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This challenge problem set concerns the same simple linear second order system that we studied

in the first challenge problem set,

x′′ = −x
y′′ = −y .

This time, however, we will study the phase curves of the corresponding first order system. Intro-

duce new variables

a = x b = x′ c = y d = y′ .

Define the 4-dimensional vector a(t) = (a(t), b(t), c(t), d(t)). Then

d

dt
(a, b, c, d) = (b,−a, d,−c) . (0.1)

This is a first order differential equation in a four dimensional phase space. In the exer-

cises that follow, Let (a(t), b(t), c(t), d(t)) be any solution of (0.1) with (a(0), b(0), c(0), d(0)) =

(a0, b0, c0, d0) =: a0. It turns out that there are many simple constants of the motion; i.e., func-

tions of (a, b, c, d) that are constant along the phase curves. This will enable to identify the phase

curves.

Exercise 1. Define the functions

r(a, b, c, d) := a2 + b2 , s(a, b, c, d) = c2 + d2 and q(a, b, c, d) = ac+ bd .

Show that r(a(t)), s(a(t)) and q(a(t)) are all independent of t.

Exercise 2. Define the vectors v(t) = (a(t), b(t)) and w(t) = (c(t), d(t)). Assume that r0 :=

‖v(0)‖ > 0 and s0 := ‖w(0)‖ > 0. Show that the angle between v(t) and w(t) is independent of t,

and then show that there is some angle θ so that

s0v(t) =

[
cos θ − sin θ

sin θ cos θ

]
r0w(t)

for all t. Geometrically, this is because the motion in the a, b plane and the motion in the c, d plane

are both circular motion with the same frequency; the two motions“stay in phase”.
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Exercise 3. For the angle θ found in Exercise 2, and r =
√
r20 + s20, define the vectors

{u1,u2,u3,u4} by

u1 =
1

r
(s0, 0,−r0 cos θ, r0 sin θ)

u2 =
1

r
(0, s0,−r0 sin θ,−r0 cos θ)

u3 =
1

r
(r0, 0, s0 cos θ,−s0 sin θ)

u3 =
1

r
(0, r0,−s0 sin θ,−s0 cos θ)

Show that {u1,u2,u3,u4} is orthonormal in R4 and that

a(t) · u1 = a(t) · u2 = 0

for all t.

Use this to show that for some continuously differentiable functions α(t) and β(t),

a(t) = α(t)u3 + β(t)u4 ,

and that α2(t) + β2(t) = r2 for all t.

Finally, show that

α′(t) = β(t)

β′(t) = −α(t) .

Exercise 4. Explicitly solve for the phase curve a(t) when

a(0) = (1, 0, 1,
√

3) .

Show that (a(t), c(t)) = (x(t), y(t)) traces out the ellipse that you found in the first challenge

problem set for the corresponding initial data.

The set of vectors a ∈ R4 satisfying a · u1 = 0 and a · u2 = 0 is the two dimensional plane

spanned by u3 and u4. What we have proved so far shows that the phase curve is a circle produced

by slicing the sphere of radius r in R4 by a two dimensional plane through the origin; this is a

so-called great circle, and we have seen in 291 that these are the geodesics on the sphere in R4.

Let us specialize to the case r = 1 so that our phase curves are great circles on S3, the three

dimensional unit sphere in R4. We can now draw some interesting geometric conclusions. First of

all, given any point (a0, b0, c0, d0) on S3, there is a unique phase curve through this point, and as

we have seen, that phase curve is a great circle. Now, two phase curves cannot intersect: Through

each point in the phase space there is exactly one phase curve. Hence S3 is the disjoint union of

these great circles.

Such a circumstance is certainly not the case for S2, the familiar unit sphere in R3: Take out

any great circle – the equator, for example – and what remains is two disconnected hemispheres,

neither of which contains any great circles at all.
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The great circles that arise a phase curves for our second order system are rather special; not

every great circle on S3 is such a phase curve. Indeed, there are infinitely many great circles passing

through any point on p ∈ S3. Let q be any unit vector orthogonal to p, and consider the two

dimensional plane spanned by p and q. This slices S3 in a great circle that passes though p. In

fact, it is not hard to see that all great circles passing through p arise this way. However, there is

only one phase curve passing though any point in phase space, and so exactly one of these will be

a phase curve.

This decomposition of S3 into a disjoint union of great circles is behind an important geomet-

ric construction known as the Hopf fibration. (It has an interesting Wikipedia page.) Like the

decomposition itself, this arises naturally from the study of our second order system.

Exercise 5. In Exercise 1, we found three functions r, s and q that were “constants of the motions”.

There is a fourth. Define p(a, b, c, d) by

p(a, b, c, d) = ad− bc .

Show that for any phase curve a(t) of our system, p(a(t)) is independent of t.

Show also that the four constants of the motion are not independent of one another, but are

related by

(2p(a))2 + (2q(a))2 + (r(a)− s(a))2 = 1

for all a ∈ S3.

The Hopf map is the function H on S3 given by

H(a) = (2p(a), 2q(a), r(a)− s(a)) .

Exercise 5 shows that for all a ∈ S3, H(a) is a unit vector in R3. In other words, H(a) belongs to

S2, the unit sphere in R3. Thus, the Hopf map is a function from S3 to S2.

Going on from here, it is not hard to show that H transforms S3 onto S2, and that for any

u ∈ S2, H−1(u), the inverse image of u under the Hopf map, is a great circle on S3, and moreover,

is one of our phase curves. This is the so-called “Hopf fibration”, which has interesting topological

features. It is not hard to show for example, that each pair of the phases curves is linked exactly

once. More information can be found on the Wikipedia page. Our point is to show how the

Hopf fibration arises very naturally from the consideration of a very simple second order system of

differential equations.


