,B,dx), the Fourier transform Ff of f is given by

Ff(x) =
1

2
√
π

∫
R
e−ixy/2f(y)dy (6.3.12)

There is a one-parameter family of unitary transformations on L2(R,B,dx) by composing F with a

unitary scale transformation: For λ0, and f ∈ L2(R,B,dx), define

δλf(x) =
√
λf(λx) . (6.3.13)
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Then δλ is unitary, and therefore so it δλF , and we have

δλFf(x) =

√
λ

2
√
π

∫
R
e−iλxy/2f(y)dy (6.3.14)

The choices λ = 2 and λ = 4π are traditional in various fields, and the resulting operators are also

known as the Fourier transform. The latter has many advantages; For f ∈ L2(R,B,dx), define f̂ by

f̂ := δ4πFf . Then for f ∈ L1(R,B,dx) ∩ L2(R,B,dx)

f̂(x) =

∫
R
e−i2πxyf(y)dy . (6.3.15)

6.3.8 Remark. We could have arrived directly at (6.3.15) had we used a different Gaussian density γt

to define our reference measure ν, and thus the Hermite polynomials. The choice t = 1 for the density

of ν makes the variance of ν equal to one, so that ν is what probabilists call the “normal distribution”

on R. This “normal” choice gives the “normal” formulas for the “normal” Hermite polynomials, though

of course other Hermite polynomials can be defined as the orthonormal sequence in L2(R,B, γt(x)dx)

that one obtains by applying the Gram-Schmidt algorithm to the sequence of non-negative powers of x.

Then one obtains identities analogous to those found in Theorem 6.2.13, which are the basis of the key

properties of the Fourier transform given in Theorem 6.3.5. Had we use γte
−x2/2tdx for t = 1

2π as our

reference measure; that is, e−π|x
2

dx, we would have arrived directly at (6.3.15) as the definition of the

Fourier transform.

Partly for the reasons explained above, it is useful to record the simple interaction of F with several

other one parameter families of unitary operations on L2(R,B,dx). Another is the unitary group of

translation τy, y ∈ R where τyf(x) = f(x− y). Another is the group of phase transformations φy given

φyf(x) = e−ixyf(x) . (6.3.16)

In the formulation of the following lemma, we will use the physics convention of writing k for the

variable that is the argument of Ff . In this context, k ranges over R and not N or Z.

6.3.9 LEMMA. For λ > 0, let δλ be given by (6.3.13). Then

δλ ◦ F = F ◦ δλ−1 . (6.3.17)

Moreover for all y ∈ R, let τy be the translation operator on L2(R,B,dx), τyf(x) = f(x − y), and let φy

be the phase transformation defined in (6.3.16). Then

F ◦ τy = φy/2 ◦ F . (6.3.18)

Proof. For f ∈ L1(R,B,dx) ∩ L2(R,B,dx), making the change of variables x = u/λ,

δλFf(x) =

√
λ

2
√
π

∫
R
e−iλkx/2f(y)dx = δλFf(k) =

√
λ

2
√
π

∫
R
e−iλk(u/λ)/2f(u/λ)

1

λ
du = Fδλ−1f(k) .

Likewise, making the change of variable u = x− y,

Fτyf(k) =
1

2
√
π

∫
R
e−ikx/2f(x− y)dx =

1

2
√
π

∫
R
e−ik(u+y)/2f(u)du = e−iky/2Ff(k) = φy/2Ff(k) .
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Another way to rephrase (6.3.18) is

F ◦ τy ◦ F ∗ = φy/2 , (6.3.19)

so that F “diagonalizes” translation, in the sense that it relates translation to a unitary “multiplication

operator” (multiplication by e−iky/2) as specified in (6.3.19).

6.3.10 THEOREM. For any function h ∈ L1 ∩ L∞ define

f̂(k) =

∫
R
e−i2πkxf(x)dx . (6.3.20)

Then for f, g ∈ L1 ∩ L∞,

f̂ ∗ g(k) = f̂(k)ĝ(k) . (6.3.21)

Proof. We compute

f̂ ∗ g(k) =

∫
R
e−i2πkx

(∫
R
f(x− y)g(y)dy

)
dx

=

∫
R

∫
R
e−i2πk(x−y)f(x− y)e−i2πkyg(y)dxdy = f̂(k)ĝ(k) .

Since γt(x)ei2πkx = 1√
2πt

exp(− 1
2t (x− 2πikt)2) exp(2π2k2t)

γ̂t(k) = exp(2π2k2t) . (6.3.22)

In particular, taking t = (2π)−1 so that γ1/2pi(x) = e−πx
2

,

γ̂1/2π(k) = γ1/2π(k) . (6.3.23)

That is, γ1/2π is a fixed point of the map f 7→ f̂ , as we have seen earlier.

For f ∈ L1 ∩ L2, recall that Ptf(x) = γt ∗ f ∗ x), where {Pt}t≥0 is the heat semigroup. Then by

Theorem 6.3.10,

P̂tf(k) = γ̂t(k)f̂(k) = exp(2π2k2t)f̂(k) .

Since L1 ∩ L2 is dense in L2, the formula P̂tf(k) = exp(2π2k2t)f̂(k) extends by continuity to all f ∈ L2.

Since f 7→ f̂ is unitary and Pt is contractive on L2, Ptf = 0 implies that P̂tf(k) = 0 for almost every k,

and then the identity above shows that f̂(k) = 0 for almost every k. By the unitarity of f 7→ f̂ , this means

that f = 0. This gives another proof of the infectivity of the heat semigroup operators on L2, however, it

relies on the unitarity of f 7→ f̂ , and in the approach to this taken her, we have relied on this infectivity

to prove the unitarity of f 7→ f̂ , but there are other approaches in which the order can be inverted.

6.3.2 Higher dimensions

So far, we have discussed the Fourier transform and convolution for functions on R. It is easy to extend

our results to functions on Rn. In this section, Lp(Rn) denotes Lp(Rn,B,dx).

We begin with the Fourier transform and n = 2. For integers n,m ≥ 0 define

gm ⊗ gm(x1, x2) = gm(x1)gn(x2) . (6.3.24)
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It is then evident that {gm ⊗ gm}m,n≥0 is an orthonormal basis of L2(R2).

For a function f ∈ L1(R2) ∩ L2(R2) define

f̂(k) =

∫
R2

e−i2πk·xf(x)dx , (6.3.25)

where k · x denotes the standard inner product in R2, so that k · x = k1x1 + k2x2 and

e−i2πk·x = e−i2πk1x1e−i2πk2x2 .

It follows that

̂gm ⊗ gn(k1.k2) =

(∫
R
e−i2πk1x1gm(x1)dx1

)(∫
R
e−i2πk2x2gn(x2)dx2

)
= ĝm(k1)ĝn(k2) = (−i)m+ngm ⊗ gn(k1.k2) .

Since {(−i)m+ngm ⊗ gm}m,n≥0 is also an orthonormal basis of L2(R2), the map f 7→ f̂ defined in (6.3.25)

is unitary on L2(Rn).

The same considerations extend in the obvious way to functions on Rn for arbitrary n ∈ N . For

f ∈ L1(Rn) ∩ L2(Rn), we define

f̂(k) =

∫
Rn
e−i2πk·xf(x)dx , (6.3.26)

and then f 7→ f̂ extends by continuity to a unitary transformation on L2(Rn). Even more simply,

|f̂(k)| ≤
∫

Rn
|f(x)|dx = ‖f‖1

so that f 7→ f̂ extends by continuity to a contraction from L1(Rn) to L∞(Rn). In summary, we have two

operator norm bounds for the map f 7→ f̂ : It extends by continuity to an element of B(L2(Rn), L2(Rn))

with operator norm 1, and it extends by continuity to an element of B(L1(Rn), L∞(Rn)) with operator

norm 1

Likewise, if f ∈ L1(Rn), f 6= 0, define ρ(x) = ‖f‖−1
1 |f(x)| so that ρ is a probability density on Rn and

K(x, y) := ρ(x − y) is a doubly stochastic Markov Kernel. It then follows directly from Theorem 6.1.2

that for all g ∈ L1(Rn) ∩ L∞(Rn), that if we define

f ∗ g(x) :=

∫
Rn
f(x− y)g(y)dy = ‖f‖1

∫
Rn
K(x, y)g(y)dy ,

then for all p ∈ [1,∞], then ‖f∗g‖p ≤ ‖f‖1‖g‖p. Even more simply if we assume that both f and g belong

to L1(Rn) ∩ L∞(Rn), and therefore to Lp(Rn) for all p ∈ [1,∞], H ”older’s inequality gives us, for each x,

and each p,

|f ∗ g(x)| ≤ ‖f‖p/(p−1)‖g‖p .

We may rephrase the last two inequalities as a pair of operator bounds. For g ∈ Lp(Rn) de-

fine an operator Tg on g ∈ L1(Rn) ∩ L∞(Rn) Tgf = f ∗ g, Then we have ‖Tgf‖p ≤ ‖g‖p‖f‖1 and

‖Tgf‖∞ ≤ ‖g‖p‖f‖p/(p−1). Therefore, Tg extends by continuity to an element of B(L1(Rn), Lp(Rn)) an

its operator norm in this space is no more that ‖g‖p. Likewise, Tg extends by continuity to an element of

B(Lp/(p−1)(Rn), L∞(Rn)) an its operator norm in this space is no more that ‖g‖p.
Thus for both the Fourier transform and for convolution we have operator norm bounds in

B(Lp(Rn), Lq(Rn)) for two specific pair of values of p and q. In the next section we shall see how to

“interpolate” between such pairs of inequalities producing a one parameter family of inequalities.
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6.3.3 The Riesz-Thorin Interpolation Theorem

6.3.11 THEOREM. Let (Ω,M, µ) be an arbitrary measure space, and for p ∈ [1,∞], let Lp denote

Lp(Ω,M, µ). For p1, p2 ∈ [1,∞], The T be a linear operator defined on Lp1 ∩ Lp2 . Suppose that for

q1, q2 ∈ [1,∞] there exists finite constants C1, C2 such that for all f ∈ Lp1 ∩ Lp2 ,

‖Tf‖q1 ≤ C1‖f‖p1 and ‖Tf‖q2 ≤ C1‖f‖p2 . (6.3.27)

Then for all λ ∈ [0, 1], T extends to a bounded linear transformation from Lp(λ) to Lq(λ) where

1

p(λ)
= (1− λ)

1

p1
+ λ

1

p2
and

1

q(λ)
= (1− λ)

1

q1
+ λ

1

q2
, (6.3.28)

and for all f ∈ Lp(λ),

‖Tf‖q(λ) ≤ C1−λ
1 Cλ2 ‖f‖p(λ) . (6.3.29)

This has a number of consequences; we give two of these in which the measure space is (Rn,B,dx)

before giving the proof.

6.3.12 THEOREM (Huassdoerff-Young-Titschmarsh). Define the Fourier transform f 7→ f̂ on

L1(Rn,B,dx) ∩ L2(Rn,B,dx) by

f̂(k) =

∫
Rn
e−i2πk·xf(x)dx . (6.3.30)

Then for all p ∈ [1, 2], f 7→ f̂ extends to a contraction from Lp(R,B,dx) to Lq(R,B,dx) where q = p/(p−1).

Proof. It is evident that |f̂(k)| ≤
∫
R

|f(x)|dx = ‖f‖1 so that ‖|f̂‖∞ ≤ ‖f‖1. By the unitarity of the

Fourier transform on L2, ‖f̂‖2 = ‖f‖2. Therefore (6.3.27) is valid with p1 = 1, q1 = ∞, C1 = 1, and

p2 = q2 = 1, C2 = 1.

For all p ∈ (1, 2) write

1

p
=

1

p(λ)
= (1− λ)1 + λ

1

2
= 1 +

λ

2
and hence λ = 2

(
1− 1

p

)
=

2

q
.

Then, with this value of λ, 1/q(λ) = (1 − λ)(1/∞) + λ(1/2) = 1/q. Since C1 = C2 = 1, (??) becomes

‖f̂‖q ≤ ‖f‖p.

6.3.13 THEOREM (Young’s Inequality for Convolution). For all f, g ∈ L1(R,B,dx)∩L∞(R,B,dx) and

all r, s, t ∈ [1,∞] such that
1

s
+

1

t
= 1 +

1

r
, (6.3.31)

‖f ∗ g‖r ≤ ‖f‖s‖g‖t . (6.3.32)

Proof. Fix g ∈ L1 ∩ L∞ and let T denote the operator on L1 ∩ L∞ defined by

Tf = g ∗ f .

Then for t ∈ (1,∞), the inequality ‖g ∗ f‖t ≤ ‖f‖1‖g‖t and be written as ‖Tf‖t ≤ ‖g‖p‖f‖1, while the

inequality ‖g ∗ f‖∞ ≤ ‖f‖t/(t−1)‖g‖t can be written as ‖Tf‖∞ ≤ ‖g‖t‖f‖t/(t−1. Therefore (6.3.27) is

valid with

p1 = 1 , q1 = t , C1 = ‖g‖p and p2 = t/(t− 1) , q2 =∞ , C2 = ‖g‖t .
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Note from (6.3.31) that s ≤ t/(t − 1) with equality if and only if r = ∞. Therefore, s ∈ [p1, p2].

Define λ ∈ [0, 1] so that

1

s
=

1

p(λ)
= (1− λ) + λ

t− 1

t
and hence 1− λ =

1

t

(
1

s
+

1

t
− 1

)
.

Then for this λ,
1

q(λ)
= (1− λ)

1

t
+ λ

1

∞
=

1

s
+

1

t
− 1 =

1

r
.

It follows from the Riesz-Thorin Theorem that T extends to map from Ls to Lr with norm ‖g‖t, and this

yields (6.3.32).

We now turn to the basic lemma upon which the Riesz-Thorin Theorem rests. For x ∈ Cn, p ∈ [1,∞],

let ‖x‖p denote the `p norm on Cn. Consider the bilinear form A(x, y) on Cn given by

A(x, y) =

n∑
j,k=1

xjaj,kyk .

For 1 ≤ p, q ≤ 1, define

C(1/p, 1/q) = sup {|A(x, y)| : ‖x‖p = ‖y‖q = 1} .

It will be convenient to write α =
1

p
and β =

1

q
. Notice then that 0 ≤ α, β ≤ 1.

6.3.14 LEMMA. [Riesz–Thorin Interpolation Lemma] The function (α, β) 7→ ln (C(α, β)) is convex on

[0, 1]× [0, 1].

6.3.15 Remark. Marcel Riesz proved this in 1927 for α+ β ≥ 1; i.e., in the upper right half of the unit

square. His method was a direct assault on the maximization problem using Lagrange multipliers. This

approach worked only in the restricted domain α + β ≥ 1, and he even conjectured that this wasn’t die

to his method, but that the result wasn’t true in general except in this case. About a decade later, his

student Thorin proved the full result by a completely different method. It is the lower–left half of the

square that is of most interest to us.

Proof. Fix any two pairs of numbers (α1, β1) and (α2, β2) in [0, 1] × [0, 1]. Let p1 = 1/α1, q1 = 1/β1,

p2 = 1/α2 and q2 = 1/β2 with the obvious meaning if any of the denominators vanish. Next, any x with

‖x‖p1 = 1 can be written as

(x1, x2, . . . , xn) = (eiφ1bα1
1 , eiφ2bα1

2 , . . . , eiφ1bα1
n ) ,

where each bj ≥ 0 and
∑n
j=1 bj = 1. Let Pn denote the set of all n–tuples (d1, d2, . . . , dn) of non–negative

numbers such that
∑n
j=1 dj = 1, so that we may express the condition on the finite sequence {bj} as

{bj} ∈ Pn. Similarly y with ‖y‖q1 = 1 can be written as

(y1, y2, . . . , yn) = (eiψ1cβ1

1 , eiψ2cβ1

2 , . . . , eiψ1cβ1
n ) ,

where {cj} ∈ Pn.
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Then we can rewrite the definition of C(α1, β1) as

C(α1, β1) = sup


n∑

j,k=1

aj,ke
i(ψk−φj)bα1

j cβ1

k : {bj}, {ck} ∈ Pn, {φj}, {ψk}

 .

It will be convenient to take the supremum in two parts, as follows:

C(α1, β1) = sup {C(α1, β1, {φj}, {ψk}) : {φj}, {ψk}}

where

C(α1, β1, {φj}, {ψk}) = sup


n∑

j,k=1

ãj,kb
α1
j cβ1

k | {bj}, {ck} ∈ Pn

 and ãj,k = aj,ke
i(ψk−φj) .

We can do the same for (α2) and (β2), and all we are changing is the exponents in the sum
n∑

j,k=1

ãj,kb
α
j c
β
k . In particular, we optimize over the same sets of sequences {bj}, {ck}, {φj} and {ψk}

in each case. Thorin’s idea is now to interpolate between (α1, β1) and (α2, β2) with a complex variable z

as follows: For all z belonging to the infinite strip given by

0 ≤ R(z) ≤ 1

define

f(z) =

∑n
j,k=1 ãj,kb

(1−z)α1+zα2

j c
(1−z)β1+zβ2

k

C(α1, β1)1−zC(α2, β2)z
.

Now for any positive number a, az = e(ln a)z is an analytic function on the entire complex plane, and

has no zeros. For this reason, f(z) is an analytic function everywhere on its domain 0 ≤ R(z) ≤ 1. Also,

on the left boundary of this domain; i.e., where R(z) = 0,

|f(z)| =

∣∣∣∑n
j,k=1 aj,ke

i(ψ̃k−φ̃j)bα1
j cβ1

k

∣∣∣
C(α1, β1)

where the φ̃j and ψ̃k include additional phases involving the imaginary part of z. By definition, the

numerator is no more than C(α1, β1), and hence we arrive at the conclusion that |f(z)| ≤ 1 for all z with

R(z) = 0. That is,

sup
y∈R
|f(iy)| ≤ 1 .

In the exact same way, we see that |f(z)| ≤ 1 for all z with R(z) = 1. That is,

sup
y∈R
|f(1 + iy)| ≤ 1 .

Now we are in a position to apply the maximum modulus principle of complex analysis to conclude

that |f(z)| is largest on the boundary of the strip 0 ≤ R(z) ≤ 1, and hence that |f(z)| ≤ 1 for all such z.

We will come back to the maximum modulus principle argument shortly to make the proof self

contained, but let us suppose for the moment that it has been established that |f(z)| ≤ 1 whenever
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0 ≤ R(z) ≤ 1. We are now done with the complex interpolation; take z = λ with 0 < λ < 1. Then

|f(λ)| ≤ 1 implies that∣∣∣∣∣∣
n∑

j,k=1

ãj,kb
(1−λ)α1+λα2

j c
(1−λ)β1+λβ2

k

∣∣∣∣∣∣ ≤ C(α1, β1)1−λC(α2, β2)λ .

Since this is true for each {bj}, {ck} ∈ Pn, and each {φj} and {ψk}, we can take the supremum to arrive

at

C((1− λ)α1 + λα2, (1− t)β1 + tβ2) ≤ C(α1, β1)1−λC(α2, β2)λ

and taking the natural logarithm, we obtain the stated convexity result.

We now return to the part of the argument involving the maximum modulus principle. First modify

f(z) by multiplying by ez
2/n−1/n. For z = x+ iy with 0 ≤ x ≤ 1, the real part of z2 is x2 − y2 ≤ 1, and

so for all z with 0 ≤ R(z) ≤ 1, |ez2/n−1/n| ≤ 1. In fact, the real part of z2 becomes strongly negative for

y large, and so g(z) = f(z)ez
2/n−1/n vanishes as z tends to infinity in 0 ≤ R(z) ≤ 1, and it is also clearly

analytic there. In particular, it is continuous, and so there is a point z0 in this domain so that

|g(z0)| ≥ |g(z)| (6.3.33)

for all z with 0 ≤ R(z) ≤ 1. We claim that a point z0 satisfying (6.3.33) lies on the boundary of the strip.

To see this, consider any point z0 satisfying 6.3.33). If it is not already on the boundary, appeal to the

Cauchy integral formula

g(z0) =
1

2πi

∫ 2π

0

g(z0 + reiφ)dφ

where r is the distance from z0 to the boundary; i.e., r = min{R(z), 1−R(z)}. Then

|g(z0)| ≤ 1

2π

∫ 2π

0

|g(z0 + reiφ)|dφ ≤ 1

2π

∫ 2π

0

|g(z0)|dφ = |g(z0)|

where in the first inequality we simply to absolute values, and in the second one we used (6.3.33) with

z = z0 + reiφ. The conclusion is that |g(z0 + reiφ)| = |g(z0)| for almost every φ, and then by continuity,

for all φ. For either φ = 0 or φ = π, z0 + reiφ lies on the boundary, and the claim is proved. Hence |g(z)|
is maximized on the boundary, and so

|g(z)| = |f(z)ez
2/n−1/n| ≤ 1

for all 0 ≤ R(z) ≤ 1. Taking the limit in which n tends to infinity, we obtain the desired result.

Proof of Theorem 6.3.11. Given any t with 0 < λ < 1, and any simple function f , we we first observe

that f ∈ Lp1 ∩ Lp2 , and hence Tf is defined. By the variational characterization of the Lp norms,

‖Tf‖q(t) = sup

{∣∣∣∣∫
Rd
gTfdµ

∣∣∣∣ : ‖g‖q(t)′ = 1

}
where 1/q(t)′ + 1/q(t) = 1.

By the density of simple functions, for any ε > 0, there is a simple function g with ‖g‖q(t)′ = 1 so that

‖Tf‖q(t) ≤
∣∣∣∣∫
Rd
gTfdµ

∣∣∣∣+ ε .
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Now by further partitioning the subsets on which the simple functions f and g take on their various

values, we may write them in the form

f(x) =

n∑
j=1

fj
µ(Aj)1/p(t)

1Aj (x) and g(x) =

n∑
k=1

gk
µ(Ak)1/q′(t)

1Ak(x)

with the same n and the same family of disjoint measurable sets Aj . Notice that with the way the

coefficients are defined,

‖f‖p(t) =

 n∑
j=1

|fj |p(t)
1/p(t)

and ‖g‖q′(t) =

(
n∑
k=1

|gk|q
′(t)

)1/q′(t)

Then

∫
Rd
gTfdµ =

n∑
j,k=1

aj,kfjgk where aj,k =

∫
Rd

1AkT1Ajdµ. This reduces the Corollary to the

Reisz–Thorin Lemma and, since ε > 0 is arbitrary, the theorem is proved.



Chapter 7

The Reisz-Markoff Theorem and

Related Topics

7.1 Locally compact Hausdorff spaces

7.1.1 DEFINITION. A topological space (X,U) is locally compact in case every point of X has a

neighborhood with compact closure.

When (X,U) is locally compact, every neighborhood U of x contain another neighborhood of x that

has compact closure: Let V be any neighborhood of x that has compact closure, and then V ∩U ⊂ U and

V ∩ U ⊂ V which is compact.

For example, Rn is compact since for each x, B1(x) is compact. Also, it is evident that any compact

space is locally compact. However, an infinite dimensional Hilbert space with its norm topology is not

locally compact: As we have seen, the closed unit ball – and thus any closed ball – in such a space fails

to be compact, and every closed neighborhood must contain a closed ball.

In a locally compact Hausdorff space, one can separate compact sets K and points y ∈ Kc as follows:

For each x ∈ K, let Vx be a neighborhood of x with compact closure, and let Ux be a neighborhood of y

such that Vx ∩Ux = ∅, which is possible since X is Hausdorff. Then {Vx : x ∈ K} is an open cover of K

so that there exist {x1, . . . , xn} ⊂ K such that K ⊂ ∪nj=1Vxj =: V . let U = ∪nj=1Uxj . Since V ⊂ ∪nj=1Vxj

which is compact, V has compact closure, and since y /∈ Vxj for any j, y /∈ V . In summary:

7.1.2 LEMMA. Let (X,U) be a locally compact Hausdorff space. Suppose K ⊂ X is compact and y /∈ K.

Then there exists disjoint open sets V and U such that K ⊂ V , y ∈ U , and V is compact.

The slightly more elaborate result in the next lemma is fundamental.

7.1.3 LEMMA. Let (X,U) be a locally compact Hausdorff space. Suppose K ⊂ U ⊂ X with K compact

and U open. Then there exists an open set V with compact closure such that

K ⊂ V ⊂ V ⊂ U . (7.1.1)

c© 2017 by the author.
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Proof of Lemma 7.1.3. If y ∈ U c, then y ∈ Kc, and using Lemma 7.1.2 we may choose for each y ∈ U c

disjoint open sets Vy and Wy such that K ⊂ Vy, y ∈Wy and Vy is compact. Since y /∈ Vy,⋂
y∈Uc

U c ∩ Vy = ∅ .

and each set in the intersection is compact. Therefore there exist {y1, . . . , yn} ⊂ U c such that⋂
j=1,...,n

U c ∩ Vvj = ∅ .

Define V = ∩nj=1Vyj which is open and contains K. Since V ⊂ ∩nj=1Vyj , which is compact and disjoint

from U c, V is compact and V ∩ U c = ∅, which is the same as V ⊂ U .

The main feature of locally compact Hausdorff spaces that makes it possible to develop a rich theory

linking topology and integration for them is that locally compact Hausdorff spaces are rich in continuous

functions in the sense that we now explain. We shall write

K ≺ f

to mean that K is a compact subset of X, and that f is a continuous and compactly supported function

on X with values in [0, 1] and with f(x) = 1 for all x ∈ K.

We shall write

f ≺ U

to mean that U is a compact subset of X, and that f is a continuous and compactly supported function

on X with values in [0, 1] and that the support of f is contained in U .

7.1.4 THEOREM (Urysohn’s Lemma). Let (X,U) be a locally compact Hausdorff space. Suppose K ⊂
U ⊂ X with K compact and U open. Then there exists a continuous function f such that

K ≺ f ≺ U . (7.1.2)

Proof. First, pick an open G with compact closure such that K ⊂ G ⊂ G ⊂ U , which we may do by

Lemma 7.1.3. In the next step we construct a sequence of open sets {Vs} indexed by the dyadic rational

numbers s in (0, 1) such that for each t > s,

K ⊂ Vt ⊂ Vt ⊂ Vs ⊂ G .

We proceed inductively. By what we have shown in the first step, there exists an open set V1/2 such

that

K ⊂ V1/2 ⊂ V1/2 ⊂ G .

For the same reason, there exist open sets V1/4 and V3/4 such that

K ⊂ V3/4 ⊂ V3/4 ⊂ V1/2 and V1/2 ⊂ V1/4 ⊂ V1/4 ⊂ G .

Now an obvious induction argument provides the construction.
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Having constructed our sequence {Vs}, s ranging over the dyadic rationals in (0, 1), we are ready to

define f : First, set V0 := X. Next, for x ∈ X, define

f(x) = sup{s : x ∈ Vs} .

If x ∈ K, then x ∈ Vs for all s, and hence f(x) = 1, and if x ∈ Gc, then f(x) = 0. Hence the support

of f is contained in G, which is compact. Finally, we claim that f is continuous. It suffices to show that

for all λ, f−1((λ,∞)) is open and that and f−1([λ,∞)) is closed.

First, we claim that

f−1((λ,∞)) =
⋃
s>λ

Vs ,

which is open. To see this, note that if f(x) > λ then for some s > λ, x ∈ Vs, and so x belongs to the

union on the right. On the other hand, if x belongs to the union on the right, then x ∈ Vs for some s > λ,

and then f(x) > λ

Second, we claim that

f−1([λ,∞)) =
⋂
s<λ

Vs ,

To see this, note that if f(x) ≥ λ, then for all s < λ, x ∈ Vs, and hence x ∈ Vs, and so x belongs to the

intersection on the right. On the other hand, if x belongs to the intersection on the right, then for all

r < λ, there is an s > r so that x ∈ Vs. Since Vs ⊂ Vr, x ∈ Vr and f(x) ≥ r. Since r < λ is arbitrary,

f(x) ≥ λ.

7.1.5 THEOREM (Continuous partitions of unity). Let (X,U) be a locally compact Hausdorff space.

Let K be a compact subset of X, and let {U1, . . . , Un} be a finite open cover of K. Then there exist

functions gj, j = 1, . . . , n such that gj ≺ Uj for each j and such that K ≺
∑n
j=1 gj.

Proof. Each x ∈ K belongs to some Uj , and applying Lemma 7.1.3 to {x} ⊂ Uj , we can choose an open

set Wx with compact closure such that x ∈ Wx ⊂ Wx ⊂ Uj . Since K is compact, we may cover K by

finitely many such sets {Wx1 , . . . ,Wxm}. Let C` be the union of those Wxk that were constructed choosing

Wx ⊂ U`. Then C` is compact, and C` ⊂ U`, and K ⊂ ∪n`=1C`.

By Urysohn’s Lemma, there exists f` such that C` ≺ f` ≺ U`. How consider the function

h := 1−
n∏
j=1

(1− fj) .

Clearly, h is continuous and 0 ≤ h ≤ 1. If x ∈ K, x ∈ Cj for some j, and then fj(x) = 1 so that h(x) = 1.

We next claim that

h = f1 +

n−1∑
j=1

fj

j−1∏
k=1

(1− fk) .

To see this note that

1−
n∏
j=1

(1− fj) = f1 + (1− f1)−
n∏
j=1

(1− fj) = f1 + (1− f1)

1−
n∏
j=2

(1− fj)

 ,

and then apply the obvious induction argument.
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Finally, we define

g1 = f1 and gj = fj

j−1∏
k=1

(1− fk) for j = 1, . . . , n− 1 .

Thus, h =
∑n
j=1 gj and gj ≺ Uj for each j.

7.1.1 Some spaces of continuous functions

Given a topological space (X,U), there are three natural normed vector spaces of continuous functions:

7.1.6 DEFINITION (Spaces of continuous functions). Let (X,U) be a topological space. We define:

(i) Cc(X) is the normed vector space of continuous, compactly supported functions f on X with values in

C on which the norm, ‖ · ‖∞, is given by ‖f‖∞ = sup{ |f(x)| : x ∈ X }.

(ii) C0(X) is the normed vector space of continuous functions f on X with values in C such that for each

ε > 0, there exists a compact set Kε,f such that |f(x)| < ε for all x outside of Kε,f . The norm is once

again ‖ · ‖∞, given by ‖f‖∞ = sup{ |f(x)| : x ∈ X }.

(iii) Cb(X) is the normed vector space of continuous functions f on X with values in C such that ‖f‖∞ =

sup{ |f(x)| : x ∈ X } <∞. The norm is once again ‖ · ‖∞.

When X is not compact, Cc(X) is not complete, but if (X,U) is a locally compact Hausdorff space,

then it is dense in C0(X) , and both C0(X) and Cb(X) are Banach spaces.

7.1.7 THEOREM. C0(X) equipped with the sup norm is a Banach space. If X is a locally compact

Hausdorff space, then the subspace Cc(X) is dense.

Proof. If {fn} is a Cauchy sequence in C0(X), then {fn(x)} is a Cauchy sequence in C. Hence the limit

limn→∞ fn(x) exists for each x, and we define a function f by

f(x) = lim
n→∞

fn(x) .

Given the uniform convergence, it is easy to check, using an ε/3 argument, that f ∈ C0(X) so that C0(X)

is complete.

To see that Cc(X) is dense, pick f ∈ C0(X) and ε > 0. Let Kε be a compact set such that |f(x)| ≤ ε

for all x /∈ Kε. Because X is locally compact, it is possible to find an open set U containing Kε such that

U has compact closure. Then by Urysohn’s Lemma, there exists a continuous function g with K ≺ g ≺ U .

Then fg = f on K and and |fg − f | = |f ||g − 1| ≤ |f | everywhere, so that |fg − f | ≤ ε on Kc
ε . In

particular, ‖fg − f‖∞ ≤ ε, and fg ∈ Cc(X).

7.2 The Riesz-Markoff Theorem

7.2.1 Radon measures

Radon measures, are, roughly speaking, the class of Borel measures on a locally compact Hausdorff space

for which the measure theory and the topology are “nicely compatible”.
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7.2.1 DEFINITION (Inner and outer regularity). Let (X,U) be a topological space. A Borel measure

µ on X is outer regular in case for each Borel set E

µ(E) = inf{ µ(U) : E ⊂ U , U open } . (7.2.1)

A Borel measure µ is inner regular in case for each Borel set E

µ(E) = sup{ µ(K) : K ⊂ E , K compact } . (7.2.2)

A Borel measure µ is inner regular for open sets in case (7.2.2) holds for all open E. A Borel measure is

regular if it is both inner and outer regular.

7.2.2 DEFINITION (Radon measure). A Radon measure on a topological space (X,U) is a positive

Borel measure µ on X such that µ(K) < ∞ for all compact sets K ⊂ X that is outer regular and inner

regular for open sets.

The next results demonstrate the compatibility of the topology and the measure theory for Radon

measures.

7.2.3 THEOREM. Let (X,U) be a locally compact Hausdorff space, and let µ be a Radon measure on

X. Then Cc(X) is dense in Lp(X,B, µ) for all p ∈ [1,∞).

Proof. Since L1 ∩ L∞ is dense in Lp for all p ∈ [1,∞), it suffices to deal with p = 1. We know that

integrable simple functions are dense in L1(µ). Therefore, it suffices to show that whenever E is a Borel

set with µ(E) <∞, for all ε > 0, there exists f ∈ Cc(X) such that∫
X

|f − 1E |dµ ≤ ε .

Since µ is outer regular, there exists U open with E ⊂ U such that µ(U) ≤ µ(E) + ε. Since µ is inner

regular for open sets, there is a compact set K ⊂ U such that µ(K) ≥ µ(U)− ε/.
By Urysohn’s Lemma, there exists f ∈ Cc(X) such that K ≺ f ≺ U . But then |f − 1U | ≤ 1U∩Kc , and

so

‖f − 1E‖1 ≤ ‖f − 1U‖1 + ‖1U − 1E‖1 ≤ µ(U\E) + µ(U ∩Kc) ≤ 2ε .

7.2.4 THEOREM. Let (X,U) be a locally compact Hausdorff space. Let µ and ν be a Radon measures

on X such that ∫
X

fdµ =

∫
X

fdν

for all f ∈ Cc(X). Then µ = ν.

Proof. Let U be open, and let f ≺ U . For all compact K ⊂ U , Urysohn’s lemma provides g with

K ≺ g ≺ U , and hence

µ(K) ≤
∫
X

gdµ =

∫
X

gdν = ν(U) .

By the inner regularity of µ on open sets, µ(U) = sup{µ(K) : K ⊂ U,K compact}. Hence µ(U) ≤ ν(U)

By symmetry, ν(U) ≤ µ(U) so that µ(U) = ν(U) for all open U , and then by the outer regularity of µ

and ν, µ(E) = ν(E) for all Borel sets E.
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7.2.5 THEOREM. Let (X,U) be a locally compact Hausdorff space. Every σ-finite Radon measure µ

on X is regular.

Proof. Let E be a Borel set with µ(E) < ∞. Pick ε > 0. By the outer regularity of µ, there is an open

set U such that E ⊂ U and µ(U) ≤ µ(E) + ε. For the same reason, there is an open set V such that

U\E ⊂ V and µ(V ) ≤ µ(U\E) + ε ≤ 2ε.

By the inner regularity of µ for open sets, there is a compact set C ⊂ U such that µ(U) ≤ µ(C) + ε.

Define K := C ∩ V c which is compact. By construction, every point x ∈ U that is not in E lies in V ,

so that C ∩ V c ⊂ E. Therefore,

µ(K) ≥ µ(C)− µ(V ) ≥ µ(U)− 2ε .

Hence µ(K) ≤ µ(E)− 2ε, and since ε > 0 is arbitrary, µ(E) = sup{ µ(K) : K ⊂ E , K compact }.
Finally, if µ(E) = ∞, there is an increasing sequence of sets En with µ(En) < ∞ whose union is E

and such that limn→∞ µ(En) = ∞. By what was proved above, within each En there exists a compact

Kn with µ(Kn) ≥ µ(En)− 1. Each Kn is contained in E and limn→∞ µ(Kn) =∞

7.2.2 The Riesz-Markov Theorem for locally compact Hausdorff spaces

Throughout this section, let (X,U) be a locally compact Hausdorff space. The spaces Cc(X), C0(X) and

Cb(X) are more than topological spaces: They contain a distinguished cone of non-negative elements: We

say that a function f on X is non-negative in case for each x, f(x) ∈ R, and f(x) ≥ 0. In this case we

write f ≥ 0.

Let L be a linear functional on Cc(X). We say that L is a positive linear functional on Cc(X) in case

f ≥ 0 ⇒ L(f) ≥ 0 .

Evidently. if f is real, L(f) is real, and |L(f)| ≤ L(|f |). If f = g + ih where g and h are real, |L(f)| =

|L(g) + iL(h)| ≤ L(|f |).
There is a close connection between the topology on Cc(X) and the partial order structure on Cc(X)

induced by its cone of positive elements.

7.2.6 THEOREM. Let L be a positive linear functional on Cc(X). Then for each compact K ⊂ X, there

exists a finite constant CK such that

|f | ≺ K ⇒ |L(f)| ≤ CK‖f‖∞ .

Proof. The uniqueness is immediate from Theorem 7.2.4, and we turn to existence. By Lemma 7.1.3,

there exists an open set U with compact closure U such that K ⊂ U ⊂ U , and then by Urysohn’s Lemma,

there exists a continuous function ϕ on X such that K ≺ ϕ ≺ U .

Then evidently ‖f‖∞ϕ− |f | ≥ 0, and hence L(‖f‖∞ϕ− |f |) ≥ 0. Thus,

|L(f)| ≤ L(|f |) ≤ L(‖f‖∞ϕ) = L(ϕ)‖f‖∞ .

Thus,

sup{|L(f)| : |f | ≺ K , ‖f‖∞ ≤ 1 } ≤ L(ϕ)‖f‖∞ .

We may take CK = L(f), or, better yet, CK = inf{L(f) : K ≺ f }.
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To construct an example of a positive linear functional on Cc(X), let µ be a Borel measure on X

that is finite on every compact set K ⊂ X. If f ∈ Cc(X), let K denote the compact support of f . Then

0 ≤ |f | ≤ ‖f‖∞1K , and since µ(K) <∞, f is integrable. Thus, we may define

Lµ(f) =

∫
X

fdµ ,

which is therefore a linear functional on Cc(X), and evidently it is positive.

The Reisz-Markov Theorem asserts that every example is of this type. Moreover, we shall show that

one consequence of the Reisz-Markov Theorem is that every Borel measure on X such that µ(K) <∞ for

all compact K automatically has certain regularity properties:

7.2.7 THEOREM (Riesz-Markov Theorem). Let L be any positive linear functional on Cc(X). Then

there exists a unique Radon measure µ such that

L(f) =

∫
X

fdµ for all f ∈ Cc(X) . (7.2.3)

Moreover,

µ(U) = sup{ L(f) : f ≺ U , f ∈ Cc(X) } (7.2.4)

for all open sets U , and

µ(K) = inf{ L(f) : K ≺ f , f ∈ Cc(X) } (7.2.5)

for all compact sets K.

Proof. Step 1: Use L to construct an outer measure µ∗. We define a set function µ∗ on open subsets of

X by

µ∗(U) = sup{ L(f) : f ≺ U , f ∈ Cc(X) }

for open sets U , and then on arbitrary subsets E of X by

µ∗(E) = inf{ µ∗(U) : E ⊂ U , U open } .

It is clear that µ∗(∅) = 0, and that if A ⊂ B, then µ∗(A) ≤ µ∗(B). Therefore, to show that µ∗ is an

outer measure, we must show that for any sequence {En}n∈N of subsets of X,

µ∗

( ∞⋃
n=1

En

)
≤
∞∑
n=1

µ∗(En) .

Let E denote ∪∞n=1En. It suffices to consider the case in which µ∗(En) <∞ for all n.

Pick any ε > 0. Then by construction, there exists an open set Un with En ⊂ Un, and µ∗(Un) ≤
µ∗(En) + 2−nε. But then

E ⊂ U :=

∞⋃
n=1

Un and

∞∑
n=1

µ∗(Un) ≤
∞∑
n=1

µ∗(En) + ε .

It therefore suffices to prove that

µ∗ (U) ≤
∞∑
n=1

µ∗(Un) . (7.2.6)
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To do this, consider any f ∈ Cc such that f ≺ U . Let K denote the support of f . Then {Un}n∈N is

an open cover of K, and so there exists a finite sub cover, which we may take to be {U1, . . . , UN}.
Let {h1, . . . , hN} be a partition of unity on K, subordinate to the open cover {U1, . . . , UN}. Then

f =

N∑
n=1

fhn and fhn ≺ Un n = 1, . . . , N . It follows that

L(f) =

N∑
n=1

L(fhn) ≤
N∑
n=1

µ∗(Un) ≤
∞∑
n=1

µ∗(Un) .

Since, f ∈ Cc such that f ≺ U is arbitrary, we obtain (7.2.6).

Step 2: Caratheodory σ-algebra contains all open sets, and hence all Borel sets.

Let U be open, and let E ⊂ X be arbitrary. We must show that

µ∗(E) ≥ µ∗(E ∩ U) + µ∗(E ∩ U c) . (7.2.7)

Since µ∗(E) is the infimum of µ∗(V ), V open with E ⊂ V , it suffices to prove (7.2.7) when E = V ,

where V is open. We may also suppose that µ∗(V ) <∞. Note that U ∩ V is open. Hence for any ε > 0,

there is an f ≺ V ∩ U so that L(f) ≥ µ∗(V ∩ U) − ε. Let K denote the support of f . Since K ⊂ U ,

U c ⊂ Kc, and so V ∩ U c ⊂ V ∩Kc, which is open. Choose g ≺ V ∩Kc so that L(g) ≥ µ∗(V ∩Kc) − ε.
Then f +g has compact support contained in V and since the supports of f and g are disjoint, f +g ≺ V .

Therefore,

µ∗(V ) ≥ L(f + g) = L(f) + L(g) ≥ µ∗(V ∩ U) + µ∗(V ∩ U c)− 2ε .

At this point, we know that the Caratheodory σ-algebra contains the Borel σ-algebra B(X), and that

the restriction of µ∗ to B(X) is countably additive. We define µ to be this restriction.

Step 3: Compact sets have finite measure

Let U be any open set containing K such that U has compact closure. Such sets exist by Lemma 7.1.3.

By Urysohn’s Lemma, there exists an f ∈ Cc(X) such that U ≺ f . Thus, if g ≺ U , g ≤ f , and so

L(g) ≤ L(f), and hence µ(U) ≤ L(f) since g ≺ U is arbitrary. Therefore, µ(K) ≤ µ(U) <∞.

Step 4: µ is inner regular for open sets

Let K be compact. We claim that for K compact,

µ(K) = inf{L(f) : K ≺ f } (7.2.8)

Fix ε > 0. Then there exists an open set U so that K ⊂ U and µ(K) ≥ µ(U)− ε. By Urysohn’s Lemma,

there exists a function f with K ≺ f ≺ U . Then L(f) ≤ µ(U) ≤ µ(K) + ε. Since ε > 0 is arbitrary,

µ(K) ≥ inf{L(f) : K ≺ f } .

Next, suppose that K ≺ f . Then for any 0 < ε < 1, Let Uε = {x : f(x) > 1 = ε}. Then Uε is open

and has compact support, and K ⊂ Uε.
There exists a function g such that g ≺ Uε and L(g) ≥ µ(Uε) − ε. Note that f ≥ fg ≥ (1 − ε)g.

Therefore

L(f) ≥ (1− ε)L(g) ≥ (1− ε)[µ(Uε)− ε] ≥ (1− ε)[µ(K)− ε] .
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Since 0 < ε < 1 is arbitrary, µ(K) ≤ L(f) whenever K ≺ f . This completes the proof of (7.2.8).

Now let V be open. Suppose µ(V ) < ∞. Then for every ε > 0, there exists a function f ≺ V such

that µ(V )− ε ≤ L(f). Let K be the support of f . By (7.2.8), there is a function g with K ≺ g such that

L(g) ≤ µ(K) + ε. But since f ≤ 1K ≤ g,

µ(V )− ε ≤ L(f) ≤ L(g) ≤ µ(K) + ε .

The same sort of reasoning shows that if µ(V ) is infinite, we can find compact sets in V of arbitrarily

large measure.

Step 5: For f ∈ Cc(X),
∫
X
fdµ = L(F ).

It suffices to treat the case in which f takes values in [0, 1]. For each t ∈ (0, 1], define Kt = {x :

f(x) ≥ t}. Since f ∈ Cc(X), each Kt is compact Let K0 denote the support of f .

For any 0 ≤ a < b ≤ 1, define f[a,b] = (f − a)+ ∧ b. Then for all 0 < t < a,

Kb ≺
1

b− a
f[a,b] ≤ 1Ka .

Therefore, for all open U with Ka ⊂ U , µ(Kb) ≤
1

b− a
L(f[a,b])µ(U). By outer regularity,

µ(Kb) ≤
1

b− a
L(f[a,b]) ≤ µ(Ka) .

Then for any n ∈ N, f =

n∑
j=1

f[(j−1)/n,j/n], and so L(f) =

n∑
j=1

L
(
f[(j−1)/n,j/n]

)
. Therefore,

n∑
j=1

1

n
µ(Kj/n) ≤ L(f) ≤

n∑
j=1

1

n
µ(K(j−1)/n) .

Since limn→∞

(∑n
j=1

1
nµ(Kj/n)

)
= limn→∞

(∑n
j=1

1
nµ(Kj/n)

)
=
∫
X
fdµ, the proof is complete.

7.2.8 DEFINITION (Radon space). A topological space (X,U) is a Radon space in case every Borel

measure on X that is finite on all compact sets is regular, and hence a Radon measure.

7.2.9 DEFINITION (Polish space). A topological space (X,U) is a Polish space in case it is separable

and homeomorphic to a metric space.

The term “Polish space” recognizes the work of a group of Polish mathematicians including Kura-

towski, Sierpinski and Tarski, who proved a number results pertaining to the concept. Note that a Polish

space is necessarily Hausdorff. Therefore, a locally compact Polish space is, in particular, a locally compact

Hausdorff space. For example, Rn is a locally compact Polish space, as is any Riemannain manifold.

7.2.10 LEMMA. Let (X,U) be a locally compact Polish space. Then every open set U in X is the

countable union of compact sets in X. In particular, X is the countable union of compact sets.

Proof. Let ρ be a metric that induces the topology on (X,U), and let B(r, x) denote the open ball of

radius r > 0 about x ∈ X. Since (X,U) is locally compact, for each x ∈ X, there exists some r > 0

B(r, x) is compact . (It is not excluded that B(r, x) is compact for all r > 0; this is the case in Rn, for
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example.) Define rx = sup{r > 0 : B(r, x) is compact}. If 0 < δ < rx and ρ(y, x) < δ, then for all r with

δ < r < rx, B(r − δ, y) ⊂ B(r, x) and B(r, x) is compact. Hence ry ≥ rx − δ.
Likewise, given the open set U and x ∈ U define dx = sup{s > 0 : B(s, x) ⊂ U}. That is, dx is the

distance from x to U c. Just as above, one shows that if ρ(y, x) < δ < dx, then dy ≥ dx − δ.
Let {xn}n∈N be a dense sequence in the open set U . For n ∈ N, define

Kn := B(min{dxn + rxn}/2, xn) .

Then Kn is compact and contained in U . For any x ∈ U , there is some n such that ρ(xn, x) <
1
4 min{dx, rx}. Then rxn ≥ 3

4rx and dxn ≥ 3
4dx, so that min{dxn + rxn}/2 > ρ(xn, x). It follows that

x ∈ Kn, Since x ∈ U is arbitrary, U = ∪∞n=1Kn.

7.2.11 THEOREM. Let (X,U) be a locally compact Polish space. Then (X,U) is a Radon space.

Proof. Let µ be any Borel measure on X that is finite on every compact set. Then each f ∈ Cc(X) is

integrable with respect to µ, and hence f 7→
∫
X
fdµ =: L(f) is a well-defined positive linear functional

on Cc(X). By the Riesz-Markov Theorem, there exists a Radon measure ν such that for all f ∈ Cc(X),∫
X

fdµ =

∫
X

fdν . (7.2.9)

Since by Lemma 7.2.10, (X,B, ν) is σ-finite, Theorem 7.2.5 then says that ν is regular. We next show

that µ and ν agree on all open sets U .

Let U be open and write U = ∪∞n=1Kn where Kn is compact, which is possible by Lemma 7.2.10.

By Uryson’s lemma, for each n ∈ N there exists fn ∈ Cc(X) such that ∪nj=1Kn ≺ fn ≺ U , Then define

gn := max{f1, . . . , fn}. Then gn ↑ 1U .

We have seen that there is a monotone increasing sequence {gn}n∈N with gn ↑ 1U . By the Lebesgue

Monotone Convergence Theorem and (7.2.9),

µ(U) = lim
n→∞

∫
X

gndµ = lim
n→∞

∫
X

gndν = ν(U) .

Hence µ and ν agree on all open sets.

Now let K be compact. By Lemma 7.1.3, there is an open set V such that K ⊂ V and V is compact.

It follows that ν(V ) = µ(V ) <∞. Then since K = V \(V \K), and since V and V \K are both open

µ(K) = µ(V )− µ(V \K) = ν(V )− ν(V \K) = ν(K) .

Hence µ and ν agree on all compact sets. Let E be any Borel set. Since ν is regular,

ν(E) = sup{ν(K) : K ⊂ E ,K compact } = sup{µ(K) : K ⊂ E ,K compact } ≤ µ(E) .

Hence if ν(E) is infinite, so is µ(E). Suppose that ν(E) <∞, and pick ε > 0. By the regularity of ν, there

exist K compact and U open such that K ⊂ E ⊂ U and ν(U) − ν(K) < ε. Then because µ(K) = ν(K)

and µ(U) = ν(U), both µ(E) and ν(E) lie in the interval [ν(K), ν(K) + ε], and hence |µ(E)− ν(E)| ≤ ε.
Since ε > 0, µ(E) = ν(E). Hence µ and ν agree on all Borel sets.
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7.2.3 The Hahn-Saks Theorem

Throughout this section, (X,U) is a locally compact Hausdorff space, Cc(X) denotes the real normed space

of continuous compactly supported real valued functions on X, and C0(X) denotes the real Banach space

consisting of all uniform limits of functions in Cc(X).

The real vector spaces Cc(X) and C0(X) are ordered vector spaces: We say f ≥ g in case f(x)−g(x) ≥ 0

for all x. Let C+
c (X) and C+

0 (X) denote the sets of point-wise non-negative functions in Cc(X) and C0(X)

respectively. Then f ≥ g in Cc(X) if and only if f − g ∈ C+
c (X), and likewise for the order in C0(X).

Our goal is to concretely identify the elements of the dual space (C0(X))
∗

in terms of measures on

X. An element of (C0(X))
∗

is positive in case L(f) ≥ 0 wherever f is a non-negative function in C0(X).

Restricting such a functional L to Cc(X), yields a positive linear functional on Cc(X), and then by the

Riesz-Markoff Theorem, there is a Radon measure µL on X and such that

L(f) =

∫
X

fdµL (7.2.10)

for all f ∈ Cc(X).

7.2.12 LEMMA. Let L be a positive linear functional on C0(X), and let µL be the Radon measure on

X such that (7.2.10) is valid for all f ∈ Cc(X). Then µL(X) ≤ ‖L‖, and hence (7.2.10) extends by

continuity to all of C0(X).

Proof. Since µL is inner regular on open sets, there exists an increasing sequence {Kn}n∈N such that

µL(Kn) ↑ µL(X). By Urysohn’s Lemma, for each n there exists fn ∈ Vc(X) such that Kn ≺ fn. Then

µL(Kn) ≤
∫
X

fndµL = L(fn) ≤ ‖L‖.

Suppose that L ∈ (C0(X))
∗

can be written as the difference of two positive linear functionals,

L = L1 − L2 . (7.2.11)

Then by Lemma 7.2.12, there are finite Radon measures µ1 and µ2 such that for all f ∈ C0(X),

L(f) =

∫
X

fdµ1 −
∫
X

fdµ2 . (7.2.12)

Define ν = µ1 + µ2, which is also a finite Radon measure. Evidently µ1 and µ2 are absolutely continuous

with respect to ν, and hence there exist non-negative functions h1, h2 ∈ L1(X,B, ν) such that dµ1 = h1dν

and dµ2 = h2dν. Define h̃1 := h1 − h1 ∧ h2 and h̃2 := h2 − h1 ∧ h2. Let A = {x : h1 ∧ h2(x) = h1(x)}
and observe that h̃1(x) = 0 for all x ∈ A, while h̃2(x) = 0 for all x ∈ Ac. Then since h1 − h2 = h̃1 − h̃2,

(7.2.12) becomes

L(f) =

∫
X

fh1dν −
∫
X

fh2dν =

∫
X

f(h̃1 − h̃2)dν . (7.2.13)

Define measures dµ̃1 := h̃1dν and µ̃2 := h̃2dν. Then µ̃1(A) = 0 and µ̃2(Ac) = 0 so that µ̃1 and µ̃2 are

mutually singular. Since any Borel measure that is absolutely continuous with respect to a Radon measure

is itself as Radon measure, µ̃1 and µ̃2 are also Radon measures.

In summary, if there exists a decomposition of L ∈ (C0(X))
∗

as the difference of two positive elements

of (C0(X))
∗
, then there exists a pair of mutually singular finite Radon measures µ+ and µ− such that for

all f ∈ C0(X),

L(f) =

∫
X

fdµ+ −
∫
X

fdµ− . (7.2.14)
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Such a decomposition is necessarily unique: Let A be a Borel set such that µ+(A) = 0 and µ−(Ac) = 0.

Pick ε > 0, and then h ∈ Cc(X) such that such that ‖h−1A‖L1(X,B,µ++µ−) < ε. Without loss of generality,

we may assume that 0 ≤ h ≤ 1. Then for any 0 ≤ g ≤ f in C0(X), by the choice of h,

L(g) = L((1− h)g) + L(hg)

=

∫
X

(1− h)gdµ+ −
∫
X

(1− h)gdµ− +

∫
X

hgdµ+ −
∫
X

hgdµ−

≤
∫
X

(1− h)gdµ+ + ‖f‖∞ε

≤
∫
X

(1− h)fdµ+ + ‖f‖∞ε ≤
∫
X

fdµ+ + 2‖f‖∞ε

This shows that

sup{ L(g) : 0 ≤ g ≤ f } ≤
∫
X

fdµ+ . (7.2.15)

On the other hand,

L((1− h)f) =

∫
X

(1− h)fdµ+ −
∫
X

(1− h)fdµ− ≥
∫
X

fdµ+ − 2‖f‖∞ε .

Since 0 ≤ (1 − h)f ≤ f , equality holds in (7.2.15) and therefore, the linear functional f 7→
∫
X

fdµ+ is

uniquely determined by L under the assumption that (7.2.14) with µ+ and µ− mutually singular. Then

by Theorem 7.2.4, µ+ is then uniquely determined by L. We have proved:

7.2.13 LEMMA. Let L ∈ (C0(X))
∗

have a decomposition as the difference of two positive linear func-

tionals as in (7.2.12). Then there is a unique pair of mutually singular Radon measures µ+, µ− such that

(7.2.14) is valid for all f ∈ C0(X), and moreover, µ+ is determined through L by (7.2.15).

It is now a simple matter to show that, in fact, every L ∈ (C0(X))
∗

can be written as the difference of

two positive linear functionals as in (7.2.12). The identity (7.2.15) gives us a candidate for the components

of the decomposition:

7.2.14 LEMMA. Let L ∈ (C0(X))
∗
. For f ∈ C+

0 (X), define

L+(f) = sup{ L(g) : 0 ≤ g ≤ f } . (7.2.16)

For general f ∈ C0(X), define

L+(f) = L+(f+)− L+(f−) . (7.2.17)

where f+ and f− are, respectively, the positive and negative parts of f . Then L+(f) ∈ (C0(X))
∗
, and both

L+ and L− := L − L+ are positive, so that L = L+ − L− is a decomposition of L into the difference

between two positive linear functionals.

Proof. We first show that for f1, f2 ∈ C+
0 (X), L+(f1 + f2) = L+(f1) + L+(f2). First, let 0 ≤ g1 ≤ f1 and

0 ≤ g2 ≤ f2. Then 0 ≤ g1 + g2 ≤ f1 + f2 so that L+(f1 + f2) ≥ L(g1 + g2) = L(g1) + L(g2) Taking the

supremum over g1 ≤ f1 and g2 ≤ f2 yields L+(f1 + f2) ≥ L+(f1) + L+(f2).
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Fix ε > 0, and choose g ∈ C+
0 (X) with 0 ≤ g ≤ f1 + f2 so that L+(f1 + f2) ≤ L(g) + ε. Define

g1 = f1 ∧ g and g2 = g − g1. Then 0 ≤ g1 ≤ f1, 0 ≤ g2 ≤ f2 and g1 + g2 = g. Therefore

L+(f1 + f2) ≤ L(g) + ε ≤ L(g1) + L(g2) + ε ≤ L+(f1) + L+(f2) + ε .

Since ε > 0 is arbitrary, L+(f1 + f2) ≤ L+(f1) +L+(f2). Together with what we proved above, this shows

L+(f1 + f2) = L+(f1) + L+(f2).

To see that L+ as extended to all of C0(X) by (7.2.17), is additive, we observe that if f = g1 − g2

and f = h1 − h2 are two ways of writing f ∈ C0(X) as a difference of two elements in C+
0 (X), then

g1 + h2 = h1 + g2. By what was proved above,

L+(g1) + L+(h2) = L+(g1 + h2) = L+(h1 + g2) = L+(h1) + L+(g2) ,

and hence

L+(g1)− L+(g2) = L+(h1)− L+(h2) . (7.2.18)

Therefore, one can replace the specific decomposition f = f+− f− in (7.2.17) by any other decomposition

of f into the difference between elements of C+
0 (X), and the result is the same. Then for f, g ∈ C0(X),

f + g = (f+ + g+)− (f− + g−) is one way of f + g as the difference of elements of C+
0 (X),

L+(f + g) = L+(f+ + g+)−L+(f− + g−) = (L+(f+)−L+(f−))− (L+(g+)−L+(g−)) = L+(f) +L+(g) .

This together with the evident fact that L+(αf) = αL+(f) for all α ∈ R and f ∈ C0(X) shows that L+ is

a linear functional.

By (7.2.17) and then (7.2.16) that

‖L+‖ = sup{L+(f) : 0 ≤ f ≤ 1} ≤ sup{L(g) : 0 ≤ g ≤ 1} ≤ ‖L‖ .

Thus, L+ is a bounded linear functional and It is evident from (7.2.16) that L+(f) ≥ 0 for all f ∈ C0(X),

so that it is also positive.

Finally, defining L− = L+ − L, we have that for all f ∈ C+
0 (X), L−(f) = L+(f) − L(f) ≥ 0 since

L+(f) ≥ L(f). Hence L− is a positive linear functional. Since L = L+ − L−, this shows that every

element L of (C0(X))
∗

can be written as the difference of two positive linear functionals on C0(X).

7.2.15 LEMMA. Let L ∈ (C0(X))
∗
, and let µ+, µ− be the unique pair of mutually singular Radon

measures on X such that (7.2.14) is valid for all f ∈ C0(X). Then

‖L‖ := µ+(X) + µ−(X) . (7.2.19)

Proof. For all f ∈ C0(X) with ‖f‖∞ ≤ 1, |L(f)| ≤
∫
X

|f |dµ+ +

∫
X

|f |dµ− ≤ µ+(X) + µ−(X). On the

other hand, let A be a Borel set such that µ+(A) = 0 and µ−(Ac) = 0. Pick ε > 0, and then h ∈ Cc(X)

such that such that ‖h− (1Ac − 1A)‖L1(X,B,µ++µ−) < ε. Without loss of generality, we may assume that

−1 ≤ h ≤ 1. Then

‖L‖ ≥ L(h) =

∫
X

hdµ+ −
∫
X

hdµ−

≥
∫
X

(1Ac − 1A)dµ+ −
∫
X

(1Ac − 1A)dµ− − 2ε = µ+(X) + µ−(X)− 2ε .



162

Collecting results from the lemmas, we have proved:

7.2.16 THEOREM (Riesz Representation Theorem for ((C0(X))
∗
). Let (X,U) be a locally compact

Hausdorff space. Then for each L ∈ ((C0(X))
∗

there exists a unique pair of mutually singular finite

Radon measures µ+ and µ− such that (7.2.14) is valid for all f ∈ C0(X) and such that the norm ‖L‖ of

L is given by (7.2.19).

A number of consequences of this theorem deserve further discussion. We begin with a definition:

7.2.17 DEFINITION. A signed measure on X is a real valued function µ on the Borel σ–algebra of

X such that there exist two positive finite Borel measures µ1 and µ2 such that for all Borel sets E,

µ(E) = µ1(E)− µ2(E).

The set of signed measures is evidently a real vector space. (Complex measures are defined in the

analogous way, and would constitute a complex measure space.) We denote the real vector space of signed

measures on X by M(X).

For a bounded Borel function f , define the integral
∫
X
fdµ by

∫
X

fdµ =

∫
X

fdµ1 −
∫
X

fdµ2. This

gives us a continuous linear functional L on C0(X) where L(f) =

∫
X

fdµ. Theorem 7.2.16 then gives us

the existence of uniquely determined positive Borel measures µ+ and µ− that are mutually singular – i.e.,

supported on disjoint sets – and such that

µ(E) = µ+(E)− µ−(E)

for all Borel sets E in X.

7.2.18 DEFINITION. For any signed measure µ, the positive measure |µ| given by

|µ| = µ+ + µ−

is called the total variation measure of µ, and and the function µ 7→ ‖µ‖TV where

‖µ‖TV = µ+(X) + µ−(X)

is called the total variation norm of µ.

It is easy to see from our analysis above that

‖µ‖TV = sup

{∫
X

fdµ

∣∣∣∣ f ∈ Cc(X) , −1 ≤ f ≤ 1

}
,

and from this the Minkowski inequality is easily seen to hold, so that ‖ · ‖TV is actually a norm, as the

name indicates.

We know that the dual of a Banach space is complete in the dual norm, and so M(X) is complete

in the total variation norm. Moreover, the map L 7→ µ+ − µ− where µ+ and µ− are related to L as in

Theorem 7.2.16 is evidently an isometric isomorphism of (C0(X))
∗

onto M(X).

The Banach space C0(X) is not reflexive expect when X is very simple. As long as there exists a

single Borel set E that is not both open and closed, we may define a linear functional on M by

Λ(µ) = µ(E) =

∫
X

1Edµ .
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Clearly Λ is linear and

|Λ(E)| ≤ |µ|(E) ≤ |µ|(X) = ‖µ‖TV ,

so Λ is indeed bounded, and so is an element of (M(X))
∗
. But if there were a function g ∈ C0(X) for

which Λ(µ) =
∫
X
gdµ for all µ ∈ M, we would have g(x) = 1E(x) for all x since the point mass δx that

concentrates unit mass at x belongs to M for each x ∈ X. But since E is not both open and closed, 1E

is not continuous.

7.2.4 Wiener measure

In this section, Ω denotes the set of continuous functions ω : [0,∞) → R such that ω(0) = 0. We equip

Ω with the topology of uniform convergence on compact subsets of [0,∞). This makes it a Frechét space,

and in particular, a Hausdorff space. However, Ω is not locally compact. For each t ∈ [0,∞), let Xt

denote the evaluation functional Xt(ω) = ω(t). Let F be the σ-algebra on Ω generated by the Xt, t ≥ 0.

Wiener measure is a probability measure νW on (Ω,F) such that if E1, . . . , En are Borel sets in R, and

0 ≤ t1 < · · · < tn, a particle performing “Browninan motion” starting from x at time t = 0 is in Ej at

time tj for each j = 1, . . . , n with probability

νW ({ω ∈ Ω : ω(tj) ∈ Ej , j = 1, . . . , n }) = ∫
E1×·×En

n∏
j=1

γtj−tj−1(xj−1 − xj)dx1 · · · dxn (7.2.20)

where γt(x) is the Gaussian probability density used to define the heat semigroup, t0 := 0 and x0 := 0.

(We restrict ourselves to one dimension only to keep the notation simple. Everything we say in this section

about “Brownian motion” in R extends readily to Brownian motion in Rn for any n ∈ N.)

The formula on the right side of (7.2.20) for the probabilities of such events follows from Einstein’s work

on Browninan motion in 1905, in which he related Brownian motion to diffusion and the heat equation.

Einstein’s precise explanation for Brownian motion in terms of molecular collisions – at a time when

the very existence of atoms and molecules was still a matter of dispute – made it possible to determine

Avogadro’s number, the number of atoms of hydrogen in one gram of hydrogen, by making observations

through a microscope of pollen-sized particles undergoing Brownian motion. This was actually done in

1908 by Jean Baptiste Perrin, and he was awarded the Nobel prize in 1926 for his experimental work.

Einstein received the prize in 1921 for his theoretical work. A simplified version of Einstein’s formulae,

leaving out the constants that make it possible to determine Avogadro’s number by looking though a

microscope, says that the probability that a Brownian particle starting at 0 at time t = 0 is in Ej at time

tj is given in terms of the heat kernel γt(x− y) by∫
E1×·×En

n∏
j=1

γtj−tj−1(xj−1 − xj)dx1 · · · dxn (7.2.21)

where t0 := 0 and x0 := 0, which is the formula on the right side of (7.2.20). For example if n = 2, this

reduces to, using the Fubini-Tonelli Theorem,∫
E1

γt1(x)

(∫
E2

γt2−t1(x− y)dy

)
dx .
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The inner integral gives the probability of the Brownian particle making a transition from x to E2 in time

t2 − t1, and γt1(x) is the probability density for the Brownian particle making a transition from 0 to x in

time t1. The composite formula is justified on account of the increments of the motion being “statistically

independent”.

We shall not go further into the physical origins of the formula on the right side of (7.2.20), but turn

to the mathematical question of whether or not there exists a probability measure νW on Ω, the infinite

dimensional “path space” for the Brownian particle, such that (7.2.20) is valid.

The sets of the form {ω ∈ Ω : ω(tj) ∈ Ej , j = 1, . . . , n } are very special in F , and the existence

of a countably additive probability measure (Ω,F) that assigns the specified probabilities to these sets is

far from trivial. It is therefore somewhat amazing that Norbert Wiener constructed the measure νW on

(Ω,F) in 1923, well before Kolmogorov had even given his measure-theoretic formulation of probability

theory.

In this section we give a proof of Wiener’s Theorem due to Edward Nelson that makes use of the

Riesz-Markov Theorem, and the regularity of the measures that it provides. There are two main parts to

the proof: In the first part, we embed Ω into a compact Hausdorff space, and use the formula on the right

hand side of (7.2.20) to define a positive linear functional on C(X) = Cc(X). The Riesz-Markoff Theorem

then provides a regular Borel probability measure µX on X. In the second second part, we show that Ω

is a Borel set, and that µW (Ω) = 1. We then obtain νW by restricting µW to Ω. It is in the course of the

proof that µW (Ω) = 1 that we make essential use of the inner regularity of µW to deal with the fact that

continuity of a function ω from [0,∞) into R depends on the behavior of ω at uncountably many points.

This is not the only way to construct Wiener measure, and indeed Wiener’s paper predates the work

of Markoff on which this approach depends. However, it is flexible and powerful, and can be used to

construct many other measures on “path spaces”. It will be clear that very little specific information

about the heat kernel is used in the proof.

Our first task, which is essentially notational, is to recast the formula (7.2.21) in terms of a probability

measure on Rn. Let S be an arbitrary finite subset of distinct elements tj of (0,∞) arrange in increasing

order: S = {t1, . . . , tn} with tj ≤ tj+1 for j = 1, . . . , n− 1.

Given such a set S, define a measure µx,S on Rn by

dµx,S =

n∏
j=1

γtj−tj−1(xj−1 − xj)dx1 · · · dxn . (7.2.22)

where t0 := 0 and x0 := x. (We need the more general formula in which x0 is arbitrary and not set equal

to 0 for reasons that are explained below.) For example, if S = {t1, t2}, then

dµx,{t1,t2} = γt1(x− x1))γ(x1 − x2)dx1dx2 . (7.2.23)

Integrating first in x2, and then in x1 and using the fact that
∫

R γt(x)dx = 1 for all t, one readily sees

that µx,{t1,t2} is a probability measure. The same reasoning shows that for all S, µx,S is a probability

measure. For Borel set E1 and E2, µx,{t1,t2}(E1 × E2) is the probability that the particle, initially at x,

is in E1 at time t1, and then in E2 at time t2. Likewise,

µx,{t1,...,tn}(E1 × · · · × En)
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is to be thought of as the probability the particle, initially at x, is in Ej at time tj for j = 1, . . . , n. Notice

that if some Ej = R, the condition that the particle is in Ej is vacuous given that the particle must be

somewhere in R. This corresponds to an important consistence condition of the family of measures {µx,S}
indexed by the finite ordered sets S Let S = {t1, . . . , tn} and for some j = 1, . . . , n, let S′ := S\{tj}
ordered as above.

Let E1, . . . , En be n Borel sets in R. Let E = E1 × · × En and let E′ be the Cartesian product of

{E1, . . . , En}\{Ej} taken in the order induced by the subscripts. Then since∫
R
γs−tj−1

(xj−1 − y)γtj−s(y − xj)dy = γtj−tj−1
(xj−1 − xj) ,

doing the integration over the xj first on the left we find that in case Ej = R,

µx,S (E) = µx,S′ (E
′) . (7.2.24)

There is another important relation satisfied by these measures, this times with x and S both being

variable. Let S = {t1, . . . , tn} be given, n ≥ 2. Let 1 ≤ k ≤ n − 1 be given and let f be a bounded

Borel function on Rk and let g be a bounded Borel function on Rn−k. Let S′ = {t1, . . . , tk} and let

S′′ := {tk+1, . . . , tn}. Then doing the integral over xk+1, . . . , xn first, we find that∫
Rn
f(x1, . . . , xk)g(xk+1, . . . , xn)dµx,S =

∫
Rk
f(x1, . . . , xk)

(∫
Rn−k

g(xk+1, . . . , xn)dµxk,S′′

)
dµx,S′ .

(7.2.25)

In probabilistic terms, one may regard the functions Xj : (x1, . . . , xn) 7→ xj , j = 1, . . . , n as “random

variables” on the probability space (Rn,B, µx,S). The product structure in (7.2.25) can then be interpreted

as saying that “given Xk, the future variables Xk+1, . . . , Xn are statistically independent of the past

variables’X1, . . . , Xk−1.” This is the Markov property. In what follows we do not need to know precisely

what “given Xk” means; it involves the notion of conditional probability. We shall only make direct

analytic use of the factorization identity (7.2.25). However, it would be a grave injustice not to at least

mention mention in passing the Markov property at this point. For our purposes, the Markov property

of the measure µx,S is precisely the factorization formula (7.2.25) relating it to the measures µx,S′ and

µxk,S′′ .

7.2.19 THEOREM. There exists a unique probability measure νW on (Ω,F) such that if ϕ is any

function on Rn and S = {t1, . . . , tn}, 0 < t0 < · · · < tn, then∫
Ω

ϕ(ω(t1), . . . , ω(tn))dνW (ω) =

∫
Rn
ϕ(x1, . . . , xn)dµ0,{t1,...,tn} .

Proof of Theorem 7.2.19. Let Ṙ denote the one-point compactification of R, and letX denote the Cartesian

product (Ṙ)[0,∞) with the product topology. Then by Tychonov’s Theorem, X is a compact Hausdorff

space. The general element ω of X is an arbitrary function from [0,∞) into Ṙ.

Let A denote the set of all functions f on X of the form

f(ω) = φ(ω(t1), . . . , ω(tn)) (7.2.26)

for some n ∈ N, some S = {t1, . . . , tn}, and some bounded continuous function ϕ : Rn → R. Then A is

an algebra consisting of continuous functions on X which contains the constant function 1 and separates

points. By the Stone Wierstrass Theorem, it is dense in C(X).
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We now define a linear functional L on A by

L(f) :=

∫ n

R
φ(x1, . . . , xn)dµ0,{t1,...,tn} (7.2.27)

where f and φ are related by (7.2.26). Any given function in A has many different representations of

the form (7.2.26) since one can always enlarge the set {t1, . . . , tn} but then have φ depends trivially on

the inserted coordinates. Because of the consistency relation (7.2.24), the right hand side of (7.2.27) is

independent of the choice of the representative. Hence f 7→ L(f) is a well-defined linear functional on A,

and evidently when f ∈ A is given by (7.2.26), f(ω) ≥ 0 for all ω if and only if ϕ(x1, . . . , xn) ≥ 0 for

all x1, . . . , xn. Therefore, since each µx,S is a probability measure, L is positive on A, and for all f ∈ A,

|L(f)| ≤ ‖f‖∞. Thus L has a unique extension by continuity from the dense sub algebra A to all of C(X),

and evidently this extension, still denotes by L, is positive with ‖L‖ = 1.

We may now invoke the Riesz-Markov Theorem to assert the existence of a unique regular Borel

measure µW on X such that L(f) =

∫
X

f(ω)dµW (ω) for all f ∈ C(X).

The proof will be completed by showing that Ω is a Borel set in X, and that µW (Ω) = 1. Whether

ω ∈ X is continuous or not depends on the behavior of ω at uncountably many values of t. The fact that

µW is regular, specifically inner regular, will be crucial for estimating the probabilities of sets depending

on the behavior of ω at all of the uncountably many points in an interval [a, b] in terms of sets depending

on the behavior of ω at only finitely many points in [a, b].

For ε, δ > 0, define

ρ(ε, δ) := sup
0<t<δ

∫
|x|>ε

γt(y)dy =

∫
|x|>ε

γδ(y)dy (7.2.28)

It is easy to see that as δ ↓ 0, ρ(ε, δ) = o(δ). In fact, ρ(ε, δ) = o(δn) for any n ∈ N, and even that is not

all. However, all we shall use is that ρ(ε, δ) = o(δ). The rest of the proof is broken into several steps.

Step 1. Let ε, δ > 0. Let 0 < t1 < · · · < tn with tn − t1 < δ. Define

A = {ω : |ω(t1)− ω(tj)| > ε for some j = 2, . . . , n }

We show in this step that µW (A) ≤ 2ρ(ε, δ/2), independent of n. This is based on the Markov property.

Define

B := {ω : |ω(t1)− ω(tn)| > ε/2}

and then for j = 2, . . . n, define

Cj := {ω : |ω(t1)− ω(tj)| > ε and |ω(t1)− ω(ti)| ≤ ε for i ≤ j − 1}

and

Dj := {ω : |ω(tj)− ω(tn)| > ε/2} .

Note that if ω ∈ A, there is some least value of j such that |ω(t1) − ω(tj)| > ε, and then, if ω /∈ B,

j ≤ n− 1, and |ω(tj)− ω(tn)| > ε/2. That is,

A = B

n−1⋃
j=2

(Cj ∩Dj) .

Note that 1Cj can be written in the form 1Cj (ω) = ϕ(ω(t1), . . . ω(tj−1)) where ϕ is the characteristic

function of an open set on Rj−1, and that 1Cj can be written in the form 1Cj (ω) = ψ(ω(tj), ω(tn)) where
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ϕ is the characteristic function of an open set on R2. Then by the Markov property (7.2.25) and the

definition of µW ,

µW (Cj ∩Dj) =

∫
Rj−1

ϕ(x1, · · · , xj−1)

(∫
R2

ψ(xj , xn)dµxj ,{tn−tj}

)
dµ0,{t1,...,tj} (7.2.29)

Since ∫
R2

ψ(xj , xn)dµxj ,{tn−tj} =

∫
|x|>ε/2

γtn−tj (x)dx ≤ ρ(ε/2, δ) ,

(7.2.29) yields µW (Cj ∩ Dj) ≤ ρ(ε/2, δ)µW (Cj). Then since the sets Cj are mutually disjoint,

µW (∪nj=2Cj) ≤ 1. Thus, µW (A) ≤ µW (B) + ρ(ε/2, δ) ≤ 2ρ(ε/2, δ).

Step 2. Fix ε, δ > 0. Fix a < b ∈ [0,∞) with b− a < δ. Define the set

E(a, b, ε) := {ω : |ω(s)− ω(t)| ≥ 2ε for some s, t ∈ [a, b] } .

In this step we show that µW (E(a, b, ε)) ≤ 2ρ(ε/2, δ).

To do this, let S be a finite subset of [a, b], and define

E(a, b, ε, S) := {ω : |ω(s)− ω(t)| ≥ 2ε for some s, t ∈ S } .

Note that each E(a, b, ε, S) is open, and E(a, b, ε) is the union of all of the E(a, b, ε, S) as S ranges

over all finite subsets S of [a, b]. Since µW is regular, for all η > 0, there is a compact set K ⊂ E(a, b, ε)

such that µW (K) ≥⊂ E(a, b, ε) − η. Since the sets of the form E(a, b, ε, S), S ⊂ [a, b] finite, are an open

cover of K, there exists a finite sub-cover. But any finite union of sets of the form E(a, b, ε, S) is again

of this form. Hence there exists a finite Sη ⊂ [a, b] such that µW (E(a, b, ε, Sη) ≥ µW (E(a, b, ε). It follows

that

µW (E(a, b, ε) = sup{µW (E(a, b, ε, S) : S ⊂ [a, b] finite } . (7.2.30)

Now for any finite set S = {t1, . . . , tn} if for some 1 ≤ i < j ≤ n, |ω(ti) − ω(tj)| > 2ε, then either

|ω(t1)−ω(ti)| > ε or |ω(t1)−ω(tj)| > ε. Hence the bound proved in Step 1 implies that µW (E(a, b, ε, S) ≤
2ρ(ε/2, δ).

Step 3. Fix ε, δ > 0 with 1/δ ∈ N. Let k ∈ N. Define

F (k, ε, δ) := {ω : |ω(t)− ω(s)| > 4ε for some t, s ∈ [0, k] } .

In this step we show that µW (F (k, ε, δ)) ≤ 2kρ(ε/2δ)/δ.

To do this, write [0, k] as the union of k/δ subintervals of the form [(j − 1)δ, jδ], j = 1, . . . , k/δ. If

ω ∈ F (k, ε, δ), |ω(t) − ω(s)| > 4ε for some s, t in the same or adjacent intervals. But that means that

|ω(u)− ω(v)| > 2ε for some u, v belonging to one of these intervals. Thus, ω belongs to E((j − 1)δ, jδ, ε),

as defined in Step 2, for some j = 1, . . . , k/δ. This proves the desired bound.

Step 4. We complete the proof. A function ω : [0,∞] → Ṙ is continuous with ω(0) ∈ R if and only if its

restriction to each [0, k], k ∈ N is uniformly continuous, meaning that for for all ε > 0, there is a δ > 0

so that |ω(s) − ω(t)| < 4ε whenever |s − t| ≤ δ. That is, ω is continuous if and only if for each k ∈ N, ω

belongs to ⋂
ε>0

⋃
δ>0

F c(k, ε, δ) ,
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and F (k, ε, δ) is defined as in the previous step. Moreover, we can restrict ε and δ to be the reciprocals

on positive integers so that the intersection and union are countable. Since each F (k, ε, δ) is open, in X,

Ω =
⋂
k∈N

⋂
ε>0

⋃
δ>0

F c(k, ε, δ) ,

is a Borel set. It follows that Ωc is a countable union of sets of the form
⋂
δ>0

F (k, ε, δ) and

µW

(⋂
δ>0

F (k, ε, δ)

)
= lim

δ↓0
µW (F (k, ε, δ)) = 0

by the estimate of Step 3 since ρ(ε, δ) = o(δ). Thus Ω is a Borel subset of X, and µW (Ω) = 1. We define

νW to be the restriction of µW to Ω.

7.3 Functions of Bounded Variation

7.3.1 The classical definition

The class of functions of bounded variation on an interval I ⊂ R was introduced by Camile Jordan in 1881

in an investigation of the point-wise convergence of Fourier Series. The notion turns out to be quite useful

in many contexts, and we shall give a modern development of the theory that readily admits generalization

to functions on open sets in Rn, which is crucial for many modern applications. However, first we recall

the classical definition:

7.3.1 DEFINITION (Bounded variation). Let I be an interval in R. Let PI denote the set of all ordered

sets {x0, x1, . . . , xn} ⊂ I, n ∈ N, with xj−1 < xj for all j = 1, . . . , n. For any real valued function h defined

on I, define

TV (h; I) = sup


n∑
j=1

|h(xj)− h(xj−1)| : {x0, x1, . . . , xn} ∈ PI

 . (7.3.1)

A function h : I → R is of bounded variation on I in case TV (h; I) <∞.

7.3.2 EXAMPLE. Let h be continuously differentiable and such that the derivative h′ is integrable on

an interval (a, b). Then for any {x0, x1, . . . , xn} ∈ P(a,b),

n∑
j=1

|h(xj)− h(xj−1)| =
n∑
j=1

∣∣∣∣∣
∫ xj

xj−1

h′(y)dy

∣∣∣∣∣ ≤
∫ b

a

|h′(x)|dx ,

and hence TV (h; (a, b)) ≤
∫ b
a
|h′(x)|dx. In fact, it is not hard to show that actually equality holds in this

inequality.

However, functions of bounded variation need not be continuous. Consider for example the function

f on R defined by

h(x) =

0 x < 0

1 x ≥ 0 .

Evidently TV (h,R) = 1. More generally, any monotone non-decreasing function has bounded variation on

any interval on which it is bounded.
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We shall soon we that every bounded variation function on any interval [a, b] is the difference of two

monotone non-decreasing functions; this is the Jordan decomposition. The Jordan decomposition is closely

related to the Hahn-Saks decomposition of a signed Borel measure into its positive and negative parts.

This means that any function of bounded variation is measurable, and in fact, has left and right limits

(which need not be equal) at every point. In particular, functions of bounded variation are measurable. In

the modern development presented here, we shall deduce the Jordan Decomposition from the Hahn-Saks

decomposition, but we need to know from the outset that functions of bounded variation are at least

measurable, which we show after proving a simple lemma that will be useful again.

7.3.3 LEMMA. Let ε > 0. Let h be a real valued function defined on the interval [c, d] such that

TV (h, [c, d]) < ε. Let h̃ be the linear interpolation of h between c and d, That is, for any λ ∈ [0, 1] define

xλ = (1− λ)c+ λd, and h̃(xλ) = (1− λ)h(c) + λh(d). Then |h̃(x)− h(x)| < ε for all x ∈ [c, d].

Proof. By hypothesis, for any x ∈ (c, d) |h(x)−h(c)|+ |h(x)−h(d)| ≤ TV (h, [c, d]) < ε. By the convexity

of t 7→ |t|,

|h(xλ)− (1− λ)h(c)− λh(d)| ≤ (1− λ)|h(xλ)− h(c)|+ λ|h(xλ)− h(d)| ≤ ε .

Then next simple observation to make is that if b < c < d, TV (h; [b, d]) = TV (h; [b, c]) +TV (h; [c, d]).

This may be iterated in the obvious way.

7.3.4 LEMMA. Let m denote Lebesgue measure on R. Let h be a real valued function defined on

the interval [c, d] such that TV (h, [c, d]) < ∞. For each ε > 0 there is a piecewise linear function hε

and a Borel set E ⊂ [c, d] with m(E) < ε such that for all x ∈ [c, d] ∩ Ec, |h(x) − hε(x)| < ε and

|h(x)− hε(x)| ≤ TV (h, [c, d]) for all x ∈ [a, d]. Moreover, TV (hε, [c, d]) ≤ TV (h, [c, d])

Proof. Choose k ∈ N such that 1
kTV (h; [c, d]) < ε. Then choose n so large that k(d − c)/n < ε. Divide

[c, d] into n closed intervals {Ij : j = 1, . . . , n} of equal length, with consecutive intervals overlapping at

endpoints only. Since

n∑
j=1

TV (h; Ij) = TV (h; [c, d]), TV (h; Ij) ≥ 1
kTV (h; Ij) for at most k values of j. Let

E be the union of any such intervals, and then by the choice of n, m(E) < ε. On each Ij not included in

E, h is uniformly within ε of its linear interpolation between the endpoints {x0, . . . , xn} of the intervals of

Ij according to Lemma 7.3.3. Thus if we define hε be the linear interpolation of h at the endpoints of the

intervals Ij , j = 1, . . . , n, |h(x) − hε(x)| < ε for x /∈ E. Finally, it is clear that since hε is linear between

xj−1 and xj for each j = 1, . . . , n,

TV (hε) =

n∑
j=1

|h(xj − h(xj−1)| ≤ TV (h, [c, d]) .

7.3.5 Remark. Given any real valued function h on [c, d] such that TV (h, [c, d]) < ∞ Lemma 7.3.4

provides a sequence of continuous functions converging to h in measure on [c, d], and hence h is measurable

on [c, d].
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In what follows, (a, b) denotes any open interval in R. In particular, it is not excluded that either

a = −∞, b =∞, or both. Let C1
c ((a, b)) denote the set of continuously differentiable real-valued functions

with compact support in (a, b). Then C1
c ((a, b)) is dense in Cc((a, b)). This is easily shown by convolving

f ∈ Cc((a, b)) by a smooth probability density supported in some sufficiently small interval [−δ, δ]. In

fact, the same argument shows that C∞c ((a, b)), the set of infinitely differentiable real-valued functions

with compact support in (a, b), is dense in Cc((a, b)). For f ∈ C1
c ((a, b)), let f ′ denote the derivative of

f . Throughout the rest of this section, B denotes the Borel σ-algebra of (a, b), and m denote Lebesgue

measure on (a, b), though we shall often write integrals with respect to Lebesgue measure using dx in

place of dm.

Now let h be a real-valued function on (a, b) with TV (h; (a, b)) < ∞. In particular, h is uniformly

bounded on (a, b), and so if both a and b are finite, h is integrable with respect to Lebesgue measure m

since it is also measurable by the remark following Lemma 7.3.4. If either a = −∞ or b = ∞ this need

not be the case, and then we further suppose that h is integrable. The next lemma leads to the modern

characterization of functions of bounded variation.

7.3.6 LEMMA. Let h be an integrable real-valued function on (a, b) with TV (h; (a, b)) < ∞. Let µ

denote the finite Borel measure on (a, b) that is absolutely continuous with respect to Lebesgue measure on

(a, b) with Radon-Nikodym derivative h. That is, dµ = hdx. Define L ∈ (C0((a, b)))
∗

by

L(f) =

∫ b

a

fdµ . (7.3.2)

Then for all f ∈ C1
c ((a, b)),

|L(f ′)| ≤ TV (h; [a, b])‖f‖∞ . (7.3.3)

Proof. Let f ∈ C1
c ((a, b)), and let [c, d] contain the support of f . Let ε > 0. By Lemma 7.3.4, there exists

a piecewise linear function hε on [c, d] such that |hε(x) − h(x)| ≤ TV (h, [c, d]) for all x ∈ [c, d] and such

that |hε(x)− h(x)| ≤ ε outside a set E with m(E) < ε. Therefore,

L(f ′) =

∫ b

a

f ′(x)hε(x)dx+

∫ b

a

f ′(x)(h− hε((x)dx ,

and hence∣∣∣∣∣L(f ′)−
∫ b

a

f ′(x)hε(x)dx

∣∣∣∣∣ ≤
∫ d

c

|f ′(x)||h− hε((x)|dx

≤ ‖f ′‖∞
∫

[c,d]\E
|h− hε((x)|dx+ ‖f ′‖∞

∫
E

|h− hε((x)|dx

≤ ε‖f ′‖∞(d− c+ TV (h, [c, d])) .

Then if {x0, . . . , xn} denotes set in P[c,d] such that hε is the linear interpolation of h through {x0, . . . , xn},
integration by parts yields∣∣∣∣∣

∫ b

a

f ′(x)hε(x)dx

∣∣∣∣∣ =

∣∣∣∣∣∣
n∑
j=1

h(xj)− h(xj−1)

xj − xj−1

∫ xj

xj−1

f(y)dy

∣∣∣∣∣∣ ≤ ‖f‖∞
n∑
j=1

|h(xj)− h(xj−1)| .

Combining the last two estimates, |L(f ′)| ≤ TV (h; [a, b])‖f‖∞(1 + ε(d − c) + TV (h, [c, d])). Since

ε > 0 is arbitrary, (7.3.3) is proved.



171

7.3.2 The modern characterization

The construction in the previous lemma show how integrable functions of bounded variation give rise to

a special class of linear functionals L on C0((a, b)): Those for which there exists C <∞ such that for all

f ∈ C1
c ((a, b))

|L(f ′)| ≤ C‖f‖∞ . (7.3.4)

We show in this section that every such functional L C0((a, b)) arises in this way: There is a unique

integrable function h of bounded variation on (a, b) such that L(f) =
∫

(a,b)
fhdx for all f ∈ C0((a, b)).

In the course of proving this, we shall obtain further information about the class of functions of bounded

variation. We begin with a lemma that provides a crucial “generalized integration by parts” formula.

7.3.7 LEMMA. L ∈ (C0((a, b)))
∗

be such that for some C <∞ and all all f ∈ C1
c ((a, b)), (7.3.4) is valid.

Then there exists a unique pair of signed Borel measures µ and ν on (a, b) such that for all f ∈ C0((a, b))

L(f) =

∫
(a,b)

fdµ (7.3.5)

and for all f ∈ C1
c ((a, b))

L(f ′) = −
∫

(a,b)

fdν . (7.3.6)

Moreover, ‖ν‖TV ≤ C, and for all f ∈ C1
c ((a, b)),∫
(a,b)

f ′dµ = −
∫

(a,b)

fdν . (7.3.7)

Proof. Direct application of the Riesz Representation Theorem for (C0((a, b)))
∗
, provides the signed mea-

sure µ such that (7.3.5) is valid. Next, note that C1
c ((a, b)) is dense in C0((a, b)) in the uniform norm,

and the functional f 7→ L(f ′) is linear since differentiation and L are both linear. It is bounded on the

dense subspace C1
c ((a, b)) by (7.3.4), and hence it extends by continuity to a linear functional M on all of

C0((a, b)) and ‖M‖∗ ≤ C. Now a second application of the Riesz Representation Theorem for (C0((a, b)))
∗

provides the signed measure ν such that (7.3.6) is valid. Finally, (7.3.7) follows directly from (7.3.5) and

(7.3.6).

7.3.8 EXAMPLE. Let h be a continuously differentiable function on (a, b) such that
∫ b
a
|h′(x)|dx = C <

∞. Define

L(f) =

∫ b

a

h(x)f(x)dx (7.3.8)

for all f ∈ Cc((a, b)). Then, integrating by parts, for f ∈ C1
c ((a, b)),

L(f ′) =

∫ b

a

h(x)f ′(x)dx = −
∫ b

a

f(x)h′(x)dx (7.3.9)

and hence |L(f ′)| ≤ C‖f‖∞ so that (7.3.4) is satisfied with C =

∫ b

a

|h′(x)|dx. Moreover, in this case the

measure ν is evidently given by

dν = −h′(x)dx .

We may regard −ν as the “generalized derivative” of the bounded variation function h even when h is not

differentiable.
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7.3.9 LEMMA. Let L, C, µ and ν be as in Lemma 7.3.7. If b <∞, then the limits

lim
c↑b

1

b− c
µ(c, b) =: h(b) and lim

c↓a

1

c− a
µ(c, b) =: h(a) (7.3.10)

exit and

|h(a)|, |h(b)| ≤ 1

b− a
‖µ‖TV + C . (7.3.11)

Proof. Let f be a C1 function that monotonically increases from 0 to 1 such that f ′ has support contained

in [a′, b′] ⊂ (a, b). For each c ∈ (b′, b) define

fc(x) =

f(x) x ≤ c

1− x/(b− c) c < x < b .

While fc does not belong to C1
c ((a, b)), it is easy to approximate fc by a sequence {gc,k}k∈N of such

functions that converge uniformly to fc and whose derivatives converge at each x to

f ′(x)− 1

b− c
1(c,b)(x)

and are uniformly bounded in absolute value by max{‖f ′‖∞, (b − c)−1}. Applying (7.3.7) to gc,k and

taking the limit k →∞, we obtain∫
(a,b)

f ′dµ− µ((c, b))

b− c
= −

∫
(a,b)

fcdν . (7.3.12)

By the Lebesgue Dominated Convergence Theorem,

lim
c↑b

∫
(a,b)

fcdν =

∫
(a,b)

fdν , (7.3.13)

and since the integral on the left hand side of (7.3.12) is independent of c, the first limit in (7.3.10) exists.

Moreover, for each c and k, |L(g′n,k)| ≤ C‖gn,k‖∞ = C, and hence for all c,∣∣∣∣∣
∫

(a,b)

f ′dµ− µ((c, b))

b− c

∣∣∣∣∣ ≤ C . (7.3.14)

Moreover, f can be chosen so that ‖f ′‖∞ is arbitrarily close to (b′ − a)−1, and we may take b′ arbitrarily

close to c. In particular, if a = −∞, we can choose f with ‖f ′‖∞ is arbitrarily close to 0. Then (7.3.14)

yields
|µ((c, b))|
b− c

≤ (c− a)−1‖µ‖TV + C ,

and this proves (7.3.11) for h(b). The statements involving h(a) are valid by symmetry.

7.3.10 LEMMA. Let L, C, µ and ν be as in Lemma 7.3.7. If b <∞ let h(b) be defined as in (7.3.10),

and if b =∞, define h(b) = 0. Let f be any C1((a, b)) function with f ′(x) ≥ 0 for all x and limx↓a f(x) = 0

and ‖f‖∞ = limx↑b f(x) <∞. Then∫
(a,b)

f ′dµ = −
∫

(a,b)

fdν + h(b)‖f‖∞ . (7.3.15)
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Proof. Note that ‖f ′‖L1(m) = ‖f‖L∞(m). Since f(x) =
∫ x
a
f ′(y)dy, making a change in f ′ that has a small

L1(m) norm results in a change in f that is correspondingly small in the uniform norm. We may therefore

suppose without loss of generality that f ′ has compact support in [a′, b′] ⊂ (a, b). By homogeneity, we

may assume that ‖f‖∞ = 1. In case b <∞, we may then proceed as in the last lemma, and then (7.3.10),

(7.3.12) and (7.3.13) yield (7.3.15).

In case b = ∞, pick ε > 0. Since ν is a finite Radon measure, by increasing b′ as necessary, we

may suppose that ν((b′, b)) < ε. Let g ∈ C1
c ((a, b)) be such that g′(x) = f ′(x) for x ≤ b′, and such that

|g′(x)| < ε for x > b′, which is easy to do since (b′, b) = (b′,∞). Define g(x) =
∫ x
a
g′(y)dy, and note that

for x ≤ b′, g(x) = f(x), and we may arrange that ‖g − f‖∞ = ‖f‖∞. Then by (7.3.7),∫
(a,b)

f ′dµ =

∫
(a,b)

g′dµ−
∫

(b′,b)

g′dµ

= −
∫

(a,b)

gdν −
∫

(b′,b)

g′dµ

= −
∫

(a,b)

fdν +

∫
(b′,b)

(f − g)dν −
∫

(b′,b)

g′dµ

Now note that

∣∣∣∣∣
∫

(b′,b)

(f − g)dν

∣∣∣∣∣ ≤ ‖f‖∞ν(b′, b) and

∣∣∣∣∣
∫

(b′,b)

g′dν

∣∣∣∣∣ ≤ ε‖ν‖TV. Thus, recalling that ‖ν‖TV ≤

C, ∣∣∣∣∣
∫

(a,b)

f ′dµ+

∫
(a,b)

fdν

∣∣∣∣∣ ≤ ε(‖f‖∞ + C) .

Since ε is arbitrary, the identity (7.3.15) is proved.

7.3.11 THEOREM. L ∈ (C0((a, b)))
∗

be such that for some C <∞ and all all g ∈ C1
c ((a, b)), (7.3.4) is

valid. Let µ and ν be the unique signed Borel measures on (a, b) such that (7.3.5) and (7.3.6) are valid

for all f ∈ C0((a, b) and all f ∈ C1
c ((a, b) respectively.

Then µ is absolutely continuous with respect to Lebesgue measure. Let h denote the Radon-Nikodymn

derivative of µ with respect to Lebesgue measure so that by the Lebesgue Differentiation Theorem, at almost

every x,

h(x) = lim
y↓x

µ((x, y)

y − x
. (7.3.16)

Then there is a preferred representative of the a.e. equivalence class of h such that (7.3.16) is valid for

every x ∈ (a, b), and with this version of h,

TV (h; (a, b)) ≤ C , (7.3.17)

and for all a ≤ x < y < b,

h(x)− h(y) = ν((x, y]) . (7.3.18)

In particular, h is right continuous and has a left limit at each point x ∈ (a, b).

Before giving the proof, we recall a basic measure theoretic result that we shall use. Let A denote

the half-open interval algebra which consists of all finite disjoint unions of sets of the form (c, d] with

a ≤ c < d < b or of the form (c, b) where a < c < b. By a standard application of the Monotone Class

Theorem, for every positive Radon measure λ on R and every Borel set E, for each ε > 0, there is a set

A ∈ A such that λ(E∆A) < ε.
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Proof. Let µ = µ+ − µ− be the unique decomposition of µ into a different of mutually singular finite

(positive) Borel measures, and let |µ| = µ+ + µ−, and likewise define ν+ and ν− in terms of ν. Let m

denote Lebesgue measure and note that |µ|+m is a Radon measure.

Let E be a Borel set such that µ−(E) = 0 and µ+(Ec) = 0. Then for any ε > 0, there exists Aε ∈ A
such that

(|µ|+m)(E∆Aε) < ε .

Now let F be any Borel subset of E and suppose that µ+(F ) > 0. For ε > 0, let B ∈ A be such that

µ(F∆B) < ε. Then since F ⊂ E, 1B1Aε = (1B − 1F )1Aε + 1F (1Aε − 1E) + 1F . It follows that

(|µ|+m)(B ∩Aε − F ) ≤ 2ε . (7.3.19)

Since B∩Aε ∈ A, it can be written in as B ∩Aε =

n∑
j−1

(cj , dj ], where c1 < d1 < c2 < · · · < dn. At the cost

of another ε, we may assume that c1 > −∞ and dn <∞, which is automatic in case a and b are finite.

Now for j = 1, . . . , n choose disjoint open intervals Uj such that [cj , dj ] ⊂ Uj and such that

n∑
j=1

(|µ|+m)(Uj) ≤ (|µ|+m)(B ∩Aε) + ε , (7.3.20)

which is possible by the outer regularity of |µ| + m. For each j, choose [cj , dj ] ≺ gj ≺ Uj , and define

g :=
∑n

=1 gj . Define f(x) =

∫ x

a

n∑
j=1

gj(y)dy.

Then

‖f‖∞ ≤
n∑
j=1

m(Uj) ≤ ε+m(B ∩Aε) ≤ 3ε+m(F ) . (7.3.21)

Also, with U := ∩nj=1Uj , ∫
(a,b)

f ′dµ ≥ µ+(B ∩Aε)− µ−(U) .

By (7.3.20), µ−(U) ≤ µ−(Aε) + ε ≤ 2ε. By (7.3.19), µ+(B ∩ Aε) ≥ µ+(F ) − ε. Altogether, using

Lemma 7.3.10 together with the positivity of f ,

µ+(F ) ≤ 3ε+

∫
(a,b)

f ′dµ

≤ 3ε+

∫
(a,b)

fdν− + h(b)‖f‖∞

≤ 3ε+ (C + h(b))‖f‖∞ .

Combining this with (7.3.11) and (7.3.21), we have

µ+(F ) ≤ 3ε+ (2C + (b− a)−1)(3ε+m(F )) .

Since ε > 0 is arbitrary, µ+(F ) ≤ (2C + (b − a)−1‖µ‖TV)m(F ). and then since F is arbitrary, this

proves that µ+ is absolutely continuous with respect to Lebesgue measure, and then using the Lebesgue

Differentiation Theorem that the Radon-Nikodymn derivative h satisfies ‖h‖∞ ≤ 2C + (b− a)−1‖µ‖TV.
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For the final part, given any a ≤ x < y < b, for n sufficiently large that and y − 1/n > x, define the

“ramp function” fn approximation of 1(x,y] by

fn(t) =


n(t− x) x < t ≤ x+ 1/n

1 x+ 1/n ≤ t ≤ y

1− n(t− y) y < t ≤ y + 1/n

and fn(t) = 0 for all other t. Notice that limn→∞ fn(t) = 1(x,y](t) for all t. Though f is not in C1
c ((a, b)),

a simple approximation argument such as we made in the proof of Lemma 7.3.9 shows that (7.3.7) is

nonetheless valid and therefore

nµ((x− 1/n, x))− nµ((y − 1/n, y)) = −
∫
fndν .

Taking the limit n→∞, we obtain h(y)−h(x) = ν((x, y]). It now follows that when a < x0 < x1 · · ·xn < b,
n∑
j=1

|h(xj)− h(xj−1)| =
n∑
j=1

|ν((xj−1, xj ]) ≤ ‖ν‖TV.

7.3.12 COROLLARY. Let h be integrable on (a, b) and suppose that TV (h; (a, b)) <∞. Then in the a.e.

equivalence class of h there is a preferred representative, also denoted by h, such that h is right continuous

and has a left limit at each point x ∈ (a, b). Moreover, h is the difference of two monotone non-decreasing

right continuous functions h = h+ − h−.

Proof. The first part is a direct consequence of Lemma 7.3.6 and Theorem 7.3.11. Let ν be the signed

measure associated to h as in Theorem 7.3.11. Let ν = nu+ − ν− be the Hahn-Saks decomposition of ν

into its positive and negative parts. Then since for all a < x < b, h(x) − h(a) = ν−((a, x]) − ν+((a, x]).

Define h+(x) = h(a) + ν−((a, x]) and define h−(x) = ν+((a, x]).

7.3.3 The Banach space BV ((a, b))

7.3.13 DEFINITION (BV((a,b))). The real normed space BV ((a, b)), called the space of BV functions

on (a, b) is the vector space of real integrable functions h on (a, b) such that TV (h; (a, b)) < ∞. For

h ∈ BV ((a, b)), let µ = hdx, so that by Lemma 7.3.6 and Lemma ??, there is a signed Borel measure ν

with ‖ν‖TV = TV (h; (a, b)) <∞, and such that (7.3.7) is valid for all f ∈ C1
c ((a, b)). Then we define the

BV norm of h as

‖h‖BV = ‖h‖L1(m) + ‖ν‖TV = ‖µ‖TV + ‖ν‖TV (7.3.22)

By the uniqueness in Lemma 7.3.7 and the linearity of (7.3.7), the map h 7→ ν is linear, and so it is

evident that ‖·‖BV is a norm on BV ((a, b)). To see that BV ((a, b)) is complete in this norm, Let {hn}n∈N

be a Cauchy sequence in BV ((a, b)). Then {hn}n∈N is also a Cauchy sequence in L1((a, b),B,m) and so

there exist h ∈ L1((a, b),B,m) such that limn→∞ ‖hn−h‖L1(m) = 0. For each n ∈ N, let µn be the signed

Borel measures such that ∫
(a,b)

f ′hndx = −
∫

(a,b)

fdνn

for all f ∈ C0((a, b)).
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Since the space of signed Borel measures on C0((a, b)) is, like every dual space, complete, and since

by the definition of the BV norm {νn}n∈N is a Cauchy sequence in the total variation norm, there exists

a signed measure ν such that limn→∞ ‖νn − ν‖TV = 0. It follows that∫
(a,b)

f ′hdx = −
∫

(a,b)

fdν

for all f ∈ C0((a, b)), and hence h ∈ BV ((a, b)) and limn→∞ ‖hn − h‖BV = 0.

There is in fact a better way to see that BV ((a, b)) is a Banach space: It turns out the BV ((a, b)) is

the dual of another Banach space. Let Y be the Banach space of of all pairs (f1, f2) with f1, f2 ∈ C0((a, b))

and with the norm

‖(f1, f2)‖Y = ‖f1‖∞ + ‖f2‖∞ .

The dual space Y ∗ is the space of all pairs (µ1, µ2) of signed Borel measures on (a, b) with the norm

‖(µ1, µ2)‖Y = ‖µ1‖TV + ‖µ2‖TV .

Now let Z be closure of the subspace of Y consisting on (f1, f2) with f1, f2 ∈ C1
c ((a, b)) and f1 = −f ′2.

The annihilator of Z is the subspace of Y ∗ consisting of pairs (µ, ν) such that∫
(a,b)

f ′dµ =

∫
(a,b)

f ′dν (7.3.23)

for all f ∈ C1
c ((a, b)). By Theorem ??, (µ, ν) belongs to the annihilator of Z precisely when µ = hdx

where h ∈ BV ((a, b)), and then µ is the unique signed measure associated to h such (7.3.23) is valid for

all f ∈ C1
c ((a, b)), and in this case

‖h‖BV = ‖µ‖TV + ‖ν‖TV = ‖(µ, ν)‖Y ∗ .

Since Z is a closed subspace of a Banach space Y , the annihilator of Z in Y ∗ is the dual of Y/Z by a general

result in the theory of Banach spaces. Therefore, BV ((a, b)) is the dual of Y/Z. By the Banach-Aloglu

Theorem, the unit closed ball in BV ((a, b)) is compact in the weak-∗ topology induced on BV ((a, b)) by

Y/Z.

The space BV ((a, b)) is not separable: For each y ∈ (a, b), let hy be the step function with hy(x) = 1

for y ≥ x and hy(x) = 0 otherwise. Then for y 6= z, ‖hy − hz‖BV ≥ 2.


