
Challenge Problem Set 6 for Math 292

Eric A. Carlen1

Rutgers University

April 24, 2018

This challenge problem set is about the Calculus of Variations and Minimal Surfaces. Given

two points (x1, y1) and (x2, y2) with x2 > x1 and y1, y2 > 0, Let K denote the set of continuously

differentiable functions y on [x1, x2] such that y(x1) = y1, y(x2) = y2, and y(x) > 0 for all

x1 ≤ x ≤ x2.
Now consider the surface obtained by rotating the curve y = y(x) about the x-axis for x1 ≤

x ≤ x2. Call this surface of revolution Sy. Then the surface area of Sy equals I[y] where

I[y] := 2π

∫ x2

x1

y
√

1 + (y′)2dx .

For now, let us fix

(x1, y1) = (0, R) and (x2, y2) = (L,R) (0.1)

where R,L > 0.

(1.) Consider the curves yn(x) where

y(x) =
R

L2n
(2x− L)2n

Note that for our chosen endpoints, y ∈ K for each non-negative integer n.

Compute I[y0], and compute limn→∞ I[yn]. Hint: to do this, you do not need to compute I[yn]

as a function of n, which would be very messy. Instead show that the surface of revolution produced

by rotating yn about the x-axis is for large n, essentially two disks of radius R at x = 0 and x = L,

perpendicular to the x-axis, and connected by a very narrow “neck”, almost a line. You can then

figure out the limiting area of this.

Also, compute I[y1], which involves rotating a parabola. Which of the examples you computed

does best?

Now let us try to find the optimal curve by solving the corresponding Euler-Lagrange equation.

Since the variable x is missing from f(x, y, z) = 2πy
√

1 + z2, the Euler-Lagrange equation

d

dx

(
∂

∂y′
f(x, y, y′)

)
− ∂

∂y
f(x, y, y′) = 0
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reduces to
∂

∂y′
f(x, y, y′)y′ − f = c1 = constant .

(2.) Show that the Euler-Lagrange equation reduces to

c1y
′ =

√
y2 − c21 .

(3.) Separate variables to deduce that

x(y) = c1 ln

(
y +

√
y2 − c21
c1

)
+ c2 .

(4.) Solve for y(x) to deduce

y(x) = c1cosh

(
x− c2
c1

)
.

(5.) The equations determining c1 and c2 are

R

c1
= cosh

(
−c2
c1

)
and

R

c1
= cosh

(
L− c2
c1

)
.

Show that c2 = L/2, and if we define

a =
L

2c1
,

then
2R

L
=

cosh(a)

a
.

Show that if R/L is too small, this equation has no solution, and that there is a unique value of

R/L where it has exactly one solution, and for all larger values of R/L, is has exactly two solutions.

(6.) For R = 2L, the two solutions of 4a = cosh(a) are approximately a = 0.258 and a = 3.259.

Show that both values of a give a curve y ∈ K, and compute to see which one is the best of the

two. (You may use Maple, Mathematica, Wolfram Alpha, etc., to do numerical integrals.)

(7.) Show that if R/L is sufficiently small, the problem has no minimizer in K. Can you find the

greatest lower bound to I[y] for y ∈ K is this situation?


