Practice Test Two, Math 292, 2018

Eric A. Carlen¹ Rutgers University

April 21, 2018

1. (a) Find the general solution of

$$x^{2}u''(x) - xu'(x) - 3u(x) = 0$$

for x > 0.

(b) Find the general solution of

$$x^{2}u''(x) - xu'(x) - 3u(x) = x - 3$$

(c) Find the solution of

$$x^{2}u''(x) - xu'(x) - 3u(x) = x - 3$$

with u(1) = u(2) = 0.

2. (a) Find functions p and q such that if we define $\mathcal{L}u = (pu')' + qu$, u satisfies xu'' - (1+x)u' + u = 0 if and only if $\mathcal{L}u = 0$ everywhere on $(0, \infty)$.

(b) Are there any solutions of $\mathcal{L}u = 0$ that have more than one zero on $(0, \infty)$? Justify your answer: First find an equation of the form

$$y'' + V(x)y(x)$$

so that every solution of this equation on $(0, \infty)$ is a nonzero multiple of a solution of $\mathcal{L}u = 0$, and apply the Strum oscillation theorems.

(c) Find the Green's function for $\mathcal{L}u = f$ subject to u(1) = u(2) = 0, and find the solution of

$$\mathcal{L}u = e^x$$

3. Let \mathcal{L} be the Sturm-Liouville operator defined by

$$\mathcal{L}u(x) = (1+x^2)((1+x^2)u'(x))'$$
.

(a) Find all eigenvalues and eigenfunctions $\mathcal{L}u(x) = \lambda u(x)$ subject to u(0) = 0 and u(1) = 0. Hint: recall that the derivative of $\arctan(x)$ is $(1 + x^2)^{-1}$, and consider the function v defined by $u(x) = v(\arctan(x))$, and compute $\mathcal{L}u(x)$ in terms of v.

 $^{^1 \}odot \,$ 2018 by the author.

(b) Solve the wave equation

$$\frac{\partial}{\partial t}h(x,t) = \mathcal{L}h(x,t)$$

subject to h(0,t) = h(1,t) = 0 for all t, and subject to

$$h(x,0) = 0$$
 and $\frac{\partial}{\partial t}h(x,0) = \frac{x-x^3}{(1+x^2)^2}$

Hint: If the function on the right looks unfamiliar after you have completed part (a), compute \mathcal{L} applied to this function.

(c) Consider the wave equation

$$\frac{\partial}{\partial t}h(x,t) = \mathcal{L}h(x,t)$$

subject to h(0,t) = h(1,t) = 0 for all t, and subject to

$$h(x,0) = x - x^3$$
 and $\frac{\partial}{\partial t}h(x,0) = 0$.

Find integrals giving numbers β_k so that the solution h(x,t) is given by

$$h(x,t) = \sum_{k=1}^{\infty} \cos(\sqrt{|\lambda_k|}t) u_k(x)$$

where $\{\lambda_k\}$ and $\{u_k\}$ are the eigenvectors and eigenvalue sequence found in part (a).

4. Consider the equation $\sqrt{1+x^2}u'' + xu' = \lambda u$.

(a) .Write this equation in Sturm-Liouville form as an eigenvalue equation. That is, find positive functions $\rho(x)$ and p(x) so that $\mathcal{L}u(x) = \lambda u(x)$ with

$$\sqrt{1+x^2}u'' + xu' = \frac{1}{\rho(x)}(p(x)u')' = \mathcal{L}u(x) \ .$$

(b) Find a function $V_{\lambda}(x)$ such that if u is any non-trivial solution of $\sqrt{1+x^2}u''+xu'=\lambda u$, there is a solution y(x) of

$$y''(x) + V_{\lambda}(x)y(x) = 0$$

that has its zeros in the same places as u(x).

(c) Find a number κ_0 so that for $\lambda > \kappa_0$ you know that all solutions of $\mathcal{L}u = \lambda u$ have at most one zero in (0, 1). Justify your answer.

(d) Find a number κ_1 so that for $\lambda < \kappa_1$ you know that all solutions of $\mathcal{L}u = \lambda u$ with u(0) = 0 have a zero in (0, 1). Justify your answer.

(e) Let λ_1 be the largest eigenvalue of \mathcal{L} for u(0) = u(1) = 0. Find numbers a and b so that you know that $a \leq \lambda_1 \leq b$. Justify your answer.