Challenge Problem Set 4, Math 292 Spring 2018

Eric A. Carlen ${ }^{1}$
Rutgers University

April 1, 2018

This challenge problem set concerns finding particular solutions of higher order -third order in this case - solutions of inhomogeneous linear equations.

Consider the third order linear equation

$$
\begin{equation*}
y x^{\prime \prime \prime}(t)+P(t) x^{\prime \prime}(t)+Q(t) x^{\prime}(t)+R(t) x(t)=f(t) \tag{0.1}
\end{equation*}
$$

for given continuous functions $P(t), Q(t), R(t)$ and $f(t)$.
(1). Introduce the vector variable $\mathbf{x}(t)=\left(x(t), x^{\prime}(t), x^{\prime \prime}(t)\right)$. Find a 3×3 matrix $A(t)$ so that (0.1) is equivalent to the first order linear system

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+(0,0, f(t)) \tag{0.2}
\end{equation*}
$$

(2). Now suppose that you can find 3 solutions $x_{1}(t), x_{2}(t)$ and $x_{3}(t)$ of (0.1). Define the matrix

$$
M(t)=\left[\begin{array}{ccc}
x_{1}(t) & x_{2}(t) & x_{3}(t) \\
x_{1}^{\prime}(t) & x_{2}^{\prime}(t) & x_{3}^{\prime}(t) \\
x_{1}^{\prime \prime}(t) & x_{2}^{\prime \prime}(t) & x_{3}^{\prime \prime}(t)
\end{array}\right]
$$

Suppose that for some $t, M(t)$ is invertible. Show that then $M(t)$ is invertible for all t, and that with $\left[\Phi_{t, s}\right]$ is the 3×3 matrix defined by

$$
\left[\Phi_{t, s}\right]=M(t) M^{-1}(s),
$$

The solution of (0.2) with $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$ is

$$
\mathbf{x}(t)=\left[\Phi_{t, t_{0}}\right] \mathbf{x}_{0}+\int_{t_{0}}^{t}\left[\Phi_{t, s}\right](0,0, f(s)) \mathrm{d} s
$$

(3). When we apply the result of Exercise (2) to solve (0.1), we only need the particular solution

$$
\int_{t_{0}}^{t}\left[\Phi_{t, s}\right](0,0, f(s)) \mathrm{d} s
$$

corresponding to $\mathbf{x}_{0}=\mathbf{0}$ since we have the general solution to the homogeneous equation at hand already. (It is $a x_{1}(t)+b x_{2}(t)+c x_{3}(t)$ for arbitrary a, b and c.) Since we are only interested in

[^0]the first component of this solution, and since only the third entry in the inhomogeous term is non-zero,, we only need concern ourselves with the upper-right entry of the matrix $\left[\Phi_{t, s}\right]$.

Show that if $K(t, s)=\left[\Phi_{t, s}\right]_{1,3}$, then

$$
x(t)=\int_{t_{0}}^{t} K(t, s) f(s)
$$

solves (0.1) with $x\left(t_{0}\right)=x^{\prime}\left(t_{0}\right)=x^{\prime \prime}\left(t_{0}\right)=0$.
(4). Consider the equation

$$
t^{2} x^{\prime \prime \prime}+2 t x^{\prime \prime}-4 x^{\prime}(t)+\frac{4}{t} x=0 .
$$

Look for solutions of the form $x(t)=t^{\alpha}$. You will find three of them.
Then use the results derived above to find a function $K(t, s)$ so that

$$
x(t)=\int_{t_{0}}^{t} K(t, s) f(s) \mathrm{d} s
$$

solves (0.1) with $x\left(t_{0}\right)=x^{\prime}\left(t_{0}\right)=x^{\prime}\left(t_{0}\right)=0$.
Apply this to find the general solution of

$$
t^{2} x^{\prime \prime \prime}+2 t x^{\prime \prime}-4 x^{\prime}(t)+\frac{4}{t} x=t^{4}
$$

Finally, find the solution of the boundary value problem

$$
t^{2} x^{\prime \prime \prime}+2 t x^{\prime \prime}-4 x^{\prime}(t)+\frac{4}{t} x=t^{4} \quad \text { with } \quad x(1)=1, x^{\prime}(1)=0, x(2)=2 .
$$

[^0]: ${ }^{1}$ © 2018 by the author. This article may be reproduced, in its entirety, for non-commercial purposes.

