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March 6, 2018

1. Find the general solution of the differential equations:

(a) x′ =
2

t
x+ t−3x2 − t

(b) x′′ = 1 + (x′)2

SOLUTION (a) We look for a solution of the form x1(t) = Ctα. We find α = 2 and c2 = 1.

Hence we have two solutions, namely ±t2. We choose x1(t) = t2.

Now define y = x− t2. We find

y′ = x′ − 2t =
2

t
(y + t2) + t−3(t+ t2)2 − 3t

=
4

t
y +

1

t3
y2 .

This is a Bernoulli equation. We substitute z = 1/y, and find

z′ = − 1

y2

(
4

t
y +

1

t3
y2
)

= −4

t
z − 1

t3
.

Multiplying through by t4, we find (t4z)′ = −t. Integrating, z =
C

t4
− 1

2t2
. Finally, the general

solution is x = z−1 + t2, which is

x(t) =

(
C

t4
− 1

2t2

)−1
+ t2 .

Notice that for c = 0 we get our second particular solution, −t2.
(b) Let y = x′. The equation becomes y′ = 1 + y2 which is separable. Integrating both sides of
y′

1 + y2
= 1, we find arctan(y) = t+ C1, and so

y = tan(t+ C1) = − d

dt
ln(cos(t+ C1)) .

Integrating once more,

x(t) = − ln(cos(t+ C1)) + C2 .

2. (a) Let v(x) = (1 − x4)1/2 Consider the solution of x′(t) = v(x(t)) with x(0) = 0. Does this

solution exist for all t and remain within the interval (−1, 1) for all t? Justify your answer.



(b) Let v(x) = (1− x4)2 Consider the solution of x′(t) = v(x(t)) with x(0) = 0. Does this solution

exist for all t and remain within the interval (−1, 1) for all t? Justify your answer.

(c) Let v(x) be a continuously differentiable function on R such that v(−1) = v(1) = 0 and such

that v(x) > 0 for all x ∈ (−1, 1). Let Ψt be the flow transformation on (−1, 1) associated to v.

Compute, for all x0 in(−1, 1),

lim
t→∞

Ψt(x0) and lim
t→∞

(
d

dx
Ψt

)
(x0) .

Justify your answers.

SOLUTION For (a), we use Barrow’s formula to compute the time T it takes for the solution to

reach x = 1. This is

T =

∫ 1

0

1√
1− z4

dz =

∫ 1

0

1√
1− z2

1√
1 + z2

dz ≤
∫ 1

0

1√
1− z2

dz =
π

2
.

Hence in this case, no, the solution exits in a finite time.

(b) In this case v(x) is a polynomial, which naturally has a bounded derivative on any bounded

interval. Hence v is Lipschitz, and the solution exists and remains in (−1, 1) for all t.

(c) We are given that the function v(x) has a bounded derivative on [−1, 1]. Hence for any

x0 ∈ (−1, 1), the solution x(t) with x(0) = x0 exists for all t, and stays in the interval for all

t. Since v(x) > 0 on (−, 1, 1), x′(t) = v(x(t)) > 0 for all t. Hence x(t) is a bounded increasing

function, and limt→∞ x(t) exists. It cannot be anything other than 1 since if limt→∞ v(x(t)) > 0 is

not compatible with x(t) < 1 for all t. Hence limt→∞ x(t) = 1. Thus,

lim
t→∞

Ψt(x0) = 1 and lim
t→∞

d

dx
Ψt(x0) = lim

t→∞

v(x(t))

v(x0)
= 0 .

More informally, since limt→∞Ψt(x0) = 1, independent of x0, the large t limit of the flow is not

at all sensitive to changes in the initial data.

3. Let

A =

[
0 −3/4

4 −2

]
and B =

[
3 1

−1 5

]
.

(a) Compute etA and etB.

(b) solve x′(t) = Bx(t) with x(0) = (1, 2).

(c) Solve

x′(t) = Bx(t) + (1, 1) with x(0) = (0, 1) .

SOLUTION For (a) We compute det(A− tI) = t2 + 2t+ 3 which has the roots −1± i
√

2. Since

A− (−1 + i
√

2)I =

[
1− i

√
2 −3/4

4 −1− i
√

2

]
,

v = (1 + i
√

2, 4) is an eigenvector with eigenvalue −1 + i
√

2. Hence we have the complex solution

z(t) = et(−1+i
√
2)(1 + i

√
2, 4) = e−t(cos(

√
2t) + i sin(

√
2t))[(1, 4) + (i

√
2, 0)] .



This gives us two real solutions:

x1(t) = e−t cos(
√

2t)(1, 4)− sin(
√

2t)(
√

2, 0) and x1(t) = e−t sin(
√

2t)(1, 4) + cos(
√

2t)(
√

2, 0) .

Then

etA = [x1(t),x2(t)][x1(0),x2(0)]−1 = e−t

[
cos(
√

2t) + 2−1/2 sin(
√

2t) −3
821/2 sin(

√
2t)

23/2 sin(
√

2t) cos(
√

2t) + 2−1/2 sin(
√

2t)

]
.

We next compute det(B − tI) = t2 − 8t+ 16 which has the repeated root 4. Since

B − 4I =

[
−1 1

−1 1

]
,

There eigenvectors with eigenvalue 4 are the non-zero multiples of v = (1, 1). We have

etB = e4tet(B−4I) = e4t(I + t(B − 4I)) = e4t

[
1− t t

−t 1 + t

]
.

For part (b), the solution is

x(t) = etBx(0) = e4t

[
1− t t

−t 1 + t

]
(1, 2) = e4t(1 + t, 2 + t) .

For part (c), we use Duhamel’s formula. Note that (1, 1) as an eigenvector of B so that

e(t−s)B(1, 1) = e4te−4s(1, 1)

and hence the solution is

e4t(1, 1 + t) +

(∫ t

0
e−4sds

)
e4t(1, 1) = e4t(1, 1 + t) +

1

4

(
e4t − 1

)
(1, 1) .

4. Consider the vector field

v(x, y) = ((x− 1)(y − 1), 4x− y2) .

Find all equilibrium points, and determine which are Lyapunov stable, which are asymptotically

stable, and which are unstable. Sketch the flow curves in the vicinity of each critical point.

SOLUTION At any equilibrium point, we must have either x = 1 or y = 1. If x = 1, we must

also have y2 = 4, so y = ±2. If y = 1, we must also have 4x = 1, so x = 1/4. Hence we have three

equilibrium points:

x1 = (1, 2) x2 = (1,−2) and x3 = (1/4, 1) .

To linearize, we compute

[Dv(x)] =

[
y − 1 x− 1

4 −2y

]
.

Then

[Dv(x1)] =

[
1 0

4 −4

]
.



The eigenvalues are evidently 1 and −1. Hence this equilibrium point is unstable.

Likewise,

[Dv(x2)] =

[
−3 0

4 4

]
.

The eigenvalues are evidently −3 and 4. Hence this equilibrium point is unstable.

Finally,

[Dv(x3)] =

[
0 −3/4

4 −2

]
.

As we have seen in a previous problem, the eigenvalues are −1± i
√

2. Hence this equilibrium point

is asymptotically stable.

The first two sketches look like saddle point contour plots, with arrows going in on one line,

and out on another. The third sketch should show an inward spiral, turning counter-clockwise.

To do proper sketches one needs the eigenvectors. We give the details for the case in which

the eigenvalues are complex. (The other cases did not seem to be problematic.) An eigenvector of

[Dv(x3)] with eigenvalue −1 + i
√

2 is (3, 4(1− i
√

2). The real part of the corresponding solution is

e−t(3 cos(
√

2t), 4 cos(
√

2t) + 4
√

2 sin(
√

2t)) = e−tB(cos(
√

2t), sin(
√

2t))

where

B =

[
3 0

4 4
√

2

]
.

Then BTB =

[
25 16

√
2

16
√

2 32

]
. Computing the eigenvalues and eigenvectors, one sees that the

major axis about 3 times as long as the minor axis, and it runs (approximately) along the line though

(0, 0) and (0.857, 1). Since det(B) > 0, the direction of rotation in the spiral is counter-clockwise.

5. Let M = 1
8

[
5 3

3 5

]
and A =

[
2 1

1 2

]
.

(a) Consider the equation Mx′′ = −Ax. Find an equivalent equation of the form y′′ = −Ky,

and write down the general solution of this equation. Then solve Mx′′ = −Ax with x(0) = 0 and

x′(0) = (1, 0).

(b) Let g = (1, 1). Consider the differential equation

Mx′′(t) +Ax(t) = g cos(ωt)

for some positive number ω. For which values of ω, if any, is there resonance?

SOLUTION (a) M is doubly symmetric, and so an orthonormal basis of eigenvectors is given by

{u1,u2} where

u1 =
1√
2

(1, 1) and u2 =
1√
2

(1,−1) .

Also, Mu1 = u1, and Mu2 = 1
4u2. Therefore, the eigenvalues of M−1/2 are 1, for the eigenvector

u1, and 2, for the eigenvector u2, and

M−1/2 =
1

2

[
3 −1

−1 3

]
.



Then K = M−1/2AM−1/2 = 1
2

[
7 −1

−1 7

]
and so Ku1 = 3u1 and Ku2 = 4u2. The two normal

mode equations are y′′j = −ω2
j yj , where ω1 =

√
3 and ω2 = 2 are the two natural frequencies. The

solutions of these equations with yj(0) = 0, and y′j(0) = 1 are

y1(t) =
1√
3

sin(
√

3t) and y2(t) =
1

2
sin(t/2) .

Notice that

(1, 0) =
1√
2

(u1 + u2) and hence v0 := M−1/2(1, 0) =
1√
2

(u1 + 2u2) .

Thus the solution of y′′ = −Ky with y(0) = 0 and y′(0) = v0 is

y(t) =
1√
2

(y1(t)u1 + 2y2(t)u2) .

multiplying by M1/2 gives us the solution x(t) that we seek:

x(t) =
1√
2

(y1(t)u1 + y2(t)u2) =
1√
2

(
1√
3

sin(
√

3t)u1 +
1

2
sin(t/2)u2)

=
1

2

(
1√
3

sin(
√

3t) +
1

2
sin(2t) ,

1√
3

sin(
√

3t)− 1

2
sin(2t)

)
.

Notice that is was possible to avoid a lot of direct matrix multiplication calculations using

eigenvector expansions. In fact, one can give an even simpler solution using the fact that M and A

have the same eigenvectors; Just expand the solution in the common eigenbasis. The solution given

above uses the general method that works even when M and A have different sets of eigenvectors.

(b) The forcing term is a multiple of u1, and so it drives only the mode with natural frequency

ω1 =
√

3: There is resonance only at ω1 =
√

3.


