Solutions for Test 2, Math 292 Spring 2018

April 28, 2018

1. (a) Find the general solution of the homogeneous differential equation

$$
x^{2} u^{\prime \prime}(x)-2 x u^{\prime}(x)+2 u(x)=0
$$

on $x>0$.
(b) Find the general solution to the equation

$$
x^{2} u^{\prime \prime}(x)-2 x u^{\prime}(x)+2 u(x)=x^{3}
$$

on $x>0$.
(c) Find functions $p(x)$ and $q(x)$ such that with $\mathcal{L} u(x)=\left(p u^{\prime}\right)^{\prime}+q u, \mathcal{L} u(x)=0$ on $x>0$ if and only if $x^{2} u^{\prime \prime}(x)-2 x u^{\prime}(x)+2 u(x)=0$. Then find the Green's function for \mathcal{L} subject to the boundary conditions $u(1)=u(2)=0$, and use it to find the solution of

$$
\mathcal{L} u(x)=\frac{1}{x} .
$$

SOLUTION (a) We seek a solution of the form $u(x)=x^{\alpha}$. The α must satsify $\alpha^{2}-3 \alpha+2=0$, so we get the two solutions $u_{1}(x)=x$ and $u_{2}(x)=x^{2}$. The general solution then is

$$
u(x)=c_{1} x+c_{2} x^{2} .
$$

(b) We compute $M(x)=\left[\begin{array}{ll}x & x^{2} \\ 1 & 2 x\end{array}\right]$. Therefore, $\operatorname{det}(M(x))=x^{2}$. Likewise, $N(x, y)=\left[\begin{array}{cc}y & y^{2} \\ x & x^{2}\end{array}\right]$. Therefore, $\operatorname{det}(N(x, y))=y x^{2}-x y^{2}$. Finally $r(y)=y$. Hence a particular solutions is given by

$$
u_{p}(x)=\int_{1}^{x} \frac{y x^{2}-x y^{2}}{y^{2}} y \mathrm{~d} y=\left.\left(x^{2} y-\frac{x y^{2}}{2}\right)\right|_{1} ^{x}
$$

We can ignore the terms that come from evaluating the integral at $y=1$ since this yields a linear combination of $u_{1}(x)$ and $u_{2}(x)$. Thus, $x^{3} / 2$ is a particular solutuion, and the general solution is

$$
u(x)=c_{1} x+c_{2} x^{2}+\frac{1}{2} x^{3} .
$$

(c) In standard form our equation is $u^{\prime \prime}+P u^{\prime}+Q u$ with $P=-2 / x$ and $Q=2 / x^{2}$. We find $p(x)=x^{-2}$ and so $q(x)=2 x^{-4}$. We redfince u_{1} and u_{2} to be linear combinations of x and x^{2} such that $u_{1}(1)=0$ and $u_{2}(2)=0$. An easy way to do this is to take

$$
u_{1}(x)=x-x^{2} \quad \text { and } \quad u_{2}(x)=2 x-x^{2} .
$$

Then we have $p(1)=1, u_{1}^{\prime}(1)=-1$ and $u_{2}(1)=1$ Then $c=1$ and

$$
G(x, y)=\frac{1}{C}\left\{\begin{array}{ll}
u_{1}(x) u_{2}(y) & y \geq x \tag{0.1}\\
u_{1}(y) u_{2}(x) & x \geq y
\end{array}= \begin{cases}\left(x-x^{2}\right)\left(2 y-y^{2}\right) & y \geq x \\
\left(y-y^{2}\right)\left(2 x-x^{2}\right) & x \geq y\end{cases}\right.
$$

The solution then is

$$
\begin{aligned}
u(c) & =\left(2 x-x^{2}\right) \int_{1}^{x}\left(y-y^{2}\right) \frac{1}{y} \mathrm{~d} y+\left(x-x^{2}\right) \int_{x}^{2}\left(2 y-y^{2}\right) \frac{1}{y} \mathrm{~d} y \\
& =x-\frac{3}{2} x^{2}+\frac{1}{2} x^{3} .
\end{aligned}
$$

2: The equation

$$
(\ln (x)-1) u^{\prime \prime}(x)-\frac{1}{x} u^{\prime}(x)+\frac{1}{x^{2}} u(x)=0
$$

is solved by $u(x)=x$.
(a) Find the general solution of this equation on $x>e$.
(b) Find the solution of

$$
(\ln (x)-1) u^{\prime \prime}(x)-\frac{1}{x} u^{\prime}(x)+\frac{1}{x^{2}} u(x)=\frac{(\ln (x)-1)^{2}}{x}
$$

that satisfies $u\left(e^{2}\right)=0$ and $u^{\prime}\left(e^{2}\right)=1$.
SOLUTION (a) We have one solution $u_{1}(x)=x$. Putting the homogenous equation in standard form, $u^{\prime \prime}+P u^{\prime}+Q=0$, we have

$$
P=\frac{-1 / x}{\ln x-1} \quad \text { and } \quad Q=\frac{1 / x^{2}}{\ln x-1} .
$$

We seek a solution $u_{2}=v u_{1}$, and know that we may take

$$
v=\int \frac{1}{u_{1}^{2}} e^{-\int P} \mathrm{~d} x=\int \frac{1}{x^{2}} \exp (\ln (\ln x+1)) \mathrm{d} x=\int \frac{1}{x^{2}}(\ln x-1) \mathrm{d} x,
$$

Integrating by parts, we find

$$
v(x)=-\frac{1}{x} \ln x,
$$

and so the second solution can be taken to be $u_{2}(x)=\ln x$. The general solution then is

$$
u(x)=c_{1} x+c_{2} \ln x .
$$

(b) We compute $M(x)=\left[\begin{array}{ll}x & \ln x \\ 1 & x^{-1}\end{array}\right]$. Therefore, $\operatorname{det}(M(x))=1-\ln x$. Likewise, $N(x, y)=$ $\left[\begin{array}{ll}y & \ln y \\ x & \ln x\end{array}\right]$. Therefore, $\operatorname{det}(N(x, y))=y \ln x-x \ln y$. Finally $r(y)=(\ln y-1) / y$. Hence a particular solutions is given by

$$
u_{p}(x)=\int_{e^{2}}^{x} \frac{y \ln x-x \ln y}{(\ln y-1)} \frac{\ln y-1}{y} \mathrm{~d} y=-\left.\left(y \ln x-\frac{1}{2}(\ln y)^{2}\right)\right|_{1} ^{x}
$$

We can ignore the terms that come from evaluating the integral at $x=1$ since this yields a linear combination of $u_{1}(x)$ and $u_{2}(x)$. Thus, $-x \ln x+\frac{1}{2} x(\ln x)^{2}$ is a particular solutuion, and the general solution is

$$
u(x)=c_{1} x+c_{2} \ln x-x \ln x+\frac{1}{2} x(\ln x)^{2} .
$$

We must now choose c_{1} and c_{2} so that $u\left(e^{2}\right)=0$ and $u^{\prime}\left(e^{2}\right)=1$.
We compute

$$
u\left(e^{2}\right)=c_{1} e^{2}+2 c_{2} \quad \text { and } \quad u^{\prime}\left(e^{2}\right)=c_{1}+e^{-2} c_{2}+1 .
$$

The first equation says that $c_{2}=-\frac{e^{2}}{2} c_{1}$, and the second equation says $c_{2}=-e^{2} c_{1}$. Hence $c_{1}=$ $c_{2}=0$, and the solutions is simply

$$
u(x)=x \ln x-\frac{1}{2} x(\ln x)^{2} .
$$

3. (a) One of the two equations

$$
\begin{array}{ll}
\text { (1) } y^{\prime \prime}(x)+\frac{1}{x} y(x)=f(x) & \text { (2) } y^{\prime \prime}(x)-\frac{1}{x} y(x)=f(x)
\end{array}
$$

has a solution satisfying $y(1)=y(L)=0$ for every $L>1$ and every continuous function f on $[1, L]$, and the other does not. Which one is which and why? Justify your answer.
(b) Let $\mathcal{L} u(x)=\frac{1}{1+x^{2}}\left(\left(1+x^{2}\right) u^{\prime}(x)\right)^{\prime}$. Consider the eigenvalue equation $\mathcal{L} u(x)=\lambda u(x)$. Find a function $V_{\lambda}(x)$ such that for every solution of $\mathcal{L} u(x)=\lambda u(x)$, there is a solution of $y^{\prime \prime}(x)+$ $V_{\lambda}(x) y(x)=0$ that has the same zeros as u.
(c) Find a number c so that for $\lambda<c$, successive zeros of any solution of $\mathcal{L} u(x)=\lambda u(x)$ are separated by a distance of less than one. Find a number C so that for $\lambda>C$, successive zeros of any solution of $\mathcal{L} u(x)=\lambda u(x)$ are separated by a distance of more than one. Give upper and lower bounds on λ_{1}, the largest eigenvalue of $\mathcal{L} u(x)$ with boundary conditons $u(0)=u(1)=0$. Justify all of your answers.

SOLUTION (a) These equations are both of the form $y^{\prime \prime}+V y=0$. We know that when $V(x)<0$, non-trivial solutions will have at most one zero. Hence for equation (2), there is no non-trivial solution y with $y(1)=y(L)=0$ for any $L>1$. Thereofre,

$$
y^{\prime \prime}-\frac{1}{x} y=f
$$

has a unique solution on $[1, L]$ for every conitnuous f on $[1, L]$, and every $L>1$.
We also know that when $V \geq 0$ and $\int_{1}^{\infty} V(x) \mathrm{d} x=\infty$, which is the case for equation(1), nontrivial solutions will have infnitely many zeros. Hence any non-trivla solution y with $y(1)=0$ satsifies $y(L)=0$ for infnitely many values of L, and for these vlaues of L,

$$
y^{\prime \prime}+\frac{1}{x} y=f
$$

will not be solvable for every continuus f, and solutions, when they exist, will not be unique.
(b) Let $\mathcal{L} u(x)=u^{\prime \prime}(x)+\frac{2 x}{1+x^{2}} u=0$, so $\mathcal{L} u=\lambda u$ is the same as $u^{\prime \prime}+P u^{\prime}+Q u$ with

$$
P=\frac{2 x}{1+x^{2}} \quad \text { and } \quad Q=-\lambda .
$$

Then

$$
V_{\lambda}(x)=Q-\frac{1}{2} P^{\prime}-\frac{1}{4} P^{2}=-\lambda-\frac{1}{1+x^{2}} .
$$

(c) For any x_{0}, the function $w(x)=\sin \left(\pi\left(x-x_{0}\right)\right)$ has a zero at x_{0}, followed by a zero at $x_{0}+1$, and it solves the equation

$$
w^{\prime \prime}+\pi^{2} w=0
$$

Then by the Strum Comparisson Theorem, if $V_{\lambda}>\pi^{2}$ on $\left[x_{0}, x_{0}+1\right]$, then any solution of $y^{\prime \prime}+V_{\lambda} y=$ 0 that is zero at x_{0}, is zero again at some $x<x_{0}+1$. Likeise, if $V_{\lambda}<\pi^{2}$ on $\left[x_{0}, x_{0}+1\right]$, then any solution of $y^{\prime \prime}+V_{\lambda} y=0$ that is zero at x_{0}, is positive for all $x \in\left(x_{0}, x_{0}+1\right]$.

Now note that on $[0,1]$,

$$
-\lambda-1 \leq v_{\lambda}(x) \leq-\lambda-\frac{1}{2} .
$$

Hence λ_{1}, the value of λ such that there is a non-trivla solutions of $y^{\prime \prime}+V_{\lambda} y=0$ with $y(0)=y(1)=0$ and $y(x)>0$ for $x \in(0,1)$ satsfies

$$
-\pi^{2}+\frac{1}{2} \leq \lambda_{1} \leq-\pi^{2}+1
$$

4: (a) Let $\mathcal{L} u(x)=u^{\prime \prime}(x)$. Find all eigenvalues and eigenfunctions of \mathcal{L} with boundary conditions $u^{\prime}(0)=0$ and $u(1)=0$.
(b) solve the equation

$$
\frac{\partial}{\partial t} h(x, t)=\frac{\partial^{2}}{\partial^{2} x} h(x, t)
$$

for $x \in(0,1), t>0$, subject to

$$
\frac{\partial}{\partial x} h(0, t)=h(1, t)=0
$$

and

$$
h(x, 0)=\cos (\pi x / 2)-\cos (3 \pi x / 2) .
$$

The eigenvalues λ of \mathcal{L} are negative, so we can write the eigenvalue equation in the form

$$
u^{\prime \prime}(x)=-\omega^{2} u(x),
$$

and the general solition is

$$
u(x)=c_{1} \sin (\omega x)+c_{2} \cos (\omega x) .
$$

From $u .(0)=0$, we get $c_{1}=0$, and then from $u(1)=0$, we get $\cos (\omega)=0$ and so $\omega=\left(k+\frac{1}{2}\right) \pi$ for some $k \in \mathbb{N}$. Therefore the eigenvalues and eigenfunctions (un-normalized) are

$$
\lambda_{k}=-\left(k+\frac{1}{2}\right)^{2} \pi^{2} \quad \text { and } \quad u_{k}=\cos \left(\left(k+\frac{1}{2}\right) \pi x\right) .
$$

Since h_{0} is a linear combination of the eigenfunctions, namely $h_{0}=u_{1}-u_{2}, h(x, t)$ can be written as the same linear combination of the corresponding special solutions, namely

$$
h(x, t)=e^{-t \pi^{2} / 4} \cos (\pi x / 2)-e^{-t 9 \pi^{2} / 4} \cos (3 \pi x / 2) .
$$

