Homework Assignment 1, Math 292, Spring 2016

Eric A. Carlen ${ }^{1}$
Rutgers University

January 20, 2018

1. (a) 1. Find the general solution of

$$
t x^{\prime}(t)=x(t)+3 t^{2} .
$$

(b) Find the flow transformation $\Phi_{t, t_{0}}(x)$ specified by this equation.
(c) Find the particular solution $x(t)$ that satisfies $x(1)=2$.
2. (a) Find the general solution of

$$
x^{\prime}(t)+\frac{1}{3} x(t)=e^{t} x^{4}(t) .
$$

(b) Find the particular solution $x(t)$ that satisfies $x(1)=2$. Over what time interval $t \in(a, b)$ is the solutions a continuously differentiable function?
3. (a) Find the general solution of

$$
t x^{\prime}(t)=t x^{2}(t)-x(t)-\frac{1}{t} .
$$

(b) For any $\left(x_{0}, t_{0}\right)$ with $t_{0}>0$, find the solution $x(t)$ of this equation that satisfies $x\left(t_{0}\right)=x_{0}$
(c) Write down a formula for the flow transformation $\Phi_{t, t_{0}}$ generated by this equations. Verify explicitly that $\Phi_{3,2}\left(\Phi_{2,1}(x)\right)=\Phi_{3,1}(x)$ for all x.
4. Consider the equation

$$
\begin{equation*}
x^{\prime}(t)=2 \frac{t^{2}+x(t)}{t^{2}-x(t)} \tag{1}
\end{equation*}
$$

This is not first order linear, Bernoulli or Ricatti, and it is not separable as it stands. But introducing a new variable, we can get a more amenable equation. Introduce $y(t)$ through

$$
y(t)=\frac{x(t)}{t^{2}}
$$

for $t>0$.
(a) Show that $x(t)$ solves (1) for $t>0$ if and only if $y(t)$ solves a separable equation for $t>0$.
(b) Find the solution of (2) with $y(1)=y_{0}, y_{0} \neq-1$.
(c) Find the solution of (1) with $x(1)=x_{0}, x_{0} \neq-1$.
5. Find the general solution of the equation

$$
t x^{\prime \prime}(t)=1+\left(x^{\prime}(t)\right)^{2}
$$

[^0]
[^0]: ${ }^{1}$ © 2016 by the author.

