Solutions for Practice Test Two, Math 292, 2018

Eric A. Carlen ${ }^{1}$
Rutgers University

April 24, 2018

1. (a) Find the general solution of

$$
x^{2} u^{\prime \prime}(x)-x u^{\prime}(x)-3 u(x)=0
$$

for $x>0$.
(b) Find the general solution of

$$
x^{2} u^{\prime \prime}(x)-x u^{\prime}(x)-3 u(x)=x-3
$$

(c) Find the solution of

$$
x^{2} u^{\prime \prime}(x)-x u^{\prime}(x)-3 u(x)=x-3
$$

with $u(1)=u(2)=0$.
SOLUTION (a) We look for solutions of the form $u(x)=x^{\alpha}$. We find that $u_{1}(x)=x^{3}$ and $u_{2}(x)=x^{-1}$ are two linearly indpendent solutions. Thus the general solutions of the homogeneous equation is

$$
u(x)=c_{1} x^{3}+c_{2} \frac{1}{x} .
$$

(b) We must compute

$$
M(x)=\left[\begin{array}{cc}
u_{1}(x) & u_{2}(x) \\
u_{1}^{\prime}(x) & u_{2}^{\prime}(x)
\end{array}\right] \quad \text { and } \quad N(x, y)=\left[\begin{array}{ll}
u_{1}(y) & u_{2}(y) \\
u_{1}(x) & u_{2}(x)
\end{array}\right],
$$

and them a particular solutions is

$$
u_{p}(x)=\int_{x_{0}}^{x} \frac{\operatorname{det}(N(x, y))}{\operatorname{det}(M(y))} r(y) \mathrm{d} s .
$$

We find $\operatorname{det}(M(y))=-4 y, \operatorname{det}(N(x, y))=y^{3} / x-x^{3} / y, r(y)=(y-3) / y^{2}$ Taking $x_{0}=1$,

$$
\begin{aligned}
u_{p}(x) & =\frac{1}{4} \int_{1}^{x}\left(x^{3} \frac{y-3}{y^{4}}-\frac{1}{x}(y-3)\right) \mathrm{d} y \\
& =\left.\frac{1}{4}\left(x^{3}\left(\frac{1}{y^{3}}-\frac{1}{2 y^{2}}\right)+\frac{1}{x}\left(3 y-\frac{y^{2}}{2}\right)\right)\right|_{1} ^{x} \\
& =1-\frac{x}{4}-\frac{1}{8}\left(x^{3}+\frac{5}{x}\right) .
\end{aligned}
$$

[^0]The last term in parentheses is a linear combination of solutions of the homogeneous equations and may be ignored. Hence we simplify to

$$
u_{p}(x)=1-\frac{x}{4},
$$

which one readily checks is a solution. The general solution we seek then is

$$
u(x)=c_{1} x^{3}+c_{2} \frac{1}{x}+1-\frac{x}{4} .
$$

(c) Using the general solution found above, we compute

$$
u(1)=c_{1}+c_{2}+\frac{3}{4} \quad \text { and } \quad u(2)=8 c_{1}+\frac{c_{2}}{2}+\frac{1}{2} .
$$

This is the same as

$$
\left[\begin{array}{cc}
4 & 4 \\
16 & 1
\end{array}\right]\left(c_{1}, c_{2}\right)=(-3,-1) .
$$

We find $c_{1}=-1 / 60$ and $c_{2}=-11 / 15$. Hence

$$
u(x)=-\frac{1}{60} x^{3}+=-\frac{11}{15} \frac{1}{x}+1-\frac{x}{4} .
$$

2. (a) Find functions p and q such that if we define $\mathcal{L} u=\left(p u^{\prime}\right)^{\prime}+q u, u$ satisfies $x u^{\prime \prime}-(1+x) u^{\prime}+u=0$ if and only if $\mathcal{L} u=0$ everywhere on $(0, \infty)$.
(b) Are there any solutions of $\mathcal{L} u=0$ that have more than one zero on $(0, \infty)$? Justify your answer: First find an equation of the form

$$
y^{\prime \prime}+V(x) y(x)
$$

so that every solution of this equation on $(0, \infty)$ is a nonzero multiple of a solution of $\mathcal{L} u=0$, and apply the Strum oscillation theorems.
(c) Find the Green's function for $\mathcal{L} u=f$ subject to $u(1)=u(2)=0$, and find the solution of

$$
\mathcal{L} u=e^{x} .
$$

SOLUTION In standard for the homogeous equations is $u^{\prime \prime}+P u^{\prime}+Q u=0$ with $P=-x /(1+x)$ and $Q=1 / x$. Hence

$$
p=e^{\int P}=\frac{e^{-x}}{x} .
$$

Therefore,

$$
x e^{x}\left[\left(\frac{e^{-x}}{x} u^{\prime}\right)^{\prime}+\frac{e^{-x}}{x^{2}} u\right]=u^{\prime \prime}-\left(1+\frac{1}{x}\right) u^{\prime}+\frac{1}{x} u .
$$

Hence we take

$$
\mathcal{L} u=\left(\frac{e^{-x}}{x} u^{\prime}\right)^{\prime}+\frac{e^{-x}}{x^{2}} u .
$$

For (b), since $P=-\left(1+\frac{1}{x}\right)$ and $Q=\frac{1}{x}$,

$$
V(x)=Q-\frac{1}{2} P^{\prime}-\frac{1}{4} P^{2}=\frac{1}{x}-\frac{1}{4}\left(\left(1-\frac{1}{x}\right)^{2}+\frac{2}{x^{2}}\right)=\frac{1}{2 x}-\frac{1}{4}-\frac{3}{4 x^{2}}<0 .
$$

Hence there are no such solutions, because we have a theorem asserting that when V is negative, there is at most one zero.
(c) We easily find that one solutions is $w_{1}(x)=e^{x}$, and a second solution is $w_{2}(x)=-(x+1)$. If you find, say, w_{1} by inspection you can get w_{2} using $u_{2}=v w_{1}$ where

$$
v=\int \frac{1}{u_{1}^{2}} e^{-\int P} .
$$

Note that

$$
\frac{2}{e} w_{1}(1)+w_{2}(1)=0 \quad \text { and } \quad \frac{3}{e^{2}} w_{1}(2)+w_{2}(2)=0
$$

Hence we define

$$
u_{1}(x)=2 e^{x-1}-(x+1) \quad \text { and } \quad u_{2}(x)=3 e^{x-2}-(x+1) .
$$

Then the Green's Function is given by

$$
G(x, y)=\frac{1}{C} \begin{cases}u_{1}(x) u_{2}(y) & y \geq x \tag{0.1}\\ u_{1}(y) u_{2}(x) & x \geq y\end{cases}
$$

and C itself is simply given by $C=-u_{2}(1) u_{1}^{\prime}(1) p(1)=\left(2-3 e^{-1}\right) e^{-1}$. The solution then is

$$
\begin{aligned}
u(x) & =\frac{u_{2}(x)}{C} \int_{1}^{x}\left(2 e^{y-1}-(y+1)\right) e^{y} \mathrm{~d} y+\frac{u_{1}(x)}{C} \int_{x}^{2}\left(3 e^{y-2}-(y+1)\right) e^{y} \mathrm{~d} y \\
& =\frac{1}{\left(2-3 e^{-1}\right) e^{-1}}\left(\frac{3}{2}(1-x) e^{2 x-2}+(x-1) e^{2 x-1}-e^{x+1}+\frac{e^{2}}{2}(1+x)\right) \\
& =\frac{1}{(2 e-3)}\left(\frac{3}{2}(1-x) e^{2 x}+(x-1) e^{2 x+1}-e^{x+2}+\frac{e^{4}}{2}(1+x)\right)
\end{aligned}
$$

One can check that this is indeed the solution. It is probably easiest to consider the equation $\mathcal{L} u=e^{x}$ in the equivalent form

$$
x u^{\prime \prime}-(1+x) u^{\prime}+u=x^{2} e^{2 x} .
$$

3. Let \mathcal{L} be the Sturm-Liouville operator defined by

$$
\mathcal{L} u(x)=\left(1+x^{2}\right)\left(\left(1+x^{2}\right) u^{\prime}(x)\right)^{\prime} .
$$

(a) Find all eigenvalues and eigenfunctions $\mathcal{L} u(x)=\lambda u(x)$ subject to $u(0)=0$ and $u(1)=0$. Hint: recall that the derivative of $\arctan (x)$ is $\left(1+x^{2}\right)^{-1}$, and consider the function v defined by $u(x)=v(\arctan (x))$, and compute $\mathcal{L} u(x)$ in terms of v.
(b) Solve the wave equation

$$
\frac{\partial^{2}}{\partial t^{2}} h(x, t)=\mathcal{L} h(x, t)
$$

subject to $h(0, t)=h(1, t)=0$ for all t, and subject to

$$
h(x, 0)=0 \quad \text { and } \quad \frac{\partial}{\partial t} h(x, 0)=\frac{x-x^{3}}{\left(1+x^{2}\right)^{2}} .
$$

Hint: If the function on the right looks unfamiliar after you have completed part (a), compute \mathcal{L} applied to this function.
(c) Consider the wave equation

$$
\frac{\partial^{2}}{\partial t^{2}} h(x, t)=\mathcal{L} h(x, t)
$$

subject to $h(0, t)=h(1, t)=0$ for all t, and subject to

$$
h(x, 0)=x-x^{3} \quad \text { and } \quad \frac{\partial}{\partial t} h(x, 0)=0 .
$$

Find integrals giving numbers β_{k} so that the solution $h(x, t)$ is given by

$$
h(x, t)=\sum_{k=1}^{\infty} \cos \left(\sqrt{\left|\lambda_{k}\right|} t\right) u_{k}(x)
$$

where $\left\{\lambda_{k}\right\}$ and $\left\{u_{k}\right\}$ are the eigenvectors and eigenvalue sequence found in part (a).
SOLUTION Let $u(x)=v(\arctan (x))$, and then $u^{\prime}(x)=\left(1+x^{2}\right)^{-1} v^{\prime}(\arctan (x))$. Therefore, $\left(1+x^{2}\right) u^{\prime}(x)=v^{\prime}(\arctan (x))$. In this way we find

$$
\mathcal{L} u(x)=v^{\prime \prime}(\arctan (x)) .
$$

The eigenvalue problem $\mathcal{L} u=\lambda u$ is then the same as

$$
v^{\prime \prime}(y)=\lambda v(y)
$$

for $y=\arctan (x)$, and boundary conditions $v(0)=v(\pi / 4)=0$.
The general solution is $v(y)=\alpha \sin (\sqrt{-\lambda} y)+\beta \cos (\sqrt{-\lambda} y)$, and from the boundary conditions, $\beta=0$ and $\sqrt{-\lambda} \pi / 4=k \pi$. Thus, $\lambda_{k}=-(4 k)^{2}$ and $v_{k}(y)=\sin (4 k y)$, and thus $u_{k}(x)=\sin (4 k \arctan (x))$. Here $k=1,2,3 \ldots$.

Next, since $\sin (\arctan (x))=x / \sqrt{1+x^{2}}$ and $\cos (\arctan (x))=1 / \sqrt{1+x^{2}}$, two applications of the double angle formuals give

$$
u_{1}(x)=4 \frac{x-x^{3}}{\left(1+x^{2}\right)^{2}}
$$

The general solution $h(x, t)$ can be written as a linear combination of the special solutions $h_{k}(x, t)$:

$$
h(x, t)=\sum_{k=1}^{\infty}\left[\alpha_{k} \sin (4 k t) u_{k}(x)+\beta_{k} \cos (4 k t) u_{k}(x)\right] .
$$

Differentiating,

$$
\frac{\partial}{\partial t} h(x, t)=\sum_{k=1}^{\infty}\left[4 k \alpha_{k} \cos (4 k t) u_{k}(x)-\beta_{k} 4 k \sin (4 k t) u_{k}(x)\right]
$$

Setting $t=0$, we can siatisfy the initial conditions by taking $\beta_{k}=0$ for all k, and then taking $\alpha_{1}=1 / 16$ and $\alpha_{k}=0$ for all $k>1$.

Finally for part (c), we satisfy the initial conditions by taking $\alpha_{k}=0$ for all k, and then taking

$$
\beta_{k}=\frac{\left\langle x-x^{3}, u_{k}\right\rangle_{\rho}}{\left\|u_{k}\right\|_{\rho}^{2}}
$$

where

$$
\rho(x)=\left(1+x^{2}\right)^{-1}
$$

. (You can actually do the integrals abut are not required to).
4. Consider the equation $\sqrt{1+x^{2}} u^{\prime \prime}+x u^{\prime}=\lambda u$.
(a).Write this equation in Sturm-Liouville form as an eigenvalue equation. That is, find positive functions $\rho(x)$ and $p(x)$ so that $\mathcal{L} u(x)=\lambda u(x)$ with

$$
\sqrt{1+x^{2}} u^{\prime \prime}+x u^{\prime}=\frac{1}{\rho(x)}\left(p(x) u^{\prime}\right)^{\prime}=\mathcal{L} u(x) .
$$

(b) Find a function $V_{\lambda}(x)$ such that if u is any non-trivial solution of $\sqrt{1+x^{2}} u^{\prime \prime}+x u^{\prime}=\lambda u$, there is a solution $y(x)$ of

$$
y^{\prime \prime}(x)+V_{\lambda}(x) y(x)=0
$$

that has its zeros in the same places as $u(x)$.
(c) Find a number κ_{0} so that for $\lambda>\kappa_{0}$ you know that all solutions of $\mathcal{L} u=\lambda u$ have at most one zero in $(0,1)$. Justify your answer.
(d) Find a number κ_{1} so that for $\lambda<\kappa_{1}$ you know that all solutions of $\mathcal{L} u=\lambda u$ with $u(0)=0$ have a zero in $(0,1)$. Justify your answer.
(e) Let λ_{1} be the largest eigenvalue of \mathcal{L} for $u(0)=u(1)=0$. Find numbers a and b so that you know that $a \leq \lambda_{1} \leq b$. Justify your answer.

SOLUTION First, write the eqaution in standard form:

$$
u^{\prime \prime}+\frac{x}{\sqrt{1+x^{2}}} u^{\prime}-\frac{\lambda}{\sqrt{1+x^{2}}} u .
$$

Here,

$$
P=\frac{x}{\sqrt{1+x^{2}}}=\frac{\mathrm{d}}{\mathrm{~d} x} \sqrt{1+x^{2}}
$$

and so $p=e^{\int P}=e^{\sqrt{1+x^{2}}}$. Multiplying through we get

$$
\left(e^{\sqrt{1+x^{2}}} u^{\prime}\right)^{\prime}-e^{\sqrt{1+x^{2}}} \frac{\lambda}{\sqrt{1+x^{2}}} u=0
$$

Undoing the two multiplications, we get

$$
\sqrt{1+x^{2}} u^{\prime \prime}+x u^{\prime}=\lambda u=\sqrt{1+x^{2}} e^{-\sqrt{1+x^{2}}}\left(e^{\sqrt{1+x^{2}}} u^{\prime}\right)^{\prime}-\lambda u .
$$

Hence we have

$$
\mathcal{L} u=\sqrt{1+x^{2}} e^{-\sqrt{1+x^{2}}}\left(e^{\sqrt{1+x^{2}}} u^{\prime}\right)^{\prime} .
$$

For (b) we have $P=x / \sqrt{1+x^{2}}$ and $Q=-\lambda / \sqrt{1+x^{2}}$. Then

$$
V_{\lambda}=Q-\frac{1}{4} P^{2}-\frac{1}{2} P^{\prime} .
$$

Computing we find

$$
V_{\lambda}=-\frac{1}{4} \frac{x^{2} \sqrt{1+x^{2}}+2+4 \lambda\left(1+x^{2}\right)}{\left(1+x^{2}\right)^{3 / 2}} .
$$

For (c), we have a most one zero when V_{λ} is negative, This is the case exactly when

$$
-x^{2} \sqrt{1+x^{2}}-2<4 \lambda\left(1+x^{2}\right)
$$

on $(0,1)$. Simple calculations show that this is the case for $\lambda>0.42$. (You can do slightly better). So we take $\kappa_{0}=-0.42$.

For (d), if $V_{\lambda} \geq \pi^{2}$ then any solution of $y^{\prime \prime}+V_{\lambda}$ with $y(0)=0$ will have a second zero in $(0,1)$.
This is the case if for all $x \in(0,1)$

$$
x^{2} \sqrt{1+x^{2}}+2+4 \lambda\left(1+x^{2}\right)<-4\left(1+x^{2}\right)^{3 / 2} \pi^{2} .
$$

which means for all $x \in(0,1)$,

$$
\lambda<\frac{-4\left(1+x^{2}\right)^{3 / 2} \pi^{2}-x^{2} \sqrt{1+x^{2}}-2}{4\left(1+x^{2}\right)} .
$$

A plot of the right hand side shows it is greater than -15 everywhere on $(0,1)$. Hence $\lambda<-15$ is too negative.

For (e), the above gives $-15<\lambda_{1}<-0.42$.

[^0]: ${ }^{1}$ © 2018 by the author.

