Homework Assignment 7, Math 292, Spring 2019

Eric A. Carlen ${ }^{1}$
Rutgers University

April 21, 2018

1. Find the minimum value and minimizing function $y(x)$ for

$$
I[y]=\int_{0}^{1}(1+x)\left(y^{\prime}(x)\right)^{2} \mathrm{~d} x
$$

subject to $y(0)=0$ and $y(1)=1$.
2. Find the minimum value and minimizing function $y(x)$ for

$$
I[y]=\int_{0}^{1}\left[\left(y^{\prime}(x)\right)^{2}+\frac{y^{2}(x)}{x^{2}}\right] \mathrm{d} x
$$

subject to $y(0)=0$ and $y(1)=1$.
3. Let $L>0$ and let

$$
I[y]=\int_{0}^{L}\left[\left(y^{\prime}\right)^{2}-y^{2}-(\sin x) y\right] \mathrm{d} x .
$$

Consider the problem of minimizing $I[y]$ subject to $y(0)=y(L)=0$. Find the corresponding Euler-Lagrange equation. For which values of L does it have a solution subject to the boundary conditions, and for which values of L is it a minimum?
4: For all continuously differentiable functions $y(x)$ on $(1,4)$ such that $y(1)=1$ and $y(4)=2$, define

$$
I[y]=\int_{1}^{4} y^{2}(x)\left(y^{\prime}(x)\right)^{2} \mathrm{~d} x
$$

(a) Find and solve the Euler-Lagrange equation for these boundary conditions.
(b) Use the identity

$$
y^{2}(4)-y^{2}(1)=\int_{1}^{4} 2 y(x) y^{\prime}(x) \mathrm{d} x
$$

valid for any continuously differentiable functions, and the Cauchy-Schwarz inequality for integrals, to prove that the solution you found in part (a) is the minimizer of the functional.
5. Find the minimum value and minimizing function $y(x)$ for

$$
I[y]=\int_{0}^{1} y^{2}(x) \mathrm{d} x
$$

[^0]subject to the constraints $\int_{0}^{1} x^{2} y(x) \mathrm{d} x=1$ and $\int_{0}^{1} y(x) \mathrm{d} x=1$. There are many connections between things we have discussed this year. The easiest way to think about this problem is in terms of the Gram-Schmidt Algorithm. If we define $v_{1}(x)=x^{2}$, and $v_{2}(x)=1$, and define the inner product $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) \mathrm{d} x$, and $\|f\|^{2}=\langle f, f\rangle$, the function to be minimized is $\|y\|^{2}$, and the constraints are $\left\langle y, v_{1}\right\rangle=1$ and $\left\langle y, v_{2}\right\rangle=1$. How would you find a vector $\mathbf{y} \in \mathbb{R}^{3}$ with minimal norm such that for given vectors \mathbf{v}_{1} and $\mathbf{v}_{2}, \mathbf{y} \cdot \mathbf{v}_{1}=1$ and $\mathbf{y} \cdot \mathbf{v}_{2}=1$? Compare this approach with the Lagrange multiplier approach.

[^0]: ${ }^{1}$ © 2018 by the author.

