
5.2. (a) ∇f = (2xy + y − y2, x2 + x− 2xy). Critical points are solutions of the pair of equations

2xy + y − y2 = y(2x+ 1− y) = 0, x2 + x− 2xy = x(x+ 1− 2y) = 0.

There are four critical points:

y = 0, x = 0 gives the point (0, 0);

y = 0, x+ 1− 2y = 0 gives (−1, 0);

y = 2x+ 1,x = 0 gives (0, 1);

y = 2x+ 1, x = 2y − 1 gives (1/3,−1/3).

(b) The level curve of f through (1, 1) is perpendicular to ∇f(1, 1) = (2, 0) and has equation

∇f(1, 1) • (x− (1, 1)) = 0, or 2(x− 1) = 0, or x = 1.

(c) The first could not be a contour plot of f as it shows a crossing at (1, 1). Gradients are 0 at points of

crossing but ∇f(1, 1) 6= 0.

The second at least has the right tangent line at (1, 1).

5.4. (a) ∇f = (1 + x2 + y2)−3(y(1 + y2 − 3x2), x(1 + x2 − 3y2)). The five critical points are (x, y) =

(±1/
√

2,±1/
√

2), and (0, 0).

f(0, 0) = 0; f(1/
√

2, 1/
√

2) = f(−1/
√

2,−1/
√

2) = 1/8; and the value of f at the other two critical points

is −1/8.

(b) The center one. The simplest explanation is that f(x, y) doesn’t change when x and y are interchanged,

so the contour plot doesn’t change upon reflection in the line y = x. Another reason is the apparent location

of critical points.

5.6. g(x, y) = x2 + y2. Lagrange’s method gives the equations

det

[
∇f
∇g

]
= det

[
4(x+ y)3 + 2(x− y) 4(x+ y)3 − 2(x− y)

2x 2y

]
= 8(x+ y)3(y − x) + 2(x− y)(y + x) = 0

x2 + y2 = 1

If y = x then x = y = ±1/
√

2, where f(x, y) = (2/
√

2)4 = 4.

If y 6= x then we can divide by y − x and 2 to get

4(x+ y)3 − (x+ y) = 0
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If y = −x then y = −x = ±1/
√

2, where f(x, y) = (2/
√

2)2 = 2.

If y 6= −x we can divide further by x+ y, to get

4(x+ y)2 − 1 = 0.

Then x + y = ±1/2, x2 + ((±1/2) − x)2 = 1, 2x2 ± x − (3/4) = 0, x = (±1 ±
√

7)/4, y = (±1 ∓
√

7)/4,

x− y = ±
√

7/2, f(x, y) = (1/16) + (7/4) = 29/16.

The maximizers are ±(1/
√

2, 1/
√

2) (maximum value 4). The minimizers are ±((1 ±
√

7)/4, (1 ∓
√

7)/4)

(minimum value 29/16).

5.8. Since the constraint region is compact, maximizers and minimizers exist.

Four of the five critical points (see problem 5.4) are (±1/
√

2,±1/
√

2). They satisfy |x|+ |y| = 2/
√

2 =
√

2 >

1 so they are not in the constraint region. The fifth critical point, (0, 0), is in the running with f(0, 0) = 0.

Let’s find the maximizers in the first quadrant of the constraint set, which is the triangle bordered by the

positive coordinate axes and the line x+ y = 1. On the axes (including the triangle’s vertices), f(x, y) = 0.

On the line x+ y = 1, Lagrange’s method gives

det

[
∇f
∇g

]
=

[
∂f
∂x

∂f
∂y

1 1

]
=
∂f

∂x
− ∂f

∂y

= (1 + x2 + y2)−3(y(1 + y2 − 3x2)− x(1 + x2 − 3y2)) = 0.

Thus y(1 + y2 − 3x2)− x(1 + x2 − 3y2) = 0, y3 + 3xy2 − 3x2y − x3 + y − x = 0,

(y − x)(x2 + 4xy + y2 + 1) = 0.

If y − x = 0 then y = x and on the line x + y = 1, we get the point (1/2, 1/2), a candidate. Similarly we

get one point in each quadrant for a total of four: (±1/2,±1/2).

Otherwise x2+4xy+y2+1 = 0 and substituting y = 1−x, x2+4x−4x2+1−2x+x2+1 = −2x2+2x+2 = 0,

x = (1 ±
√

5)/2. These values of x are not in the interval 0 ≤ x ≤ 1, so there are no more candidates on

the “northeastern” line segment. Similarly there are no more on any of the line segments.

Checking the five candidates, we see that the maximizers are (1/2, 1/2) and (−1/2,−1/2), where f has the

maximum value 1/9, and the minimizers are (1/2,−1/2) and (−1/2, 1/2), where f has the minimum value

−1/9.

5.10. The constraint set is a closed “inverted bowl”. In particular it’s compact so there exist maximizers and

minimizers. The Lagrange method applied to the hemispherical x2 + y2 + z2 = 1 will give all possible

maximizers and minimizers except possibly on the circular rim x2 + y2 = 1, z = 0, where a separate

analysis should be used. The separate analysis is easy, since xyz = 0 on the circular rim. However, at

suitable points of the bowl, xyz will positive, and at other points, xyz will be negative, so we can ignore

the circular rim as well as any point where xyz = 0.
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On the hemisphere we use Lagrange multipliers, and solve

∇(xyz) = λ∇(x2 + y2 + z2) and x2 + y2 + z2 = 1, z > 0.

This yields

yz = 2λx

xz = 2λy

xy = 2λz

x2 + y2 + z2 = 1

Since we can ignore points where x, y, or z is 0, we can divide by x, y, and z if we wish. This gives

yz/x = 2λ = xz/y = xy/z. Therefore y/x = x/y and z/y = y/z. So x2 = y2 = z2. Substituting in the

constraint equation, x2 = y2 = z2 = 1/3, z = 1/
√

3. There are four candidates: (±1/
√

3,±1/
√

3, 1/
√

3).

The maximizers are (1/
√

3, 1/
√

3, 1/
√

3) and (−1/
√

3,−1/
√

3, 1/
√

3), where xyz = 1/3
√

3. The other two

candidates are minimizers, with xyz = −1/3
√

3.

5.12. Both curves, 2x − x2 = y and (x − 1)2 + y2 = 1, pass through (0, 0), (1, 1), and (2, 0). The parabola

y = 2x − x2, opening downward, lies below the upper semicircle y =
√

1− (x− 1)2 =
√

2x− x2 for

0 ≤ x ≤ 2, since 0 ≤ 2x− x2 ≤ 1 on that interval.

Therefore the constraint region has upper boundary y+ x2 − 2x = 0 and lower boundary y2 + x2 − 2x = 0,

y ≤ 0. The end points, where the two pieces of boundary meet, are (0, 0) and (2, 0).

A. Critical points of f in the interior: ∇f = (2x, 2) is never 0.

B. Lagrange method on the upper boundary y + x2 − 2x = 0:

det

[
∇f
∇g

]
= det

[
2x 2

2x− 2 1

]
= −2x+ 4 = 0,

x = 2, y = 0.

C. Lagrange method on the lower boundary y2 + x2 − 2x = 0, y ≤ 0:

det

[
∇f
∇g

]
= det

[
2x 2

2x− 2 2y

]
= 4xy − 4x+ 4 = 0, y = 1− (1/x).

Since y ≤ 0, x ≤ 1. Substituting in the constraint equation, (1− (1/x))2 + x2 − 2x = 0. Let u = x+ (1/x).

Then u2 − 2u− 1 = 0, u = 1±
√

2. Since x ≥ 0, also u ≥ 0, so u = 1 +
√

2.

Then x+ (1/x) = u, x2−ux+ 1 = 0, x = (u±
√
u2 − 4)/2 = 0.531 · · · or 1.883 · · ·. But we know that x ≤ 1

so only the first of these roots is relevant. Then y = 1− (1/x) = −0.883 · · · and f(x, y) = −1.484 · · ·.

D. Endpoints (0, 0) (f(0, 0) = 0) and (2, 0) (f(2, 0) = 4).

E. Roundup. The maximizer is (2, 0), where f(2, 0) = 4, and the minimizer is (0.531 · · · ,−0.883 · · ·), where

f(x, y) = −1.484 · · ·.
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5.14. See the text where this is now done.

5.16. The constraint curve is an ellipse. Let f(x, y) = the distance from (x, y) to the line y = 3 − 2x. The level

curves of f are the lines parallel to y = 3−2x. Reasoning geometrically, the maximizer(s) and minimizer(s)

will be points on the given ellipse where the tangent line is parallel to y = 3 − 2x. That is, they will be

points where the tangent line has slope −2.

So our equations are: y′ = −2 and the ellipse equation. Differentiating the ellipse equation x2 +y2 +xy = 1

gives 2x+ 2yy′ + xy′ + y = 0. Substituting y′ = −2, 2x− 2x− 4y + y = 0, y = 0. Therefore x = ±1, and

we have the two points (±1, 0)

The constraint set is compact so maximizers and minimizers exist, and we therefore must have found them.

From a sketch, (1, 0) is closer to the line y = 3− 2x than (−1, 0) is, so (1, 0) is the closest and (−1, 0) the

furthest point.

(Note. The above solution depends on knowing that the line y = 3− 2x does not meet the ellipse. This is

because substituting y = 3− 2x in the ellipse equation gives

x2 + x(3− 2x) + (3− 2x)2 = 0

or 3x2 − 9x+ 9 = 0, an equation with no real solutions.)

5.18. This can be solved by elementary solid geometry, or by the Lagrange method. The geometric solution,

briefly, is to draw the line connecting (1, 2, 3) with the center (0, 0, 0) of the sphere; the opposite ends of

that diameter of the sphere give the closest and furthest points.

Solution by Lagrange method: We wish to find the maximizer and minimizer of the square distance

f(x, y, z) = (x− 1)2 + (y − 2)2 + (z − 3)2

subject to the constraint

g(x, y, z) = x2 + y2 + z2 = 1.

The constraint set is compact so maximizer and minimizer exist. Using Lagrange multipliers gives ∇f =

λ∇g, so we have to solve

2(x− 1) = λ · 2x
2(y − 2) = λ · 2y
2(z − 3) = λ · 2z

x2 + y2 + z2 = 1

If x = 0, then the first equation gives 2(x− 1) = 0, x = 1, contradiction. Therefore x 6= 0. Similarly y 6= 0

and z 6= 0. The first three equations then give

λ =
x− 1

x
=
y − 2

y
=
z − 3

z
.
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Therefore

1− 1

x
= 1− 2

y
= 1− 3

z
, so

1

x
=

2

y
=

3

z
.

So z = 3x, y = 2x, and the constraint equation gives 14x2 = 1, x = ±1/
√

14.

The minimizer is −(1/
√

14)(1, 2, 3), and the maximizer is (1/
√

14)(1, 2, 3).
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