Practice Test Two, Math 292, 2018

Eric A. Carlen ${ }^{1}$
Rutgers University

April 21, 2018

1. (a) Find the general solution of

$$
x^{2} u^{\prime \prime}(x)-x u^{\prime}(x)-3 u(x)=0
$$

for $x>0$.
(b) Find the general solution of

$$
x^{2} u^{\prime \prime}(x)-x u^{\prime}(x)-3 u(x)=x-3
$$

(c) Find the solution of

$$
x^{2} u^{\prime \prime}(x)-x u^{\prime}(x)-3 u(x)=x-3
$$

with $u(1)=u(2)=0$.
2. (a) Find functions p and q such that if we define $\mathcal{L} u=\left(p u^{\prime}\right)^{\prime}+q u, u$ satisfies $x u^{\prime \prime}-(1+x) u^{\prime}+u=0$ if and only if $\mathcal{L} u=0$ everywhere on $(0, \infty)$.
(b) Are there any solutions of $\mathcal{L} u=0$ that have more than one zero on $(0, \infty)$? Justify your answer: First find an equation of the form

$$
y^{\prime \prime}+V(x) y(x)
$$

so that every solution of this equation on $(0, \infty)$ is a nonzero multiple of a solution of $\mathcal{L} u=0$, and apply the Strum oscillation theorems.
(c) Find the Green's function for $\mathcal{L} u=f$ subject to $u(1)=u(2)=0$, and find the solution of

$$
\mathcal{L} u=e^{x} .
$$

3. Let \mathcal{L} be the Sturm-Liouville operator defined by

$$
\mathcal{L} u(x)=\left(1+x^{2}\right)\left(\left(1+x^{2}\right) u^{\prime}(x)\right)^{\prime} .
$$

(a) Find all eigenvalues and eigenfunctions $\mathcal{L} u(x)=\lambda u(x)$ subject to $u(0)=0$ and $u(1)=0$. Hint: recall that the derivative of $\arctan (x)$ is $\left(1+x^{2}\right)^{-1}$, and consider the function v defined by $u(x)=v(\arctan (x))$, and compute $\mathcal{L} u(x)$ in terms of v.

[^0](b) Solve the wave equation
$$
\frac{\partial}{\partial t} h(x, t)=\mathcal{L} h(x, t)
$$
subject to $h(0, t)=h(1, t)=0$ for all t, and subject to
$$
h(x, 0)=0 \quad \text { and } \quad \frac{\partial}{\partial t} h(x, 0)=\frac{x-x^{3}}{\left(1+x^{2}\right)^{2}} .
$$

Hint: If the function on the right looks unfamiliar after you have completed part (a), compute \mathcal{L} applied to this function.
(c) Consider the wave equation

$$
\frac{\partial}{\partial t} h(x, t)=\mathcal{L} h(x, t)
$$

subject to $h(0, t)=h(1, t)=0$ for all t, and subject to

$$
h(x, 0)=x-x^{3} \quad \text { and } \quad \frac{\partial}{\partial t} h(x, 0)=0 .
$$

Find integrals giving numbers β_{k} so that the solution $h(x, t)$ is given by

$$
h(x, t)=\sum_{k=1}^{\infty} \cos \left(\sqrt{\left|\lambda_{k}\right|} t\right) u_{k}(x)
$$

where $\left\{\lambda_{k}\right\}$ and $\left\{u_{k}\right\}$ are the eigenvectors and eigenvalue sequence found in part (a).
4. Consider the equation $\sqrt{1+x^{2}} u^{\prime \prime}+x u^{\prime}=\lambda u$.
(a). Write this equation in Sturm-Liouville form as an eigenvalue equation. That is, find positive functions $\rho(x)$ and $p(x)$ so that $\mathcal{L} u(x)=\lambda u(x)$ with

$$
\sqrt{1+x^{2}} u^{\prime \prime}+x u^{\prime}=\frac{1}{\rho(x)}\left(p(x) u^{\prime}\right)^{\prime}=\mathcal{L} u(x) .
$$

(b) Find a function $V_{\lambda}(x)$ such that if u is any non-trivial solution of $\sqrt{1+x^{2}} u^{\prime \prime}+x u^{\prime}=\lambda u$, there is a solution $y(x)$ of

$$
y^{\prime \prime}(x)+V_{\lambda}(x) y(x)=0
$$

that has its zeros in the same places as $u(x)$.
(c) Find a number κ_{0} so that for $\lambda>\kappa_{0}$ you know that all solutions of $\mathcal{L} u=\lambda u$ have at most one zero in $(0,1)$. Justify your answer.
(d) Find a number κ_{1} so that for $\lambda<\kappa_{1}$ you know that all solutions of $\mathcal{L} u=\lambda u$ with $u(0)=0$ have a zero in $(0,1)$. Justify your answer.
(e) Let λ_{1} be the largest eigenvalue of \mathcal{L} for $u(0)=u(1)=0$. Find numbers a and b so that you know that $a \leq \lambda_{1} \leq b$. Justify your answer.

[^0]: ${ }^{1}$ 2018 by the author.

