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1. Find the general solution of

t3x′(t) + t2x(t)− x2(t) = 2t4

for t > 0, and the corresponding flow transformation.

2. Consider the two equations

I (y′)2 + y2 = 1 and II (y′)2 − y2 = 1 .

One has a unique solution with y(t) = y0 ∈ (−1, 1), and the other has infinitely many such solutions.

Which one is which? Justify your answer.

3. Let v(x, y) = (xy + 12, x2 + y2 − 25). Find all equilibrium points of v, and determine which, if

any, are Lyapunov stable, asymptotically stable, or unstable whenever this can be determined by

linearization. Justify your answer, and sketch the flow curves near each equilibrium point.

4. Let A =

[
3 1

−1 5

]
Let f(t) = (1, t). Find the solution of

x′(t) = Ax(t) + f(t)

with x(0) = (1, 1).

5. Define the matrices

M =

[
5 4

4 5

]
and A = 3

[
7 8

8 10

]
.

(a) Find a positive matrix M1/2 such that (M1/2)2 = M .

(b) Find a matrix K such that if x(t) and y(t) are related by y(t) = M1/2x(t), then x(t) solves

Mx′′(t) = −Ax(t) if and only if y(t) solves y′′(t) = −Ky(t).

(c) Find all values of ω > 0 such that the solutions of

Mx′′(t) = −Ax(t) + cos(ωt)(1, 1)

have resonance.
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