Homework Assignment 7, Math 292, Spring 2019

Eric A. $Carlen^1$

Rutgers University

April 21, 2018

1. Find the minimum value and minimizing function y(x) for

$$I[y] = \int_0^1 (1+x)(y'(x))^2 dx$$

subject to y(0) = 0 and y(1) = 1.

2. Find the minimum value and minimizing function y(x) for

$$I[y] = \int_0^1 \left[(y'(x))^2 + \frac{y^2(x)}{x^2} \right] dx$$

subject to y(0) = 0 and y(1) = 1.

3. Let L > 0 and let

$$I[y] = \int_0^L [(y')^2 - y^2 - (\sin x)y] dx .$$

Consider the problem of minimizing I[y] subject to y(0) = y(L) = 0. Find the corresponding Euler-Lagrange equation. For which values of L does it have a solution subject to the boundary conditions, and for which values of L is it a minimum?

4: For all continuously differentiable functions y(x) on (1,4) such that y(1) = 1 and y(4) = 2, define

$$I[y] = \int_{1}^{4} y^{2}(x)(y'(x))^{2} \mathrm{d}x$$

(a) Find and solve the Euler-Lagrange equation for these boundary conditions.

(b) Use the identity

$$y^{2}(4) - y^{2}(1) = \int_{1}^{4} 2y(x)y'(x)dx$$

valid for any continuously differentiable functions, and the Cauchy-Schwarz inequality for integrals, to prove that the solution you found in part (a) is the minimizer of the functional.

5. Find the minimum value and minimizing function y(x) for

$$I[y] = \int_0^1 y^2(x) \mathrm{d}x$$

 $^{^{1}}$ © 2018 by the author.

subject to the constraints $\int_0^1 x^2 y(x) dx = 1$ and $\int_0^1 y(x) dx = 1$. There are many connections between things we have discussed this year. The easiest way to think about this problem is in terms of the Gram-Schmidt Algorithm. If we define $v_1(x) = x^2$, and $v_2(x) = 1$, and define the inner product $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$, and $||f||^2 = \langle f, f \rangle$, the function to be minimized is $||y||^2$, and the constraints are $\langle y, v_1 \rangle = 1$ and $\langle y, v_2 \rangle = 1$. How would you find a vector $\mathbf{y} \in \mathbb{R}^3$ with minimal norm such that for given vectors \mathbf{v}_1 and \mathbf{v}_2 , $\mathbf{y} \cdot \mathbf{v}_1 = 1$ and $\mathbf{y} \cdot \mathbf{v}_2 = 1$? Compare this approach with the Lagrange multiplier approach.