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3.2 Consider the vector field v(x) defined on U = {(x, y) : x > |y|} defined by

v(x, y) = (x− y
√
x2 − y2 , y − x

√
x2 − y2) .

Notice that on the boundary of U , the vector field is tangent to the boundary, so that the vector

field does not ever carry the solution out of U .

Define the change of variables

u(x, y) =
1

2

(
x+ y

x− y

)
and v(x, y) =

√
x2 − y2 .

(a) Let x(t) be any continuously differentiable curve in R2 with values in U . Define a curve

u(t) = (u(x(t)), v(x(t))) .

Find a vector field w defined on an open set V ⊂ R2 so that

x′(t) = v(x(t)) if and only if u′(t) = w(u(t)) .

(b) Find the general solution of u′(t) = w(u(t)) with u(0) ∈ V .

(c) Find the general solution of x′(t) = w(u(t)) with x(0) ∈ U , and find the corresponding flow

transformation.

SOLUTION: By the Chain rule,

d

dt
u′(t) = [Du,v(x(t)]x′(t) = [Du(x(t)]v(x(t)) .

Computing the Jacobian, we find

[Du,v(x] =

[
−y(x− y)−2 x(x− y)−2

−x(x2 − y2)−1/2 y(x2 − y2)−1/2

]

and then

[Du,v(x]v(x) =
(√

x2 − y2(x+ y)/(x− y) ,
√
x2 − y2

)
= (2uv, v) .
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Thus we define w(u, v) = (2uv, v) and then u′ = w(u) is the equivalent equation in the new

variables.

As (x, y) ranges over U , (u, v) ranges over V , the positive quadrant. Since the determinant of

[Du,v(x)] is not zero on U , the change of variables is invertible there – but you can also check this

explicitly; see part c below.

(b) We only need to solve the decoupled system u′ = 2uv and v′ = v. The solution of the latter

is v(t) = etv0, and then the first equation becomes

u′

u
= 2v0e

t ,

and integrating we find

ln(u(t)/u0) = 2v0(e
t − 1) .

That is,

u(t) = u0 exp(2v0(e
t − 1)) .

Altogether,

u(t) = (u0 exp(2v0(e
t − 1)) , 2v0e

t) .

(c) We now need to invert the change of variables. From x+ y = 2u(x− y), multiplying both

sides by x+ y first, and then x− y, we deduce x+ y =
√

2uv and x− y = v/
√

2u. Therefore

x =
1

2

(√
2u+

1√
2u

)
v and y =

1

2

(√
2u− 1√

2u

)
v . (0.1)

Now, given (x0, y0) define (u0, v0) by

u0 =
1

2

(
x0 + y0
x0 − y0

)
and v0 =

√
x20 − y20 .

Then in terms of the u, v variables, the solutions we seek is

u(t) =

(
1

2

(
x0 + y0
x0 − y0

)
exp(2

√
x20 − y20(et − 1)) , 2

√
x20 − y20e

t

)
.

Finally, substituting u(t) and v(t) into the change of variables (0.1) gives us Ψt(x0, y0). That is,

Ψt(x0, y0) = v(t)
1

2

(√
2u(t) +

1√
2u(t)

,
√

2u(t)− 1√
2u(t)

)

for this u(t) and v(t).

4. Consider the differential equation x′ = Ax where

A =

[
−4 2

5 −1

]
.

(a) Find the general solution x(t) = etAx0 in closed form. That is, compute etA.

(b) Find all x0 such that limt→∞ x(t) = 0.
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SOLUTION:

5. Consider the differential equation x′ = Ax where

A =

[
5 −1

4 1

]
.

(a) Find the general solution x(t) = etAx0 in closed form. That is, compute etA.

(b) Find all x0 such that limt→∞ x(t) = 0.

SOLUTION: The characteristic polynomial is t2 − 6t + 9 so µ = 3 is the only eigenvalue. The

vector (1, 2) is a corresponding eigenvector. In this case (A− 3I)2 = 0, and so

etA = e3t(I + t(A− 3I) = e3t

[
1 + 2t −t

4t 1− 2t

]
.

The solution with x(t) = (x0, y0) then is

e3t((1 + 2t)x0 − y0 , 4x0 + (1− 2t)y0) .

For large t, the leading term is 2te3t(x0 , −y0), and this tends to (0, 0) only for (x), y0) = (0, 0).

6. Consider the differential equation x′ = Ax where

A =

[
−4 2

3 −1

]
.

(a) Find the general solution x(t) = etAx0 in closed form. That is, compute etA.

(b) Find all x0 such that limt→∞ x(t) = 0.

SOLUTION: The characteristic polynomial is t2 − 3t + −10 so the eigenvalues are µ1 = 5 and

mu2 = −2. A pair of corresponding eigenvectors is v1 = (2, 1) and v2 = (1,−3). Define M(t) =

[e5tv1, e
3tv2]. Then

etA = M(t)M(0)−1 =
1

7

[
6e5t + e−2t 2e5t − 2e−2t

3e5t − 3e−2t e5t + 6e−2t

]
.

The general solution is of the form αe5tv1 + βe−2tv2. Evidently this goes to 0 as t→∞ if and

only if α = 0, and this is the case if an only if x0 is a multiple of v2.

9 Compute etA for

A =

 5 −3 −2

8 −5 −4

−4 3 3

 .

SOLUTION: The characteristic polynomial is t3 − 3t2 + 3t − 1 so µ = 1 is the only eigenvalue.

The vectors v1(1, 0, 2) and v2 = (3, 4, 0) are two linearly independent eigenvectors, but the rank
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of A − I is one, and a third linearly independent vector cannot be found. However, in this case

(A− I)2 = 0, and so

etA = et(I + t(A− I) = et

 1 + 4t −3t −2t

8t 1− 6t −4t

−4t 3t 1 + 2t

 .

11. Compute etA for

A =

 4 −1 2

1 2 2

−2 2 1

 .

SOLUTION: The characteristic polynomial is t3 − 7t2 + 15t − 9 so µ1 = 1 and µ2 = 3 are

the only eigenvalues. Since µ1 is not repeated, we only seek an eigenvector for it: We easily find

v1 = (−1,−1, 1). Since µ2 is repeated, we may need to work with generalized eigenvectors. (Indeed,

this is the case.) We compute A − 3I and find that it has two linearly independent rows. Hence

the rank is 2, and we cannot find more than one linearly independent eigenvector – but we do find

one: v2 = (1, 1, 0). We now form

(A− 3I)2 = 4

 −1 1 −1

−1 1 −1

1 −1 1

 .

All of the rows are multiples of one another, so the rank is 1, and we can find two linearly inde-

pendent solutions of (A− 3I)x = 0. One is v2. To get another, we seek a vector that is orthogonal

to both v2 and (1,−1, 1). A simple choice is v3 = (1,−1,−2).

Then

x3(t) := etAv3 = e3t(I + t[A− 3I)v3 = e3t(v3 + t(−2,−2, 0)) = e3t(1− 2t,−1− 2t,−2) .

The other two solutions as x1(t) = etv1 and x2(t) = e3tv2. We then form M(t) =

[x1(t),x2(t),x3(t)], and

etA = M(t)M(0)−1 =

 e3t(2− t)− et te3t + et − e3t e3t − et

e3t − et − te3t te3t + et e3t − et

et − e3t e3t − et et


0.1 Remark. Notice that the solution to 3.9 is much simpler than the solution to 3.11 because in

the case of 3.9, there was only one eigenvalue, and then we did not need to work explicitly with

generalized eigenvectors. When there is more than one eigenvalue, and one is “missing” eigenvectors

for at least one of these eigenvalues, then one must proceed as we did in 3.11, working directly with

generalized eigenvectors.


