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1. (a) Find the general solution of

x2u′′(x)− xu′(x)− 3u(x) = 0

for x > 0.

(b) Find the general solution of

x2u′′(x)− xu′(x)− 3u(x) = x− 3

(c) Find the solution of

x2u′′(x)− xu′(x)− 3u(x) = x− 3

with u(1) = u(2) = 0.

SOLUTION (a) We look for solutions of the form u(x) = xα. We find that u1(x) = x3 and

u2(x) = x−1 are two linearly indpendent solutions. Thus the general solutions of the homogeneous

equation is

u(x) = c1x
3 + c2

1

x
.

(b) We must compute

M(x) =

[
u1(x) u2(x)

u′1(x) u′2(x)

]
and N(x, y) =

[
u1(y) u2(y)

u1(x) u2(x)

]
,

and them a particular solutions is

up(x) =

∫ x

x0

det(N(x, y))

det(M(y))
r(y)ds .

We find det(M(y)) = −4y, det(N(x, y)) = y3/x− x3/y, r(y) = (y − 3)/y2 Taking x0 = 1,

up(x) =
1

4

∫ x

1

(
x3
y − 3

y4
− 1

x
(y − 3)

)
dy

=
1

4

(
x3
(

1

y3
− 1

2y2

)
+

1

x

(
3y − y2

2

)) ∣∣∣∣x
1

= 1− x

4
− 1

8

(
x3 +

5

x

)
.
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The last term in parentheses is a linear combination of solutions of the homogeneous equations and

may be ignored. Hence we simplify to

up(x) = 1− x

4
,

which one readily checks is a solution. The general solution we seek then is

u(x) = c1x
3 + c2

1

x
+ 1− x

4
.

(c) Using the general solution found above, we compute

u(1) = c1 + c2 +
3

4
and u(2) = 8c1 +

c2
2

+
1

2
.

This is the same as [
4 4

16 1

]
(c1, c2) = (−3,−1) .

We find c1 = −1/60 and c2 = −11/15. Hence

u(x) = − 1

60
x3+ = −11

15

1

x
+ 1− x

4
.

2. (a) Find functions p and q such that if we define Lu = (pu′)′+qu, u satisfies xu′′−(1+x)u′+u = 0

if and only if Lu = 0 everywhere on (0,∞).

(b) Are there any solutions of Lu = 0 that have more than one zero on (0,∞)? Justify your answer:

First find an equation of the form

y′′ + V (x)y(x)

so that every solution of this equation on (0,∞) is a nonzero multiple of a solution of Lu = 0, and

apply the Strum oscillation theorems.

(c) Find the Green’s function for Lu = f subject to u(1) = u(2) = 0, and find the solution of

Lu = ex .

SOLUTION In standard for the homogeous equations is u′′+Pu′+Qu = 0 with P = −x/(1 +x)

and Q = 1/x. Hence

p = e
∫
P =

e−x

x
.

Therefore,

xex

[(
e−x

x
u′
)′

+
e−x

x2
u

]
= u′′ −

(
1 +

1

x

)
u′ +

1

x
u .

Hence we take

Lu =

(
e−x

x
u′
)′

+
e−x

x2
u .



For (b), since P = −
(

1 +
1

x

)
and Q =

1

x
,

V (x) = Q− 1

2
P ′ − 1

4
P 2 =

1

x
− 1

4

((
1− 1

x

)2

+
2

x2

)
=

1

2x
− 1

4
− 3

4x2
< 0 .

Hence there are no such solutions, because we have a theorem asserting that when V is negative,

there is at most one zero.

(c) We easily find that one solutions is w1(x) = ex, and a second solution is w2(x) = −(x+ 1). If

you find, say, w1 by inspection you can get w2 using u2 = vw1 where

v =

∫
1

u21
e−

∫
P .

Note that
2

e
w1(1) + w2(1) = 0 and

3

e2
w1(2) + w2(2) = 0 .

Hence we define

u1(x) = 2ex−1 − (x+ 1) and u2(x) = 3ex−2 − (x+ 1) .

Then the Green’s Function is given by

G(x, y) =
1

C

{
u1(x)u2(y) y ≥ x
u1(y)u2(x) x ≥ y ,

(0.1)

and C itself is simply given by C = −u2(1)u′1(1)p(1) = (2− 3e−1)e−1. The solution then is

u(x) =
u2(x)

C

∫ x

1
(2ey−1 − (y + 1))eydy +

u1(x)

C

∫ 2

x
(3ey−2 − (y + 1))eydy

=
1

(2− 3e−1)e−1

(
3

2
(1− x)e2x−2 + (x− 1)e2x−1 − ex+1 +

e2

2
(1 + x)

)
=

1

(2e− 3)

(
3

2
(1− x)e2x + (x− 1)e2x+1 − ex+2 +

e4

2
(1 + x)

)
.

One can check that this is indeed the solution. It is probably easiest to consider the equation

Lu = ex in the equivalent form

xu′′ − (1 + x)u′ + u = x2e2x .

3. Let L be the Sturm-Liouville operator defined by

Lu(x) = (1 + x2)((1 + x2)u′(x))′ .

(a) Find all eigenvalues and eigenfunctions Lu(x) = λu(x) subject to u(0) = 0 and u(1) = 0.

Hint: recall that the derivative of arctan(x) is (1 + x2)−1, and consider the function v defined by

u(x) = v(arctan(x)), and compute Lu(x) in terms of v.



(b) Solve the wave equation
∂2

∂t2
h(x, t) = Lh(x, t)

subject to h(0, t) = h(1, t) = 0 for all t, and subject to

h(x, 0) = 0 and
∂

∂t
h(x, 0) =

x− x3

(1 + x2)2
.

Hint: If the function on the right looks unfamiliar after you have completed part (a), compute L
applied to this function.

(c) Consider the wave equation
∂2

∂t2
h(x, t) = Lh(x, t)

subject to h(0, t) = h(1, t) = 0 for all t, and subject to

h(x, 0) = x− x3 and
∂

∂t
h(x, 0) = 0 .

Find integrals giving numbers βk so that the solution h(x, t) is given by

h(x, t) =
∞∑
k=1

cos(
√
|λk|t)uk(x)

where {λk} and {uk} are the eigenvectors and eigenvalue sequence found in part (a).

SOLUTION Let u(x) = v(arctan(x)), and then u′(x) = (1 + x2)−1v′(arctan(x)). Therefore,

(1 + x2)u′(x) = v′(arctan(x)). In this way we find

Lu(x) = v′′(arctan(x)) .

The eigenvalue problem Lu = λu is then the same as

v′′(y) = λv(y)

for y = arctan(x), and boundary conditions v(0) = v(π/4) = 0.

The general solution is v(y) = α sin(
√
−λy) + β cos(

√
−λy), and from the boundary con-

ditions, β = 0 and
√
−λπ/4 = kπ. Thus, λk = −(4k)2 and vk(y) = sin(4ky), and thus

uk(x) = sin(4karctan(x)). Here k = 1, 2, 3 . . . .

Next, since sin(arctan(x)) = x/
√

1 + x2 and cos(arctan(x)) = 1/
√

1 + x2, two applications of

the double angle formuals give

u1(x) = 4
x− x3

(1 + x2)2
.

The general solution h(x, t) can be written as a linear combination of the special solutions

hk(x, t):

h(x, t) =
∞∑
k=1

[αk sin(4kt)uk(x) + βk cos(4kt)uk(x)] .



Differentiating,

∂

∂t
h(x, t) =

∞∑
k=1

[4kαk cos(4kt)uk(x)− βk4k sin(4kt)uk(x)] .

Setting t = 0, we can siatisfy the initial conditions by taking βk = 0 for all k, and then taking

α1 = 1/16 and αk = 0 for all k > 1.

Finally for part (c), we satisfy the initial conditions by taking αk = 0 for all k, and then taking

βk =
〈x− x3, uk〉ρ
‖uk‖2ρ

where

ρ(x) = (1 + x2)−1

. (You can actually do the integrals abut are not required to).

4. Consider the equation
√

1 + x2u′′ + xu′ = λu.

(a) .Write this equation in Sturm-Liouville form as an eigenvalue equation. That is, find positive

functions ρ(x) and p(x) so that Lu(x) = λu(x) with√
1 + x2u′′ + xu′ =

1

ρ(x)
(p(x)u′)′ = Lu(x) .

(b) Find a function Vλ(x) such that if u is any non-trivial solution of
√

1 + x2u′′+ xu′ = λu, there

is a solution y(x) of

y′′(x) + Vλ(x)y(x) = 0

that has its zeros in the same places as u(x).

(c) Find a number κ0 so that for λ > κ0 you know that all solutions of Lu = λu have at most one

zero in (0, 1). Justify your answer.

(d) Find a number κ1 so that for λ < κ1 you know that all solutions of Lu = λu with u(0) = 0

have a zero in (0, 1). Justify your answer.

(e) Let λ1 be the largest eigenvalue of L for u(0) = u(1) = 0. Find numbers a and b so that you

know that a ≤ λ1 ≤ b. Justify your answer.

SOLUTION First, write the eqaution in standard form:

u′′ +
x√

1 + x2
u′ − λ√

1 + x2
u .

Here,

P =
x√

1 + x2
=

d

dx

√
1 + x2

and so p = e
∫
P = e

√
1+x2 . Multiplying through we get(

e
√
1+x2u′

)′
− e
√
1+x2 λ√

1 + x2
u = 0 .



Undoing the two multiplications, we get√
1 + x2u′′ + xu′ = λu =

√
1 + x2e−

√
1+x2

(
e
√
1+x2u′

)′
− λu .

Hence we have

Lu =
√

1 + x2e−
√
1+x2

(
e
√
1+x2u′

)′
.

For (b) we have P = x/
√

1 + x2 and Q = −λ/
√

1 + x2. Then

Vλ = Q− 1

4
P 2 − 1

2
P ′ .

Computing we find

Vλ = −1

4

x2
√

1 + x2 + 2 + 4λ(1 + x2)

(1 + x2)3/2
.

For (c), we have a most one zero when Vλ is negative, This is the case exactly when

−x2
√

1 + x2 − 2 < 4λ(1 + x2)

on (0, 1). Simple calculations show that this is the case for λ > 0.42. (You can do slightly better).

So we take κ0 = −0.42.

For (d), if Vλ ≥ π2 then any solution of y′′ + Vλ with y(0) = 0 will have a second zero in (0, 1).

This is the case if for all x ∈ (0, 1)

x2
√

1 + x2 + 2 + 4λ(1 + x2) < −4(1 + x2)3/2π2 .

which means for all x ∈ (0, 1),

λ <
−4(1 + x2)3/2π2 − x2

√
1 + x2 − 2

4(1 + x2)
.

A plot of the right hand side shows it is greater than −15 everywhere on (0, 1). Hence λ < −15 is

too negative.

For (e), the above gives −15 < λ1 < −0.42.


