Solutions for Selected Exercises from Chapter 4

Eric A. Carlen ${ }^{1}$
Rutgers University

February 25, 2018
4.2 Let $A=\left[\begin{array}{ll}5 & 3 \\ 3 & 5\end{array}\right]$. Find the solution of the system

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)+e^{-8 t}(t, t) \quad \text { with } \quad \mathbf{x}(0)=(0,1)
$$

SOLUTION: We apply Duhamel's formula. We first compute

$$
e^{t A}=\frac{1}{2}\left[\begin{array}{cc}
e^{8 t}+e^{2 t} & e^{8 t}-e^{2 t} \\
e^{8 t}-e^{2 t} & e^{8 t}+e^{2 t}
\end{array}\right]
$$

Notice that $(1,1)$ is an eogenvector of A with the eigenvalue 8 . Hence

$$
e^{(t-s) A} e^{-8 s}(s, s)=e^{-8 s} e^{(t-s) A}(s, s)=s e^{-8 s} e^{(t-s) 8}(1,1)=e^{8 t} s e^{-16 s}(1,1)
$$

Therefore,

$$
\int_{0}^{t} e^{(t-s) A} e^{-8 s}(s, s) \mathrm{d} s=e^{8 t} \frac{1}{256}\left(1-16 t e^{-16 t}-e^{-16 t}\right)(1,1)
$$

Combining this with

$$
e^{t A} \mathbf{x}_{0}=\frac{1}{2}\left(e^{8 t}-e^{2 t}, e^{8 t}+e^{2 t}\right)
$$

we get,

$$
\mathbf{x}(t)=\frac{1}{2}\left(e^{8 t}-e^{2 t}, e^{8 t}+e^{2 t}\right)+e^{8 t} \frac{1}{256}\left(1-16 t e^{-16 t}-e^{-16 t}\right)(1,1) .
$$

4.8 Consider the vector field

$$
\mathbf{v}(x, y)=((x+y)(x-y-1),(x+y-2)(x-y+1)) .
$$

(a) Find all equilibrium points of \mathbf{v}, and determine which, if any, are asymptotically stable, and which if any are unstable.
(b) Do the same for

$$
\mathbf{v}(x, y)=((x+y-2)(x-y+1),(x+y)(x-y-1)) .
$$

[^0]SOLUTION: If $(x+y)(x-y-1)=0$, then either $y=-x$ or else $y=x-1$. In the first case, $(x+y-2)(x-y+1)=0$ reduces to $x=-1 / 2$, yielding the equilibrium point $(-1 / 2,1 / 2)$. In the second case, $(x+y-2)(x-y+1)=0$ reduces to $x=3 / 2$, yielding the equilibrium point $(3 / 2,1 / 2)$. We next compute the Jacobian

$$
\left.D_{\mathbf{v}}(x, y)\right]=\left[\begin{array}{ll}
2 x-1 & -2 y-1 \\
2 x-1 & -2 y+3
\end{array}\right] .
$$

Evaluating at ($-1 / 2,1 / 2$), we find

$$
A=\left[\begin{array}{rr}
-2 & -2 \\
-2 & 2
\end{array}\right]
$$

The eigenvalues are $\pm 2^{3 / 2}$ and so this equilibrium point is unstable.
Evaluating at (3/2, 1/2), we find

$$
A=\left[\begin{array}{rr}
2 & -2 \\
2 & 2
\end{array}\right]
$$

The eigenvalues are $2 \pm 2 i$ and so this equilibrium point is unstable.
(b) Since the components of \mathbf{v} have been swapped, the equilibrium points are the same as the ones we found in (b). Hence the equlibria are $(-1 / 2,1 / 2)$ and $(3 / 2,1 / 2)$.

We next compute the Jacobian

$$
\left.D_{\mathbf{v}}(x, y)\right]=\left[\begin{array}{ll}
2 x-1 & -2 y+3 \\
2 x-1 & -2 y-1
\end{array}\right] .
$$

Evaluating at ($-1 / 2,1 / 2$), we find

$$
A=-\left[\begin{array}{rr}
2 & -2 \\
2 & 2
\end{array}\right]
$$

which is -1 times a matrix we deat with above. The eigenvlaues are $-2 \pm 2 i$, and this equilibrium is assymptotically stable - solutions spiral in toward it.

Evaluating at (3/2, 1/2), we find

$$
A=-\left[\begin{array}{rr}
-2 & -2 \\
-2 & 2
\end{array}\right]
$$

which is -1 times a matrix we dealt with above. The eigenvlaues are The eigenvalues are $\pm 2^{3 / 2}$ and so this equilibrium point is unstable.
4.9 Consider the vector field

$$
\mathbf{v}(x, y)=(x-x y, y+2 x y)
$$

(a) Find all equilibrium points of \mathbf{v}, and determine which, if any, are asymptotically stable, and which if any are unstable.
(b) Do the same for

$$
\mathbf{v}(x, y)=(y+2 x y, x-x y) .
$$

SOLUTION: If $x-y x=0$, either $x=0$ or $y=1$. In the first case, $y+2 x y=0$ reduces to $y=0$, giving the equilibrium point $(0,0)$. In the second case, $y+2 x y=0$ reduce to $1+2 x=0$, so $x=-1 / 2$ giving the equilibrium point $(-1 / 2,1)$.

We next compute the Jacobian

$$
\left.D_{\mathbf{v}}(x, y)\right]=\left[\begin{array}{cc}
1-y & -x \\
2 y & 2 x+1
\end{array}\right] .
$$

Evaluating at $(0,0)$, we find

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

The eigenvalue 1 , and so this equilibrium point is unstable.
Evaluating at $(-1 / 2,1)$, we find

$$
A=\left[\begin{array}{cc}
0 & 1 / 2 \\
2 & 0
\end{array}\right]
$$

The eigenvalues are ± 1 and so this equilibrium point is unstable.
(b) Since the components of \mathbf{v} have been swapped, the equilibrium points are the same as the ones we found in (b). Hence the equlibria are $(0,0)$ and $(-1 / 2,1)$.

We next compute the Jacobian

$$
\left.D_{\mathbf{v}}(x, y)\right]=\left[\begin{array}{cc}
2 y & 2 x+1 \\
1-y & -x
\end{array}\right] .
$$

Evaluating at $(0,0)$, we find

$$
A=-\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

The eigenvlaues are ± 1, and this equilibrium is unstable.
Evaluating at $(-1 / 2,1)$, we find

$$
A=-\left[\begin{array}{cc}
2 & 0 \\
0 & 1 / 2
\end{array}\right]
$$

which is -1 times a matrix we delat with above. The eigenvlaues are The eigenvlaues are 2 and $1 / 2$, and this equilibrium is unstable

[^0]: ${ }^{1}$ (c) 2018 by the author.

