
Solutions for Test 2, Math 292 Spring 2018

April 28, 2018

1. (a) Find the general solution of the homogeneous differential equation

x2u′′(x)− 2xu′(x) + 2u(x) = 0

on x > 0.

(b) Find the general solution to the equation

x2u′′(x)− 2xu′(x) + 2u(x) = x3

on x > 0.

(c) Find functions p(x) and q(x) such that with Lu(x) = (pu′)′ + qu, Lu(x) = 0 on x > 0 if and

only if x2u′′(x)−2xu′(x)+2u(x) = 0. Then find the Green’s function for L subject to the boundary

conditions u(1) = u(2) = 0, and use it to find the solution of

Lu(x) =
1

x
.

SOLUTION (a) We seek a solution of the form u(x) = xα. The α must satsify α2 − 3α+ 2 = 0,

so we get the two solutions u1(x) = x and u2(x) = x2. The general solution then is

u(x) = c1x+ c2x
2 .

(b) We compute M(x) =

[
x x2

1 2x

]
. Therefore, det(M(x)) = x2. Likewise, N(x, y) =

[
y y2

x x2

]
.

Therefore, det(N(x, y)) = yx2 − xy2. Finally r(y) = y. Hence a particular solutions is given by

up(x) =

∫ x

1

yx2 − xy2

y2
ydy =

(
x2y − xy2

2

) ∣∣∣∣x
1

We can ignore the terms that come from evaluating the integral at y = 1 since this yields a linear

combination of u1(x) and u2(x). Thus, x3/2 is a particular solutuion, and the general solution is

u(x) = c1x+ c2x
2 +

1

2
x3 .

(c) In standard form our equation is u′′ + Pu′ + Qu with P = −2/x and Q = 2/x2. We find

p(x) = x−2 and so q(x) = 2x−4. We redfince u1 and u2 to be linear combinations of x and x2 such

that u1(1) = 0 and u2(2) = 0. An easy way to do this is to take

u1(x) = x− x2 and u2(x) = 2x− x2 .
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Then we have p(1) = 1, u′1(1) = −1 and u2(1) = 1 Then c = 1 and

G(x, y) =
1

C

{
u1(x)u2(y) y ≥ x
u1(y)u2(x) x ≥ y

=

{
(x− x2)(2y − y2) y ≥ x
(y − y2)(2x− x2) x ≥ y

(0.1)

The solution then is

u(c) = (2x− x2)
∫ x

1
(y − y2)1

y
dy + (x− x2)

∫ 2

x
(2y − y2)1

y
dy

= x− 3

2
x2 +

1

2
x3 .

2: The equation

(ln(x)− 1)u′′(x)− 1

x
u′(x) +

1

x2
u(x) = 0

is solved by u(x) = x.

(a) Find the general solution of this equation on x > e.

(b) Find the solution of

(ln(x)− 1)u′′(x)− 1

x
u′(x) +

1

x2
u(x) =

(ln(x)− 1)2

x

that satisfies u(e2) = 0 and u′(e2) = 1.

SOLUTION (a) We have one solution u1(x) = x. Putting the homogenous equation in standard

form, u′′ + Pu′ +Q = 0, we have

P =
−1/x

lnx− 1
and Q =

1/x2

lnx− 1
.

We seek a solution u2 = vu1, and know that we may take

v =

∫
1

u21
e−

∫
Pdx =

∫
1

x2
exp(ln(lnx+ 1))dx =

∫
1

x2
(lnx− 1)dx ,

Integrating by parts, we find

v(x) = −1

x
lnx ,

and so the second solution can be taken to be u2(x) = lnx. The general solution then is

u(x) = c1x+ c2 lnx .

(b) We compute M(x) =

[
x lnx

1 x−1

]
. Therefore, det(M(x)) = 1 − lnx. Likewise, N(x, y) =[

y ln y

x lnx

]
. Therefore, det(N(x, y)) = y lnx − x ln y. Finally r(y) = (ln y − 1)/y. Hence a

particular solutions is given by

up(x) =

∫ x

e2

y lnx− x ln y

(ln y − 1)

ln y − 1

y
dy = −

(
y lnx− 1

2
(ln y)2

) ∣∣∣∣x
1
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We can ignore the terms that come from evaluating the integral at x = 1 since this yields a linear

combination of u1(x) and u2(x). Thus, −x lnx+ 1
2x(lnx)2 is a particular solutuion, and the general

solution is

u(x) = c1x+ c2 lnx− x lnx+
1

2
x(lnx)2 .

We must now choose c1 and c2 so that u(e2) = 0 and u′(e2) = 1.

We compute

u(e2) = c1e
2 + 2c2 and u′(e2) = c1 + e−2c2 + 1 .

The first equation says that c2 = − e2

2 c1, and the second equation says c2 = −e2c1. Hence c1 =

c2 = 0, and the solutions is simply

u(x) = x lnx− 1

2
x(lnx)2 .

3. (a) One of the two equations

(1) y′′(x) +
1

x
y(x) = f(x) (2) y′′(x)− 1

x
y(x) = f(x)

has a solution satisfying y(1) = y(L) = 0 for every L > 1 and every continuous function f on [1, L],

and the other does not. Which one is which and why? Justify your answer.

(b) Let Lu(x) = 1
1+x2

((1 + x2)u′(x))′. Consider the eigenvalue equation Lu(x) = λu(x). Find

a function Vλ(x) such that for every solution of Lu(x) = λu(x), there is a solution of y′′(x) +

Vλ(x)y(x) = 0 that has the same zeros as u.

(c) Find a number c so that for λ < c, successive zeros of any solution of Lu(x) = λu(x) are

separated by a distance of less than one. Find a number C so that for λ > C, successive zeros of

any solution of Lu(x) = λu(x) are separated by a distance of more than one. Give upper and lower

bounds on λ1, the largest eigenvalue of Lu(x) with boundary conditons u(0) = u(1) = 0. Justify

all of your answers.

SOLUTION (a) These equations are both of the form y′′+V y = 0. We know that when V (x) < 0,

non-trivial solutions will have at most one zero. Hence for equation (2), there is no non-trivial

solution y with y(1) = y(L) = 0 for any L > 1. Thereofre,

y′′ − 1

x
y = f

has a unique solution on [1, L] for every conitnuous f on [1, L], and every L > 1.

We also know that when V ≥ 0 and
∫∞
1 V (x)dx = ∞, which is the case for equation(1), non-

trivial solutions will have infnitely many zeros. Hence any non-trivla solution y with y(1) = 0

satsifies y(L) = 0 for infnitely many values of L, and for these vlaues of L,

y′′ +
1

x
y = f

will not be solvable for every continuus f , and solutions, when they exist, will not be unique.

(b) Let Lu(x) = u′′(x) + 2x
1+x2

u = 0, so Lu = λu is the same as u′′ + Pu′ +Qu with

P =
2x

1 + x2
and Q = −λ .
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Then

Vλ(x) = Q− 1

2
P ′ − 1

4
P 2 = −λ− 1

1 + x2
.

(c) For any x0, the function w(x) = sin(π(x− x0)) has a zero at x0, followed by a zero at x0 + 1,

and it solves the equation

w′′ + π2w = 0 .

Then by the Strum Comparisson Theorem, if Vλ > π2 on [x0, x0+1], then any solution of y′′+Vλy =

0 that is zero at x0, is zero again at some x < x0 + 1. Likeise, if Vλ < π2 on [x0, x0 + 1], then any

solution of y′′ + Vλy = 0 that is zero at x0, is positive for all x ∈ (x0, x0 + 1].

Now note that on [0, 1],

−λ− 1 ≤ vλ(x) ≤ −λ− 1

2
.

Hence λ1, the value of λ such that there is a non-trivla solutions of y′′+Vλy = 0 with y(0) = y(1) = 0

and y(x) > 0 for x ∈ (0, 1) satsfies

−π2 +
1

2
≤ λ1 ≤ −π2 + 1 .

4: (a) Let Lu(x) = u′′(x). Find all eigenvalues and eigenfunctions of L with boundary conditions

u′(0) = 0 and u(1) = 0.

(b) solve the equation
∂

∂t
h(x, t) =

∂2

∂2x
h(x, t)

for x ∈ (0, 1), t > 0, subject to
∂

∂x
h(0, t) = h(1, t) = 0

and

h(x, 0) = cos(πx/2)− cos(3πx/2) .

The eigenvalues λ of L are negative, so we can write the eigenvalue equation in the form

u′′(x) = −ω2u(x) ,

and the general solition is

u(x) = c1 sin(ωx) + c2 cos(ωx) .

From u.(0) = 0, we get c1 = 0, and then from u(1) = 0, we get cos(ω) = 0 and so ω = (k + 1
2)π for

some k ∈ N. Therefore the eigenvalues and eigenfunctions (un-normalized) are

λk = −
(
k +

1

2

)2

π2 and uk = cos

((
k +

1

2

)
πx

)
.

Since h0 is a linear combination of the eigenfunctions, namely h0 = u1 − u2, h(x, t) can be written

as the same linear combination of the corresponding special solutions, namely

h(x, t) = e−tπ
2/4 cos(πx/2)− e−t9π2/4 cos(3πx/2) .


