
Note: In these solutions we sometimes write fx, fxx, fxy for
∂f

∂x
,
∂2f

∂x2
, and

∂2f

∂y∂x
, etc. We also

write At for the transpose of a matrix A. Finally, contour maps are not drawn, but are described in

detail.

6.2. [Hessf ] =

[
12x2 −4
−4 12y2

]
so [Hessf (x0)] =

[
0 −4
−4 12

]
. Then

d2

dt2
f(x0 + tv)

∣∣∣∣∣
t=0

= v[Hessf (x0)]vt = (1,−1)

[
0 −4
−4 12

]
• (1,−1) = 20.

6.4. [Hessf ] =

 0 z − 1 y + 1
z − 1 0 x
y + 1 x 0

 so [Hessf (x0)] =

 0 0 2
0 0 1
2 1 0

. Then

d2

dt2
f(x0 + tv)

∣∣∣∣∣
t=0

= v[Hessf (x0)]vt = (1, 2, 1)

 0 0 2
0 0 1
2 1 0

 • (1, 2, 1) = 8.

6.8. det

[
1− t 2

2 5− t

]
= t2 − 6t+ 1, eigenvalues are t = (6±

√
32)/2 = 3±

√
8.

For the eigenvalue t1 = 3 +
√

8, an eigenvector must be perpendicular to the rows of A − t1I =[
−2−

√
8 2

2 2−
√

8

]
. Such an eigenvector is (2, 2 +

√
8), which when normalized becomes

u1 =
1√

4 + 2
√

2
(1, 1 +

√
2).

A second unit eigenvector, corresponding to the eigenvector t2 = 3−
√

8, must be orthogonal to this,

such as

u2 =
1√

4 + 2
√

2
(1 +

√
2,−1).

6.10. (a) fx = 2xy + y2 − y, fy = x2 + 2xy − x. To find the critical points we must solve

y(2x+ y − 1) = 0, x(x+ 2y − 1) = 0.

x = y = 0 gives the critical point (0, 0), y = x+ 2y− 1 = 0 gives (1, 0). x = 2x+ y− 1 = x = 0 gives

(0, 1), and 2x+ y − 1 = x+ 2y − 1 = 0 gives (1/3, 1/3). There are four critical points in all.

[Hessf ] =

[
2y 2x+ 2y − 1

2x+ 2y − 1 2x

]
.
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[Hessf (0, 0)] =

[
0 −1
−1 0

]
, with characteristic equation t2 − 1 = 0 and eigenvalues ±1. So f has

a saddle point at (0, 0). Just by observing that the constant term of the characteristic equation

is negative, and that that constant term is the product of the eigenvalues, shows that there is one

positive and one negative eigenvalue, so f has a saddle point. This trick works for 2 × 2 matrices

but not for 3× 3.

[Hessf (1, 0)] =

[
0 1
1 2

]
, with characteristic equation t2 − 2t − 4 = 0. The determinant is negative

so f has a saddle point at (1, 0).

[Hessf (0, 1)] =

[
2 1
1 0

]
, with the same negative determinant as at (1, 0). So f has a saddle point

at (0, 1).

[Hessf (1/3, 1/3)] =

[
2/3 1/3
1/3 2/3

]
, with eigenvalues µ1 = 1/3, µ2 = 1. (1/3, 1/3) is a local minimum

of f .

(b) The eigenvalues of A = [Hessf (1/3, 1/3)] =

[
2/3 1/3
1/3 2/3

]
have been found above. Corre-

sponding to µ1 is the eigenvector u1 = 2−1/2(1,−1), and corresponding to µ2 is the eigenvector

u2 = 2−1/2(1, 1).

Let u = (x− (1/3, 1/3)) • u1 = (1/
√

2)(x− (1/3) + y − (1/3)) and

v = (x− (1/3, 1/3)) •u2 = (1/
√

2)(−x+ (1/3) + y− (1/3)). Then the best quadratic approximation

near (1/3, 1/3) is

f(x, y) ≈ f(1/3, 1/3) +
1

2

[
(1/3)u2 + v2

]
as (x, y)→ (1/3, 1/3)

The level curves of f near (1/3, 1/3) are approximately the graphs of

1

3
u2 + v2 = K

for various constants K. These are ellipses centered on (1/3,1/3) with the major axis parallel to the

line y = −x, and the major axis
√

3 tijmes as long as the minor axis.

6.12. (a) fx = 9x2 + 5y + 10x, fy = 5x− 10y. At critical points x = 2y so 36y2 + 25y = 0, (x, y) = (0, 0)

or (−50/36,−25/36).

[Hessf ] =

[
18x+ 10 5

5 −10

]
.

[Hessf (0, 0)] =

[
10 5
5 −10

]
, negative determinant, therefore f has a saddle point at (0, 0).
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[Hessf (−50/36,−25/36) =

[
−15 5

5 −10

]
, characteristic equation t2 + 25t + 125 = 0, eigenvalues

t = (−25±
√

125)/2 are both negative, f has a local maximum at (−50/36,−25/36).

(b) The eigenvalues of H = [Hessf (0, 0) are roots of t2 − 125 = 0, i.e., t = ±
√

125. An eigenvector

u1 for t =
√

125 is orthogonal to the rows of H −
√

125I =

[
10−

√
125 5

5 −10−
√

125

]
, and after

normalizing this becomes

u1 =
1√

10 + 4
√

5
(2 +

√
5, 1),

so u2 = u⊥1 = 1√
10+4

√
5
(−1, 2 +

√
5).

Let u = x • u1 = 1√
10+4

√
5
((2 +

√
5)x+ y) and v = x • u2 = 1√

10+4
√
5
(−x+ (2 +

√
5)y). Then near

x0 = (0, 0)

f(x, y) ≈2 f(0, 0) +

√
125

2
(u2 − v2) as (x, y)→ (0, 0),

so the level curves near (0, 0) are approximately the level curves
√

125(u2−v2) = K or u2−v2 = K∗.

These are hyperbolas whose asymptotes are the lines u2− v2 = 0, i.e., u+ v = 0 and u− v = 0. The

u and v-axes are the lines v = 0 and u = 0 respectively, and these are the lines x = (2 +
√

5)y and

y = −(2 +
√

5)x, respectively.

6.14. ∇f = (4y − 4x3, 4x− 4y3).

(a)
d

dt
f(x(t))

∣∣∣∣∣
t=1

= ∇f(x(1)) • x′(1) = ∇f(2, 2) • x′(1) = (−24,−24) • (3, 5) = −192.

(b) 4y − 4x3 = 0 = 4x − 4y3 leads to y = x3, x = y3, critical points (1, 1), (0, 0), and (−1,−1).

f(1, 1) = f(−1,−1) = 2, f(0, 0) = 0.

(c) [Hessf ] =

[
−12x2 4

4 −12y2

]
.

[Hessf (0, 0) =

[
0 4
4 0

]
, characteristic polynomial t2 − 16, eigenvalues ±4, saddle point at (0, 0).

[Hessf (1, 1)] = [Hessf (−1,−1)] =

[
−12 4

4 −12

]
, characteristic equation t2 + 24t+ 128 = 0, eigen-

values −16 and −8. Local maxima at (1, 1) and (−1,−1).

(d) Yes, (1, 1) and (−1,−1) are maximizers, but this is not simply a consequence of the fact that

they are local maxima. Let C be a large closed square centered at the origin. Then on the exterior

of C and on the boundary of C, f(x, y) = 4xy − x4 − y4 is negative. On C itself, which is compact,

there must exist a maximizer (for C). Moreover maximizers relative to C must occur at critical

points (1, 1), (−1,−1), where f(x, y) = 2, or on the boundary, where f(x, y) < 0. So the boundary
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is an impossible location for maximizers. Then (1, 1) and (−1,−1) are maximizers with respect to

C. Since f has a positive value at them, but negative values off C, they are maximizers relative to

the entire plane.

(e) No, f(x, y) takes on arbitrarily “large negative” values, for example on the x-axis.

(f) For H = [Hessf (0, 0)], we compute that u1 = (1/
√

2)(1, 1) is a unit eigenvector for H corre-

sponding to the eigenvalue 4, and u2 = (1/
√

2)(1,−1) is an eigenvector for H corresponding to the

eigenvalue −4. Then letting u = (x−(0, 0))•u1 = (x+y)/
√

2 and v = (x−(0, 0))•u2 = (x−y)/
√

2,

f(x, y) ≈2 0 +
1

2
(4u2 − 4v2) as (x, y)→ (0, 0).

The level curves of f near the origin are approximately the hyperbolas u2 − v2 = K (and the lines

u = v, u = −v, corresponding to K = 0). Here the u-axis is defined by v = 0, i.e., y = x, and the

v-axis is defined by u = 0, i.e., y = −x. (Remark: It is not surprising, since x4 and y4 are much

smaller than xy near (0, 0), that the hyperbola u2 − v2 = K is a hyperbola of the form xy = K∗,

i.e., the 4xy term dominates f near (0, 0).)

For H = [Hessf (1, 1)], the same u1 as above is a unit eigenvector for H corresponding to the

eigenvalue −8, and u2 is a unit eigenvector for H corresponding to the eigenvalue −16. Then letting

u = (x− (1, 1)) • u1 = (x+ y − 2)/
√

2 and v = (x− (1, 1)) • u2 = (x− y)/
√

2,

f(x, y) ≈2 2 +
1

2
(−16u2 − 8v2) as (x, y)→ (1, 1).

The level curves of f near the origin are approximately the ellipses 16u2+8v2 = K, whose semimajor

axes are on the v-axis and semiminor axes are on the u-axis. Here the u-axis is defined by v = 0,

i.e., y = x, and the v-axis is defined by u = 0, i.e., y = 2− x.

Since f is unchanged by the transformation x → −x, y → −y, the contour map of f is symmetric

with respect to the origin. So the approximate picture at (−1,−1) is a mirror image (with respect

to the origin) of the approximate picture at (1, 1).

6.16. (a) Same as in 6.14, except now (1, 1) and (−1,−1) are local minima, and the Hessian is the negative

of what it was in 6.14. (So the eigenvectors of the Hessian are the same u1 and u2 as there, but now

the eigenvalues are 16 and 8.)

(b) The largest and smallest possible values of the second directional derivative are the eigenvalues

of [Hessf (1, 1)] and they arise from the directions u which are the corresponding unit eigenvectors

of the Hessian. Let u1 = (1/
√

2)(1, 1), an eigenvector for the eigenvalue 8. This choice of the unit

vector u makes the second derivative as small as possible, namely equal to 8. Similarly the direction

u2 = (1/
√

2)(1,−1) makes the second derivative as large as possible, namely equal to 16.

(c) The contours look exactly the same as in 6.14, but the values of f associated with each contour

are the negatives of the corresponding values in 6.14.
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6.18. Neither.

[Hessf ] =

 6xyz2 3x2z2 + 4 6x2yz
3x2z2 + 4 0 2x3z − 3

6x2yz 2x3z − 3 2x3y

, so [Hessf (1, 1, 1) =

 6 7 6
7 0 −1
6 −1 2

.

The determinants of the upper left 1× 1, 2× 2, and 3× 3 matrices are 6,−49,−176. The sequence

of signs is thus +−−. Since the sequence is neither + + + nor −+−, the answer is “neither.”
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