7.2. (a) $\int_{y=-\sqrt{3}}^{\sqrt{3}} \int_{x=1-\sqrt{4-y^{2}}}^{-1+\sqrt{4-y^{2}}} x^{2} y^{2} d x d y$
(b) The region $D$ is symmetric with respect to the $y$-axis and the integrand is unchanged when $x$ is replaced by $-x$. So let $D^{+}$be the half of $D$ in the first and 4th quadrants. Then

$$
\begin{gathered}
\int_{D} x^{2} y^{2} d A=2 \int_{D^{+}} x^{2} y^{2} d A=2 \int_{x=0}^{1} \int_{y=-\sqrt{4-(x+1)^{2}}}^{y=\sqrt{4-(x+1)^{2}}} x^{2} y^{2} d y d x \\
\text { (c) }\left.2 \int_{x=0}^{1} x^{2} \frac{y^{3}}{3}\right|_{y=-\sqrt{4-(x+1)^{2}}} ^{y=\sqrt{4-(x+1)^{2}}} d x=2 \int_{x=0}^{1} 2 x^{2}{\sqrt{4-(x+1)^{2}}}^{3} d x
\end{gathered}
$$

Let $x+1=2 \sin \theta, d x=2 \cos \theta d \theta, \sqrt{4-(x+1)^{2}}=2 \cos \theta$. The integral equals

$$
4 \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}(2 \sin \theta-1)^{2} \cdot 8 \cos ^{3} \theta \cdot 2 \cos \theta d \theta=64 \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\left(4 \sin ^{2} \theta-4 \sin \theta+1\right) \cos ^{4} \theta d \theta \text { etc. }
$$

7.4. Draw the region $D$. It is a triangle with vertices $(0,0),(1.5,1.5)$, and $(3,9)$.
(a) The line $y=1.5$ separates $D$ into two triangular regions $E_{1}$ and $E_{2}$, each with a horizontal side. The lower triangle $E_{1}$ is bounded on the left by $y=3 x$ and on the right by $y=x$; the triangle $E_{2}$ is bounded on the left by $y=3 x$ and on the right by $y=5 x-6$. Thus,

$$
\int_{D} x y d A=\int_{E_{1}} x y d A+\int_{E_{2}} x y d A=\int_{y=0}^{1.5} \int_{x=y / 3}^{y} x y d x d y+\int_{y=1.5}^{9} \int_{x=y / 3}^{(y+6) / 5} x y d x d y
$$

(b) The line $x=1.5$ separates $D$ into two triangular regions $D_{1}$ and $D_{2}$, each with a vertical side. The left triangle $D_{1}$ is bounded below by $y=x$ and above by $y=3 x$; the triangle $D_{2}$ is bounded below by $y=5 x-6$ and above by $y=3 x$. Thus,

$$
\int_{D} x y d A=\int_{D_{1}} x y d A+\int_{D_{2}} x y d A=\int_{x=0}^{1.5} \int_{y=x}^{3 x} x y d y d x+\int_{x=1.5}^{3} \int_{y=5 x-6}^{3 x} x y d y d x
$$

(c) Using (b),

$$
\begin{aligned}
\int_{D} x y d A & =\int_{x=0}^{1.5}\left(x \frac{(3 x)^{2}}{2}-x \frac{x^{2}}{2}\right) d x+\int_{x=1.5}^{3}\left(x \frac{(3 x)^{2}}{2}-x \frac{(5 x-6)^{2}}{2}\right) d x \\
& =\int_{0}^{1.5} 4 x^{3} d x+\int_{1.5}^{3}-8 x^{3}+30 x^{2}-18 x d x \\
& =\left.x^{4}\right|_{0} ^{3 / 2}+\left.\left(-2 x^{4}+10 x^{3}-9 x^{2}\right)\right|_{3 / 2} ^{3}=\frac{81}{16}-162+270-81+\frac{162}{16}-\frac{270}{8}+\frac{81}{4}=\frac{459}{16}
\end{aligned}
$$

7.8. Let the change of variable $\mathbf{u}=\mathbf{u}(\mathbf{x})$ be defined by $u=x y$ and $v=y / x$. Let $\bar{D}$ be the region in the $u, v$-plane defined by $1 \leq u \leq 2$ and $1 \leq v \leq 2$. Then $\bar{D}$ corresponds to $D$ under the correspondence $\mathbf{u}(\mathrm{x})$.

Solving $u=x y$ and $v=y / x$ for $x$ and $y$ gives the inverse correspondence $\mathbf{x}(\mathbf{u})$, namely $u v=y^{2}$, $y=\sqrt{u v}, x=u / y=\sqrt{u / v}$.

The Jacobian of the inverse correspondence and its determinant are

$$
D_{\mathbf{x}}(\mathbf{u})=\frac{\partial(x, y)}{\partial(u, v)}=\frac{1}{2}\left[\begin{array}{cc}
\frac{1}{\sqrt{u v}} & -\frac{\sqrt{u}}{\sqrt{v^{3}}} \\
\frac{\sqrt{v}}{\sqrt{u}} & \frac{\sqrt{u}}{\sqrt{v}}
\end{array}\right], \quad \operatorname{det} D_{\mathbf{x}}(\mathbf{u})=\frac{1}{4} \frac{2}{v}=\frac{1}{2 v}
$$

Finally

$$
\begin{aligned}
\int_{D} x y d^{2} \mathbf{x} & =\int_{\bar{D}} u \cdot\left|\operatorname{det} D_{\mathbf{x}}(\mathbf{u})\right| d^{2} \mathbf{u}=\int_{u=1}^{2} \int_{v=1}^{2} \frac{u}{2 v} d v d u \\
& =\int_{u=1}^{2} \frac{u \ln 2}{2} d u=\frac{3 \ln 2}{4}
\end{aligned}
$$

7.10. The curve is $r^{2}=\left(r^{2}-r \cos \theta\right)^{2}=r^{2}(r-\cos \theta)^{2}$. Apart from the point at the origin, this is equivalent to $(r-\cos \theta)^{2}=1$ or $r-\cos \theta= \pm 1$. Since $r$ is always positive except at the origin, and since $\cos \theta \leq 1$ for all $\theta$, this is equivalent to $r-\cos \theta=1$, or $r=1+\cos \theta$.

The curve looks like a heart resting on its left side. The enclosed area $D$ is described in polar coordinates by $0 \leq \theta \leq 2 \pi, 0 \leq r \leq 1+\cos \theta$. The area of $D$ is

$$
\int_{D} d^{2} \mathbf{x}=\int_{\theta=0}^{2 \pi} \int_{r=0}^{1+\cos \theta} r d r d \theta=\int_{\theta=0}^{2 \pi} \frac{1}{2}(1+\cos \theta)^{2} d \theta=\frac{3}{2} \pi
$$

7.12. As $\theta$ goes from 0 to $2 \pi$, this equation traces out a figure eight, going from NorthEast (the point $(\sqrt{2}, \sqrt{2})$ at $\theta=\pi / 4)$ to SouthWest (the point $(-\sqrt{2},-\sqrt{2})$ at $\theta=5 \pi / 4)$. The area of the enclosed region $D$ is

$$
\int_{D} d^{2} \mathbf{x}=\int_{\theta=0}^{2 \pi} \int_{r=0}^{1+\sin 2 \theta} r d r d \theta=\int_{\theta=0}^{2 \pi} \frac{1}{2}(1+\sin 2 \theta)^{2} d \theta=\frac{3}{2} \pi .
$$

7.14. Let $\mathbf{u}(\mathbf{x})$ be defined by $u=x y$ and $v=x^{2} y$. Let $\bar{D}$ be the region in the $u, v$-plane defined by $1 \leq u \leq 2$ and $3 \leq v \leq 4$. Then $\bar{D}$ corresponds to $D$ under the correspondence $\mathbf{u}(\mathbf{x})$.

Solving $u=x y$ and $v=x^{2} y$ for $x$ and $y$ gives the inverse correspondence $\mathbf{x}(\mathbf{u})$, namely $x=v / u$, $y=u^{2} / v$.

The Jacobian of the inverse correspondence and its determinant are

$$
D_{\mathbf{x}}(\mathbf{u})=\frac{\partial(x, y)}{\partial(u, v)}=\left[\begin{array}{cc}
-v / u^{2} & 1 / u \\
2 u / v & -u^{2} / v^{2}
\end{array}\right], \quad \operatorname{det} D_{\mathbf{x}}(\mathbf{u})=-\frac{1}{v} .
$$

Finally

$$
\int_{D} x y d^{2} \mathbf{x}=\int_{\bar{D}} u \cdot\left|\operatorname{det} D_{\mathbf{x}}(\mathbf{u})\right| d^{2} \mathbf{u}=\int_{u=1}^{2} \int_{v=3}^{4} \frac{u}{v} d v d u=\frac{3}{2} \ln \left(\frac{4}{3}\right) .
$$

7.16. The region $D$ has two symmetric pieces, $D_{1}$ in the first quadrant and $D_{2}$ in the third quadrant. The integrand is unchanged by the double sign change $x \rightarrow-x$ and $y \rightarrow-y$, so

$$
\int_{D}\left(x^{2}+y^{2}\right) d^{2} \mathbf{x}=2 \int_{D_{1}} x^{2}+y^{2} d^{2} \mathbf{x}
$$

Define $\mathbf{u}(\mathbf{x})$ by $u=x^{2}-y^{2}$ and $v=x y$ and let $\bar{D}_{1}$ be the region $0 \leq u \leq 4,1 \leq v \leq 2$ in the $u, v$-plane.

The inverse transformation is messy but $D_{\mathbf{u}}(\mathbf{x})$ is easy to compute; it's

$$
D_{\mathbf{u}}(\mathbf{x})=\left[\begin{array}{cc}
2 x & -2 y \\
y & x
\end{array}\right], \quad \operatorname{det} D_{\mathbf{u}}(\mathbf{x})=2\left(x^{2}+y^{2}\right)
$$

Therefore by the change of variable formula in reverse (tricky!)

$$
\int_{D}\left(x^{2}+y^{2}\right) d^{2} \mathbf{x}=2 \int_{D_{1}}\left(x^{2}+y^{2}\right) d^{2} \mathbf{x}=\int_{D_{1}}\left|\operatorname{det} D_{\mathbf{u}}(\mathbf{x})\right| d^{2} \mathbf{x}=\int_{\bar{D}_{1}} 1 d^{2} \mathbf{u}=\text { area of } \bar{D}_{1}=4 \cdot 1=4
$$

7.18. $\mathcal{V}$ is the union of 8 congruent pieces, one in each octant, whose overlaps have zero volume. Let $\mathcal{V}_{1}$ be the piece in the first octant, that is,

$$
x^{2}+y^{2} \leq 1, x^{2}+z^{2} \leq 1, y^{2}+z^{2} \leq 1, x \geq 0, y \geq 0, z \geq 0 .
$$

Thus $\mathcal{V}_{1}$ has a base in the $x, y$-plane which is the quarter-disk $x^{2}+y^{2} \leq 1$ in the first quadrant of the $x, y$ plane. Further, $\mathcal{V}_{1}$ has vertical sides and a "roof" that is made up of the surfaces $z=\sqrt{1-x^{2}}$ and $z=\sqrt{1-y^{2}}$, whichever is lower. Thus the roof is the surface $z=\sqrt{1-x^{2}}$ where $x \geq y$, and the surface $z=\sqrt{1-y^{2}}$ where $x \leq y$. Let $D_{1}$ be the eighth-disk $x^{2}+y^{2} \leq 1,0 \leq y \leq x$, and let $D_{2}$ be the eighth-disk $x^{2}+y^{2} \leq 1,0 \leq x \leq y$. Therefore

$$
\text { vol. of } \mathcal{V}_{1}=\int_{D_{1}} \sqrt{1-x^{2}} d A+\int_{D_{2}} \sqrt{1-y^{2}} d A
$$

The two integrals are done similarly; in fact they are equal, by symmetry. Let's evaluate the first
integral. Dividing $D_{1}$ into two pieces with the line $x=\sqrt{2} / 2$, we get

$$
\begin{aligned}
\int_{D_{1}} \sqrt{1-x^{2}} d A & =\int_{x=0}^{\sqrt{2} / 2} \int_{y=0}^{x} \sqrt{1-x^{2}} d y d x+\int_{x=\sqrt{2} / 2}^{1} \int_{y=0}^{\sqrt{1-x^{2}}} \sqrt{1-x^{2}} d y d x \\
& =\int_{0}^{\sqrt{2} / 2} x \sqrt{1-x^{2}} d x+\int_{\sqrt{2} / 2}^{1}\left(1-x^{2}\right) d x \\
& =-\left.\frac{1}{3}\left(1-x^{2}\right)^{3 / 2}\right|_{0} ^{\sqrt{2} / 2}+\left.\left(x-\frac{x^{3}}{3}\right)\right|_{\sqrt{2} / 2} ^{1} \\
& =-\frac{1}{3} \frac{1}{2 \sqrt{2}}+\frac{1}{3}+\frac{2}{3}-\frac{1}{\sqrt{2}}+\frac{1}{3} \frac{1}{2 \sqrt{2}}=\frac{1}{2}(2-\sqrt{2})
\end{aligned}
$$

Finally, vol. of $\mathcal{V}=16 \int_{D_{1}} \sqrt{1-x^{2}} d A=8(2-\sqrt{2})$
7.20. (b) In cylindrical coordinates $\mathcal{V}$ is described by $0 \leq \theta \leq 2 \pi, z^{2} \leq r \leq 8-z^{2},-2 \leq z \leq 2$. The volume is

$$
\int_{\theta=0}^{2 \pi} \int_{z=-2}^{2} \int_{r=z^{2}}^{8-z^{2}} r d r d z d \theta=2 \pi \int_{z=-2}^{2} \frac{1}{2}\left[\left(8-z^{2}\right)^{2}-\left(z^{2}\right)^{2}\right] d z=2 \pi \int_{-2}^{2}\left(32-8 z^{2}\right) d z=\frac{512 \pi}{3} .
$$

(c) Use cylindrical coordinates. The two parts of the surface are defined by $0 \leq r \leq 4$ and $4 \leq r \leq 8$, respectively. In each part, $z$ runs from -2 to 2 .

On the inner part $\mathcal{S}_{1}, r=z^{2}$ so $z$ and $\theta$ are convenient parameters.

$$
\mathbf{X}=(x, y, z)=(r \cos \theta, r \sin \theta, z), \quad \mathbf{X}(z, \theta)=\left(z^{2} \cos \theta, z^{2} \sin \theta, z\right)
$$

Then $\frac{\partial \mathbf{X}}{\partial z}=\frac{\partial \mathbf{X}}{\partial z}=(2 z \cos \theta, 2 z \sin \theta, 1)$ and $\frac{\partial \mathbf{X}}{\partial \theta}=\frac{\partial \mathbf{X}}{\partial \theta}=\left(-z^{2} \sin \theta, z^{2} \cos \theta, 0\right)$ and

$$
\begin{aligned}
\frac{\partial \mathbf{X}}{\partial z} \times \frac{\partial \mathbf{X}}{\partial \theta} & =(2 z \cos \theta, 2 z \sin \theta, 1) \times\left(-z^{2} \sin \theta, z^{2} \cos \theta, 0\right)=\left(-z^{2} \cos \theta,-z^{2} \sin \theta, 2 z^{3}\right) \\
\left\|\frac{\partial \mathbf{X}}{\partial z} \times \frac{\partial \mathbf{X}}{\partial \theta}\right\| & =z^{2} \sqrt{1+4 z^{2}} .
\end{aligned}
$$

So surf. area of $\mathcal{S}_{1}=\int_{\theta=0}^{2 \pi} \int_{-2}^{2} z^{2} \sqrt{1+4 z^{2} d z}$
Similarly on the other piece $\mathbf{X}(z, \theta)=\left(\left(8-z^{2}\right) \cos \theta,\left(8-z^{2}\right) \sin \theta, z\right)$,

$$
\begin{aligned}
\frac{\partial \mathbf{X}}{\partial z} \times \frac{\partial \mathbf{X}}{\partial \theta} & =(-2 z \cos \theta,-2 z \sin \theta, 1) \times\left(-\left(8-z^{2}\right) \sin \theta,\left(8-z^{2}\right) \cos \theta, 0\right) \\
& =\left(-\left(8-z^{2}\right) \cos \theta,-\left(8-z^{2}\right) \sin \theta,-2 z\left(8-z^{2}\right)\right) \\
\left\|\frac{\partial \mathbf{X}}{\partial z} \times \frac{\partial \mathbf{X}}{\partial \theta}\right\| & =\left(8-z^{2}\right) \sqrt{1+4 z^{2}} .
\end{aligned}
$$

So surf. area of $\mathcal{S}_{2}=\int_{\theta=0}^{2 \pi} \int_{-2}^{2}\left(8-z^{2}\right) \sqrt{1+4 z^{2}} d z$

Adding the areas of $\mathcal{S}_{1}$ and $\mathcal{S}_{2}$, and substituting $z=(1 / 2) \tan u, d z=(1 / 2) \sec ^{2} u d u$, gives the total surface area:

$$
\int_{\theta=0}^{2 \pi} \int_{-2}^{2} \sqrt{1+4 z^{2}} d z=4 \pi \int_{0}^{2} \sqrt{1+4 z^{2}} d z=2 \pi \int_{0}^{\arctan 4} \sec ^{3} u d u=\frac{1}{2}(4 \sqrt{17}+\ln (4+\sqrt{17}))
$$

7.22. The base of $\mathcal{V}$ is in the plane $z=0$; the vertical sides are $x=0$ (the $y, z$-plane) and $2 x=y$. The "roof" is $y+z=2$, which cuts the $x, y$-plane in the line $y=2$. Thus the base of $\mathcal{V}$ is triangular, with sides $y=2, y=2 x$, and $x=0$. Then

$$
\begin{aligned}
\int_{\mathcal{V}} x e^{z} d V & =\int_{x=0}^{1} \int_{y=2 x}^{2} \int_{z=0}^{2-y} x e^{z} d z d y d x=\int_{x=0}^{1} \int_{y=2 x}^{2} x\left(e^{2-y}-1\right) d y d x \\
& =\left.\int_{x=0}^{1} x\left(-e^{2-y}-y\right)\right|_{2 x} ^{2}=\int_{x=0}^{1} x\left(-3+e^{2-2 x}+2 x\right) d x=-\frac{5}{6}-\frac{3}{4}+\frac{e^{2}}{4}=\frac{3 e^{2}-19}{12}
\end{aligned}
$$

7.24. $\mathcal{V}$ is the region defined by $x^{2}+y^{2} \leq 9$ and $0 \leq z \leq y$. The base $D$ of this region is the half-disk $y \geq 0$ inside the disk $x^{2}+y^{2} \leq 9$. The top of the region is $z=y$. Therefore the volume is the double integral

$$
\int_{D} y d A=\int_{\theta=0}^{\pi} \int_{r=0}^{3} r \sin \theta \cdot r d r d \theta=\int_{0}^{\pi} 9 \sin \theta d \theta=18 .
$$

7.26. (a) The plane containing the three points has equation $2 x+y+2 z=6$. A parametrization is $\mathbf{X}(x, y)=(x, y, 3-x-(y / 2))$. The region of the parameter plane ( $x, y$-plane) corresponding to $\mathcal{S}$ is the triangle $D$ with vertices $(0,4),(1,0)$, and ( 0,0 ).

From the parametrization $\mathbf{X}$ we obtain

$$
\frac{\partial \mathbf{X}}{\partial x} \times \frac{\partial \mathbf{X}}{\partial y}=(1,0,-1) \times(0,1,-1 / 2)=(1,1 / 2,1)
$$

so $\left\|\frac{\partial \mathbf{X}}{\partial x} \times \frac{\partial \mathbf{X}}{\partial y}\right\|=\|(1,1 / 2,1)\|=3 / 2$ is constant. Then

$$
\int_{\mathcal{S}} x y z d S=\int_{D} x y(3-x-(y / 2))(3 / 2) d A=\int_{x=0}^{1} \int_{0}^{4-4 x} \frac{18 x y-6 x^{2}-3 x y^{2}}{4} d y d x \text { etc. }
$$

7.28. The circle $(x-b)^{2}+z^{2}=a^{2}$ is revolved about the $z$-axis to form the torus, which therefore has the equation $(r-b)^{2}+z^{2}=a^{2}$ in cylindrical coordinates. Using $\theta$ and $r$ as parameters, $b-a \leq r \leq b+a$, $0 \leq \theta \leq 2 \pi$, the top half of $\mathcal{S}$ is parametrized by

$$
\mathbf{X}(r, \theta)=(x, y, z)=(r \cos \theta, r \sin \theta, g(r)) \text { where } g(r)=\sqrt{a^{2}-(r-b)^{2}}
$$

Then noting that $g^{\prime}(r)=-(r-b) / \sqrt{a^{2}-(r-b)^{2}}$ and eventually substituting $u=r-b, r=u+b$, $d r=d u$,

$$
\begin{aligned}
\frac{\partial \mathbf{X}}{\partial r} & =\left(\cos \theta, \sin \theta, g^{\prime}(r)\right), \frac{\partial \mathbf{X}}{\partial \theta}=(-r \sin \theta, r \cos \theta, 0), \\
\frac{\partial \mathbf{X}}{\partial r} \times \frac{\partial \mathbf{X}}{\partial \theta} & =\left(-r g^{\prime}(r) \cos \theta,-r g^{\prime}(r) \sin \theta, r\right),\left\|\frac{\partial \mathbf{X}}{\partial r} \times \frac{\partial \mathbf{X}}{\partial \theta}\right\|=r \sqrt{\left(g^{\prime}(r)\right)^{2}+1}=r a / \sqrt{a^{2}-(r-b)^{2}}, \\
\text { so area of } \mathcal{S} & =2 \cdot \text { area of top half }=2 \int_{\theta=0}^{2 \pi} \int_{r=b-a}^{b+a} \frac{r a}{\sqrt{a^{2}-(r-b)^{2}}} d r d \theta=4 \pi \int_{u=-a}^{a} \frac{u a+b a}{\sqrt{a^{2}-u^{2}}} d u \\
& =4 \pi \int_{-a}^{a} \frac{a u}{\sqrt{a^{2}-u^{2}}} d u+4 \pi \int_{-a}^{a} \frac{a b}{\sqrt{a^{2}-u^{2}}} d u=0+\left.4 \pi a b \arcsin (u / a)\right|_{-a} ^{a}=4 \pi^{2} a b
\end{aligned}
$$

