Practice Test One, Math 292, Spring 2018

February 22, 2018

NAME:

1. Find the general solution of the differential equation

$$
x^{\prime}(t)=-\frac{2}{t} x(t)+t^{3} x(t)^{2}+t^{-5}
$$

for $t>0$.
2. (a) Let $v(x)=x / \ln (x)$, which is continuous on $1<x<\infty$. For all x_{0} in this interval, find all solutions of

$$
\begin{equation*}
x^{\prime}(t)=v(x(t)), \quad x(0)=x_{0} . \tag{*}
\end{equation*}
$$

For which values of t is each solution defined?
(b) Find an explicit formula for the flow transformation $\varphi_{t}(x)$ on the interval $(1, \infty)$ such that for each $x_{0} \in(1, \infty), x(t):=\varphi_{t}\left(x_{0}\right)$ is the unique solution to $(*)$ for all t for which the solution is deined.
(c) Consider the equations

$$
x^{\prime}(t)=\sqrt{x(t)(1-x(t))} \quad \text { and } \quad y^{\prime}(t)=y^{2}(t)(1-y(t))^{2},
$$

with the initial conditions $x(0)=y(0)=1 / 2$.
One of these solutions stays in the interval $(0,1)$ for all t, and the other reaches the right endpoint in a finite time T. Which one is it, and what is the value of T ?
3. (a) Consider the differential equation $\mathbf{x}^{\prime}=A \mathbf{x}$ where

$$
A=\left[\begin{array}{rrr}
-1 & 0 & 1 \\
0 & -2 & 4 \\
0 & 0 & -2
\end{array}\right] .
$$

Find the general solution $\mathbf{x}(t)=e^{t A} \mathbf{x}_{0}$ in closed form. That is, compute $e^{t A}$. (Note that this system is recursively coupled.)
(b) For the same matrix A and for $\mathbf{f}(t)=\left(0, e^{t}, 0\right)$, find the solution of

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)+\mathbf{f}(t) \quad \text { with } \quad \mathbf{x}(0)=(1,2,1) .
$$

(c) Consider the matrix $B=\left[\begin{array}{rr}7 & 9 \\ -1 & 1\end{array}\right]$. Compute the matrix exponential $e^{t B}$. Is there any choice of \mathbf{x}_{0} so that if $\mathbf{x}(t)$ is the solution of $\mathbf{x}^{\prime}(t)=B \mathbf{x}(t)$ with $\mathbf{x}(0)=\mathbf{x}_{0}$, the both $\lim _{t \rightarrow \infty}\|\mathbf{x}(t)\|=\infty$ and $\lim _{t \rightarrow-\infty}\|\mathbf{x}(t)\|=\infty$?
4. Consider the vector field

$$
\mathbf{v}(x, y)=((x+y)(x-y-1),(x+y-2)(x-y+1)) .
$$

(a) Find all equilibrium points of \mathbf{v}, and determine which, if any, are asymptotically stable, and which if any are unstable. Sketch the flow lines in the vicinity of each equilibrium point.
(b) Do the same for

$$
\mathbf{v}(x, y)=((x+y-2)(x-y+1),(x+y)(x-y-1)) .
$$

5. Let $M=\left[\begin{array}{ll}4 & 0 \\ 0 & 1\end{array}\right]$ and $A=\left[\begin{array}{ll}8 & 2 \\ 2 & 2\end{array}\right]$.
(a) Consider the equation $\mathbf{x}^{\prime \prime}=-A \mathbf{x}$. Find an equivalent equation of the form $\mathbf{y}^{\prime \prime}=-K \mathbf{y}$, and write down the general solution of this equation. Then write down the solution of $\mathbf{x}^{\prime \prime}=-A \mathbf{x}$ with $\mathbf{x}(0)=(3,2)$ and $\mathbf{x}^{\prime}(0)=\mathbf{0}$.
(b)

Let $\mathbf{g}=(4,1)$. Consider the differential equation

$$
M \mathbf{x}^{\prime \prime}(t)+A \mathbf{x}(t)=\mathbf{g} \cos (\omega t)
$$

for some positive number ω. Find the solution for all $\omega>0$. For which values of ω, if any, is there resonance?

