Homework Assignment 4, Math 292, Spring 2018

Eric A. Carlen ${ }^{1}$
Rutgers University

February 17, 2018

1. Let A be the matrix $A=\left[\begin{array}{rr}0 & 1 \\ -\kappa & 0\end{array}\right]$.
(a) Compute A^{2}, A^{3} and A^{4} Observe the patterns, and deduce a formula for A^{k} for all positive integers k. (You will probably want to consider even and odd k separately.)
(b) Use the results of part (a) to compute $e^{t A}$.
2. In this problem we consider driven oscillations with friction taken into account. We will consider a fricative force of the form $-a x^{\prime}(t)$ where $a>0$. That is the force is a negative multiple of the velocity. Combining this with the spring force, again assumed to be given by Hooke's Law, we have the Newton equation

$$
\begin{equation*}
m x^{\prime \prime}(t)=-k x(t)-a x^{\prime}(t)+f(t) \tag{0.1}
\end{equation*}
$$

where m is the mass, k is the spring constant, and $f(t)$ is the driving force.
(a) Introduce $y(t)=x^{\prime}(t)$, and $\mathbf{x}(t)=(x(t), y(y))$ and $\mathbf{g}(t)=\left(0, \frac{1}{m} f(t)\right)$. Find a 2×2 matrix B so that (0.1) is equivalent to

$$
\mathbf{x}^{\prime}(t)=B \mathbf{x}(t)+\mathbf{g}(t)
$$

(b) Compute $e^{t B}$. There will be three cases, according to whether $(a / m)^{2}>4(k / m),(a / m)^{2}=$ $4(k / m)$ and $(a / m)^{2}<4(k / m)$.
3. (a) Continuing with Exercise 2, use Duhamel's formula to-find integral formulas for the solution of (0.1). You will need 3 formulas, depending on whether $(a / m)^{2}>4(k / m),(a / m)^{2}=4(k / m)$ or $(a / m)^{2}<4(k / m)$.
(b) Solve (0.1) with $x(0)=0, \mathrm{x}^{\prime}(0)=0, f(t)=\cos (t), m=1, a=1$ and $k=5 / 4$.
(c) Solve (0.1) with $x(0)=0, \mathrm{x}^{\prime}(0)=0, f(t)=\cos (t), m=1, a=1$ and $k=1 / 4$.
4. Consider the matrices

$$
M:=\frac{1}{5}\left[\begin{array}{cc}
8 & 6 \\
6 & 17
\end{array}\right] \quad \text { and } \quad A:=\left[\begin{array}{cc}
4 & 6 \\
6 & 13
\end{array}\right] .
$$

(a) Compute the matrix square root $M^{1 / 2}$.
(b) Compute the matrix $L:=M^{-1 / 2} A M^{-1 / 2}$.

[^0](c) Let $\mathbf{u}_{1}=\frac{1}{\sqrt{5}}(2,1)$ and let $\mathbf{u}_{2}=\frac{1}{\sqrt{5}}(1,-2)$. Find solutions \mathbf{y}_{1} and \mathbf{y}_{2} of
$$
\mathbf{y}^{\prime \prime}=-L \mathbf{y}
$$
that satisfy $\mathbf{y}_{j}(0)=\mathbf{u}_{j}$ and $\mathbf{y}_{j}^{\prime}(0)=\mathbf{0}, j=1,2$. Find solutions \mathbf{y}_{3} and \mathbf{y}_{4} of the same equation that satisfy $\mathbf{y}_{j+2}(0)=\mathbf{0}$ and $\mathbf{y}_{j+2}^{\prime}(0)=\mathbf{u}_{j}, j=1,2$.
(d) Find the solution of $M \mathbf{x}^{\prime \prime}=-A \mathbf{x}$ with $\mathbf{x}(0)=0$ and $\mathbf{x}^{\prime}(0)=(3,-1)$.

[^0]: ${ }^{1}$ 2018 by the author.

