Solutions for Homework Assignment 6, Math 292, Spring 2018

Eric A. Carlen ${ }^{1}$
Rutgers University

April 25, 2018

1. (a) Find the general solution of the homogeneous differential equation

$$
t^{2} x^{\prime \prime}+3 t x^{\prime}+x=0
$$

(b) Find the general solution to the equation

$$
t^{2} x^{\prime \prime}+3 t x^{\prime}+x=\ln (t)
$$

(c) Find the solution of

$$
t^{2} x^{\prime \prime}+3 t x^{\prime}+x=\ln (t)
$$

that satisfies $x(1)=0$ and $x(3)=0$, or explain why there is no such solution.
SOLUTION (a) Looking for a solution of the form $x(t)=t^{\alpha}$, we find $\alpha^{2}+2 \alpha+1=0$, so $\alpha=-1$, one solution is $x_{1}(t)=1 / t$. Since $P=3 / t$,

$$
v=\int \frac{1}{x_{1}^{2}} e^{-\int P}=\ln (t),
$$

so the second solutions is $x_{2}(t)=\ln (t) / t^{2}$. Hence the general solutions is

$$
x(t)=c_{1} \frac{1}{t}+c_{2} \frac{\ln (t)}{t} .
$$

(b) We must compute

$$
M(s)=\left[\begin{array}{cc}
x_{1}(s) & x_{2}(s) \\
x_{1}^{\prime}(s) & x_{2}^{\prime}(s)
\end{array}\right] \quad \text { and } \quad N(t, s)=\left[\begin{array}{ll}
x_{1}(s) & x_{2}(s) \\
x_{1}(t) & x_{2}(t)
\end{array}\right],
$$

and then a particular solutions is

$$
x_{p}(t)=\int_{t_{0}}^{t} \frac{\operatorname{det}(N(t, s))}{\operatorname{det}(M(s))} r(s) \mathrm{d} s .
$$

We find $\operatorname{det}(M(s))=s^{-3}$ and $\operatorname{det}(N(t, s))=\frac{1}{s t} \ln (s / t)$, and $r(s)=\ln (s) / s^{2}$. Altogether, taking $t_{0}=1$, we find

$$
x_{p}(t)=\frac{1}{t} \int_{1}^{t}\left(\ln (t) \ln (s)-(\ln (s))^{2}\right) \mathrm{d} s=\frac{2}{t}+\frac{\ln (t)}{t}+\ln (t)-2 .
$$

[^0]Because the first two terms are multiples of x_{1} and x_{2}, we may ignore them and simplify our particular solutions to

$$
x_{p}(t)=\ln (t)+2 .
$$

This is simple enough to check; it is indeed a solution. Hence the general solution is

$$
x(t):=c_{1} \frac{1}{t}+c_{2} \frac{\ln (t)}{t}+\ln (t)-2 .
$$

(c) We find $x(1)=c_{1}-2$, and so $c_{1}=2$. Then

$$
x(3)=-2 \ln (3)+\left(\frac{c_{2}}{3}+1\right) \ln (3)-2,
$$

from which one finds $c_{2}=3+6 / \ln (3)$.
2. (a) The equation

$$
\begin{equation*}
x u^{\prime \prime}-u^{\prime}+(1-x) u=0 \tag{0.1}
\end{equation*}
$$

has one solution of the form $u_{1}(x)=e^{\alpha x}$. Find this solution and a second independent solution $u_{2}(x)$.
(b) Find functions p and q so that with $\mathcal{L} u=\left(p u^{\prime}\right)^{\prime}+q, \mathcal{L} u=0$ if and only if $x u^{\prime \prime}-u^{\prime}+(1-x) u=0$.
(c) For the Sturm-Liouville operator \mathcal{L} from part (b), find the Green's function for solving $\mathcal{L} u=f$ subject to $u(1)=u(2)=0$, or explain why it does not exist. Finally, find the solution of $\mathcal{L} u=x^{2}$ subject to $u(1)=u(2)=0$.
(d) Solve $\mathcal{L} u=x^{2}$ subject to Neumann boundary conditions on [1, 2].

SOLUTION (a) We find that $u_{1}=e^{x}$, and then

$$
v=\int \frac{1}{u_{1}^{2}} e^{-\int P}=-\frac{1}{4}(2 x+1) e^{-2 x} .
$$

Therefore, dropping an irrelevant minus sign and constant, we get $u_{2}=\left(x+\frac{1}{2}\right) e^{-x}$. One readily checks that this is a solution.
(b) Note that $\left(x^{-1} u^{\prime}\right)^{\prime}=x^{-1} u^{\prime \prime}-x^{-2} u^{\prime}$. Therefore,

$$
x^{2}\left[\left(x^{-1} u^{\prime}\right)^{\prime}+\frac{1-x}{x^{2}} u\right]=x u^{\prime \prime}-u^{\prime}+(1-x) u .
$$

Hence $p=1 / x$ and $q=(1-x) / x^{2}$.
(c) Note that $u_{2}(1)=\frac{3}{2} e^{-1}=\frac{3}{2} e^{-2} u_{1}(1)$. Therefore

$$
\widetilde{u}_{1}(x):=2 u_{2}(x)-3 e^{-2} u_{1}(x)=(2 x+1) e^{-x}-3 e^{x-2}
$$

is a solution of the homogeneous equation with $\widetilde{u}_{1}(1)=0$. Likewise,

$$
u_{1}(2)=e^{2}=\frac{2}{5} e^{4} u_{2}(2) .
$$

Therefore

$$
\widetilde{u}_{2}(x):=2 u_{2}(x)-5 e^{-4} u_{1}(x)=(2 x+1) e^{-x}-5 e^{x-4}
$$

is a solution of the homogeneous equation with $\widetilde{u}_{2}(2)=0$.
From this point on in this part, we drop the tildes, and work with these solutions of the homogeneous equation: Then the Green's Function is given by

$$
G(x, y)=\frac{1}{C} \begin{cases}u_{1}(x) u_{2}(y) & y \geq x \tag{0.2}\\ u_{1}(y) u_{2}(x) & x \geq y\end{cases}
$$

and C itself is simply given by $C=-u_{2}(1) u_{1}^{\prime}(1) p(1)=5 e^{-4}-3 e^{-2}$. The solution then is

$$
u(x)=\frac{u_{2}(x)}{C} \int_{1}^{x}\left((2 y+1) e^{-y}-3 e^{y-2}\right) y^{2} \mathrm{~d} y+\frac{u_{1}(x)}{C} \int_{x}^{2}\left((2 y+1) e^{-y}-5 e^{y-4}\right) y^{2} \mathrm{~d} y .
$$

(d) For this, we find the general solution of $\mathcal{L} u=x^{2}$, which by part (b) is the same as

$$
x u^{\prime \prime}-u^{\prime}+(1-x) u=x^{4} .
$$

We return to the original u_{1} and u_{2}.
We must compute

$$
M(y)=\left[\begin{array}{cc}
u_{1}(y) & u_{2}(y) \\
u_{1}^{\prime}(y) & u_{2}^{\prime}(y)
\end{array}\right] \quad \text { and } \quad N(x, y)=\left[\begin{array}{ll}
u_{1}(y) & u_{2}(y) \\
u_{1}(x) & u_{2}(x)
\end{array}\right],
$$

and then a particular solutions is

$$
u_{p}(x)=\int_{x_{0}}^{x} \frac{\operatorname{det}(N(x, y))}{\operatorname{det}(M(y))} r(y) \mathrm{d} y .
$$

We find $\operatorname{det}(M(y))=-2 y$ and $\operatorname{det}(N(x, y))=x e^{y-x}-y e^{x-y}+\sinh (y-x)$, and $r(y)=y^{3}$. Altogether, taking $x_{0}=1$, we find

$$
u_{p}(x)=-\frac{1}{2} \int_{1}^{x}\left(x e^{y-x}-y e^{x-y}+\sinh (y-x)\right) y^{2} \mathrm{~d} y
$$

Doing the integral one finds

$$
u_{p}=\frac{1}{2}(19+x) \cosh (x-1)+\frac{1}{2}(18-x) \cosh (x-1)-x^{3}-x^{2}-4 x-4 .
$$

Differentiating,

$$
u_{p}^{\prime}=\frac{1}{2}(19-x) \cosh (x-1)+\frac{1}{2}(18+x) \cosh (x-1)-3 x^{2}-2 x-4,
$$

and therefore

$$
u_{p}^{\prime}(1)=0 \quad \text { and } \quad u_{p}^{\prime}(2)+\frac{17}{2} \cosh (1)+10 \sinh (1)-20
$$

The general solution is

$$
c_{1} u_{1}+c_{2} u_{2}+u_{p}
$$

Evaluating the derivative at $x=1$ and $x=2$ give the system

$$
\begin{aligned}
c_{1} e-\frac{1}{2 e} c_{2} & =0 \\
c_{1} e^{2}+\frac{3}{2 e^{2}} c_{2} & =-\frac{17}{2} \cosh (1)-10 \sinh (1)+20
\end{aligned}
$$

The first equation tells us that $c_{1}=\frac{1}{2 e^{2}} c_{2}$, and then the second equation tells us

$$
c_{2}=\left(\frac{2 e^{2}}{e^{2}-3}\right)\left(-\frac{17}{2} \cosh (1)-10 \sinh (1)+20\right),
$$

so that finally

$$
c_{1}=\left(\frac{1}{e^{2}-3}\right)\left(-\frac{17}{2} \cosh (1)-10 \sinh (1)+20\right),
$$

3: Solve the equation

$$
\frac{\partial}{\partial t} h(x, t)=(1+x)^{2} \frac{\partial^{2}}{\partial^{2} x} h(x, t)
$$

for $x \in(0,1), t>0$, subject to

$$
h(0, t)=h(1, t)=0
$$

and

$$
h(x, 0)=(1+x)^{1 / 2} \sin \left(\pi \frac{\ln (1+x))}{\ln (2)}\right) .
$$

SOLUTION Let $\mathcal{L} u=(1+x)^{2} u^{\prime \prime}(x)$. The eigenvalue problem is

$$
(1+x)^{2} u^{\prime \prime}(x)-\lambda u(x)=0 .
$$

It is natural to look for solutions of the form $u(x)=(1+x)^{\alpha}$. This yields the equation $\alpha(\alpha-1)+\lambda=$ 0 . Proceeding as in an example in the text, we find the eigenvalues

$$
\lambda_{k}=-\frac{1}{4}-\frac{k^{2} \pi^{2}}{(\ln (2))^{2}},
$$

and the eigenfunctions

$$
u_{k}(x)=(1+x)^{1 / 2} \sin \left(k \pi \frac{\ln (1+x)}{\ln (2)}\right) .
$$

Notice that $h(x, 0)=u_{1}(x)$, and therefore, the unique solution of the equation is the special solutions

$$
h(x, t)=\exp \left(t\left(-\frac{1}{4}-\frac{\pi^{2}}{(\ln (2))^{2}}\right)\right)(1+x)^{1 / 2} \sin \left(\pi \frac{\ln (1+x))}{\ln (2)}\right) .
$$

4: (a) Consider the equation $\mathcal{L} u=0$ where

$$
\mathcal{L} u=\left(\frac{1}{x} u^{\prime}\right)^{\prime}+\frac{1-2 x}{x^{2}} u .
$$

(a) Are there any solutions of this equation that have more than one zero on $[1, \infty)$? Justify your answer: First find an equation of the form

$$
y^{\prime \prime}+V(x) y(x)
$$

so that every solution of this equation on $(0, \infty)$ is a nonzero multiple of a solution of $\mathcal{L} u=0$, and apply the Strum oscillation theorems.
(b) Does $\mathcal{L} u=f(x)$ have a solution satisfying $u(1)=u(2)=0$ for all continuous $f(x)$ on $[1,2]$? Justify your answer.

SOLUTION (a) We write the equation is standard form

$$
u^{\prime \prime}-\frac{1}{x} u^{\prime}+\left(\frac{1}{x}-2\right) u .
$$

Then $P=-1 / x$ and $Q=1 / x-2$, so

$$
V=Q-\frac{1}{4} P^{2}-\frac{1}{2} P^{\prime}=\left(\frac{1}{x}-2\right)-\frac{3}{4 x^{2}}=\frac{4 x-8 x^{2}-3}{4 x^{2}}<0 .
$$

Since V is negative, solutions will have at most one zero, so there are no such solutions.
(b) Yes. The only way this can fail to happen is if there is a non-trivial solution of $\mathcal{L} u=0$ that satisfies $u(1)=u(2)=0$. But by part (a), non-trivial solutions of $\mathcal{L} u=0$ have a most one zero.

[^0]: ${ }^{1}$ 2018 by the author.

