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This challenge problem set concerns the simplest system of second order differential equations

x′′(t) = −x(t)

y′′(t) = −y(t) . (0.1)

The system is already in decoupled form, and already in Example 12 of Chapter 1 we have

solved the equation x′′ + ω2x = 0. For ω = 1, the case at hand, we have found that the general

solution is

x(t) = r sin(t+ θ0) ,

for arbitrary r ≥ 0 and θ ∈ [0, 2π). Let us seek the solution with

x(0) = x0 and x′(0) = u0 . (0.2)

From the general solution we find

r sin(θ0) = x0 and r cos(θ0) = u0 . (0.3)

and then from the trigonometric angle addition formulas, we find that the solution of x′′ = −x with

x(0) = x0 and x′(0) = u0 is

x(t) = x0 cos t+ u0 sin t .

Likewise, the solution of y′′ = −y with y(0) = y0 and y′(0) = v0 is

y(t) = y0 cos t+ v0 sin t .

We can combine these solutions as follows: Introduce the vectors x(t) = (x(t), y(t)), x0 =

(x0, y0) and v0 = (u0, v0).

Then introduce the matrix

A :=

[
x0 u0
y0 v0

]
= [x0,v0] .

Then we can summarize our conclusions so far by saying that the unique solution of

x′′(t) = Ax(t) with x(0) = x0 and x′(0) = v0 (0.4)
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is

x(t) = Au(t) where u(t) = (cos t, sin t) . (0.5)

It may seem that this problem is completely solved, and there is nothing more for the Chal-

lenge Workshop to deal with. However, finding the general solution is often only the beginning

of the investigation of the solutions of a differential equation. A central focus of the theory is on

understanding the behavior of the solutions of a differential equation, and even for this simplest of

second order systems, much interesting mathematics is connected with understanding the behavior

of the solutions.

For example, we can ask: What kind of curves are the parameterized curves given by (0.5)?

It turns out that they are always ellipses, though possibly degenerate. This is a consequence

of an important general fact: Let B be any invertible 2 × 2 matrix. Then with u(t) being the

parameterization of the unit circle given in (0.5), Bu(t) is a parameterized ellipse. That is, the

image of the unit circle under any linear transformation from R2 to R2 is an ellipse.

Exercise 1: Suppose that the matrix A in (0.5) is invertible. Show that with x(t) given by (0.5),

‖A−1x(t)‖2 = 1 (0.6)

for all t. Define the matrix M by M = (A−1)T (A−1), where (A−1)T denote the transpose of A−1.

Show also that the equation (0.6) can be written as

x(t) ·Mx(t) = 1 (0.7)

for all t, where M is a symmetric matrix, and show that if M =

[
a c

c b

]
, then the equation (0.7)

can be written as

ax2(t) + by2(t) + 2cx(y)y(t) = 1 (0.8)

for all t.

The equation

ax2 + by2 + 2cxy = 1

is the equation of a conic section, and the only bounded conic sections are ellipses. Hence the curve

x(t) must trace out an ellipse, and since there are no linear terms, it is an ellipse centered at the

origin.

This raises the question: Which ellipse centered at the origin is it? What are the major and

minor axes? These questions are relevant to understanding the behavior of our solution since if R1

is half the length of the minor axis, and R2 is half of the length of the major axis,

min
t∈R
‖x(t)‖ = R1 and max

t∈R
‖x(t)‖ = R2 .

We know how to find the major and minor axes of an ellipse by writing the equation ax2 +

by2 + 2cxy = 1 in matrix form as

(x, y) ·

[
a c

c b

]
(x, y) = 1 ,
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and then finding the eigenvalues and eigenvectors of M .

Exercise 2: Since M is a symmetric matrix, there exists an orthonormal basis of R2, {u1,u2}
consisting of eigenvectors of M so that for eigenvalues λ1 and λ2 we have

Mu1 = λ1u1 and Mu2 = λ1u2 .

Show that both λ1 and λ2 are positive. Changing the labels if need be, we may suppose without

loss of generality that

λ1 ≥ λ2 > 0 .

Show that the major axis of the ellipse has

± 1√
λ2

u2

as its endpoints, and that the minor axis of the ellipse has

± 1√
λ1

u1

as its endpoints.

Show that if x(t) is the solution of our system given in (0.5), then ‖x(t)‖ is maximal if and only

if

x(t) = ± 1√
λ2

u2 ,

and prove the corresponding statement about minima.

We have now found the points on the path traced out by the solution x(t) at which ‖x(t)‖ takes

on its maximal and minimal values. We now ask: What are the times t at which ‖x(t)‖ takes on

its maximal and minimal values?

Since x(t) = A(cos t, sin t), to answer this question for the maximal values we have to solve

A(cos t, sin t) = ± 1√
λ2

u2

and to answer it for minima, we have to solve

A(cos t, sin t) = ± 1√
λ1

u1.

We know there are solutions. If we multiply both sides of these equations by A−1, the left hand

side is a unit vector, and so the right hand side must be a unit vector too. In fact, the two unit

vectors we get from these two equations are mutually orthogonal, as the next exercise shows.

Exercise 3. With {u1,u2} and {λ1, λ2} defined as in the previous exercise, define

v1 =
1√
λ1
A−1u1 and v2 =

1√
λ2
A−1u2 . (0.9)

Show that {v1,v2} is an orthonormal basis for R2.
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Then show that for our solution x(t), ‖x(t)‖ is maximal if and only if t satisfies

(cos t, sin t) = ±v2 ,

and prove the corresponding statement for minima.

Now let us apply what we have learned to a concrete example:

Exercise 4. Let us fix the initial data to be

x0 = 1 , u0 = 0 , y0 = 1 and v0 =
√

3 .

Let x(t) be the unique solution of x′′(t) = −x(t) with x(0) = (x0, y0) and x′(0) = (u0, v0) for these

values of the initial data.

(a) Find R2 = maxt∈R ‖x(t)‖, and find all t for which ‖x(t)‖ = R2.

(b) Find R1 = mint∈R ‖x(t)‖, and find all t for which ‖x(t)‖ = R1.

(c) Sketch a plot of the ellipse traced out by x(t) at t ranges over R.

In solving the concrete problem in Exercise 4, we have encountered some important construc-

tions in Linear Algebra. Introducing the numbers σ2 and σ2 through

σ1 =
1√
λ1

and σ2 =
1√
λ2

,

we can rewrite (0.9) as

Av1 = σ1u1 and Av2 = σ2u2 (0.10)

where {u1,u2} and {v1,v2} are both orthonormal bases of R2.

Since any vector x ∈ R2 can be written as

x = (x · v1)v1 + (x · v2)v2 ,

applying A to both sides, and using (0.10), we obtain

Ax = σ1(x · v1)u1 + σ2(x · v2)u2 . (0.11)

It turns out that this gives a factorization of the general invertible 2× 2 matrix into a product of

simple matrices. This is the singular value decomposition.

Exercise 5.

Introduce the matrices V = [v1,v2], S =

[
σ1 0

0 σ2

]
and U = [u1,u2]. (That is, the columns

of V are v1 and v2, and the columns of U are u1 and u2.) Show that (0.11) is equivalent to

Ax = USV Tx

all x, and thus that the matrix A can be factored as the product of the three matrices U , S and V :

A = USV T .
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Recall that a square matrix with orthonormal columns is an orthogonal matrix, and that the

inverse of an orthogonal matrix is its transpose. Hence U and V are orthogonal matrices, and their

inverses are their transposes. The only 2 × 2 orthogonal matrices are rotations and reflections,

so U and V both represent simple geometric transformations. The matrix S is even simpler: It

represents a scaling transformation: It simply rescales the x and y coordinates by the factors σ1
and σ2 respectively.

Thus, every invertible linear transformation of R2 into itself is the product of an orthogonal

transformation, followed by a scaling transformation, followed by another orthogonal transforma-

tion.

Here is one consequence of this important fact. Orthogonal transformations – rotations and

reflections – do not affect area. Hence the effect on area of the linear transformation given by A

comes entirely from the scale transformation in the middle. Thus, if R is a region in the plane, and

A(R) is its image under A the area of A(R) is σ1σ2 times the area of R, and it is easy to see that

σ1σ2 = | det(A)|. All of this generalizes to matrices of arbitrary size, but in this workshop we will

stay with 2 dimensions, and thoroughly deal with this case.

The final problem is to compute a singular value decomposition. Now that we know that such

a decomposition exists, we can efficiently find it as follows. Starting from A = USV T , we write

ATA = (USV T )TUSV T = V SUTUSV T = V S2V T

where we have used the fact that for any matrix product XY , (XY )T = Y TXT , and the fact that

since UT is the inverse of U , since U is orthogonal. Then since V T is the inverse of V , again, since

V is orthogonal,

V T (ATA)V = V −1(ATA)V = S2 .

Thus, V diagonalizes the matrix ATA. This means the columns of V are an orthonormal basis of

eigenvectors of ATA, and the corresponding eigenvalues are the squares of the diagonal entries of

S. So to find {v1,v2} and {σ1, σ2}, diagonalize ATA. Finally, to find {u1,u2}, use (0.10).

Exercise 6. Let A =

[
11 −5

2 −10

]
. Compute a singular value decomposition of A. That is, find

orthogonal matrices U and V , and a diagonal matrix S with positive entries (these are the singular

values) so that

A = USV T .

All of the terms in the singular value decomposition have a direct meaning for the solution of

the differential equation x′′ = −x when the matrix A is given by the initial data, as explained

above. This is one way to think about where the singular value decomposition “comes from”.


