
Practice Final Exam, Math 291 Fall 2017

December 20, 2017

1: (a) Let a = (−1, 1, 2) and b = (2,−1, 1). Find all vectors x, if any exist, such that

a× x = (−2, 4,−3) and b · x = 2 .

If none exist, explain why this is the case.

(b) Among all vectors x such that (−1, 1, 2) × x = (−2, 4,−3), find the one that is closest to

(1, 1, 1).

SOLUTION (a) Since a = (−1, 1, 2) is orthogonal to (−2, 4,−3), there is a solution, and one

solution is given by

x0 := − 1

‖a‖2
a× (−2, 4,−3) =

1

6
(11, 7, 2) .

Then the set of all solutions of a× x = (−2, 4,−3) is

x0 + ta

for all t ∈ R. Taking the dot product with b, we find (x0 + ta) · b =
17

6
− t. Setting this equalt to

1, we find t = 5
6 , and so the unique solution is

x0 +
5

6
a = (1, 2, 2) .

As you can check this does satsify both equations.

For (b) we choose t to minimize ‖(1, 1, 1)− (x0 + ta)‖2 and setting the derivative in t to be zero

0 = ((1, 1, 1)− x0 − ta) · a =
1

6
(−5,−1, 4) · (−1, 1, 2)− t6 = 2− t6 .

Hence t = 1/3. The closest point is

x0 +
1

3
a =

1

6
(11, 7, 2) +

1

6
(−2, 2, 4) =

1

2
(3, 3, 2) .

This is the closest point. Notice that
1

2
(3, 3, 2)− (1, 1, 1) =

1

2
(1, 1, 0) is orthogonal to a, as it must

be.

2: Let f(x, y) = xy2 − xy.

(a) Find all of points at which the tangent plane to the graph of f is horizontal.

(b) Find the equation of the tangent plane to the graph of f at (3/2, 1/3).
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(c) Find the equation of the tangent line to the contour curve of f through the point (3/2, 1/3).

(d) Could the following be a contour plot for f? Explain your answer to receive credit.

SOLUTION (a) We compute ∇f(x, y) = (y2 − y, x(2y − 1)). The tangent plane is horizontal at

critical points. We get these by solving

y2 = y

x(2y − 1) = 0

From he first equation, we must have y = 0 or y = 1. If y = 0, the second gives x = 0. If y = 1,

the second asl gives x = 0. So the two critical points are x1 = (0, 0) and x2 = (0, 1).

(b) ∇f(3/2, 1/3) = −(2/9, 1/2) and f(3/2, 1/3) = −1/3. Therefore the equation for the tangent

plane is

z = −1

3
− (2/9, 1/2) · (x− 3/2, y − 1/3) = −2

9
x− 1

2
y +

1

6
.

(c) The line is normal to ∇f(3/2, 1/3) = −(2/9, 1/2), so that equation is (x − 3/2, y − 1/3) ·
(2/9, 1/2) = 0 which simplifies to

2

9
x+

1

2
y =

1

2
.

(d) No. It shows a critical point (a saddle) above the x-axis, and not critical points on the x-axis.

3: Let f(x, y) be a differentiable function on R2 such that f(0, 0) = 0. Define a function g(x, y) by

g(x, y) =


f(x, y)√
x2 + y2

(x, y) 6= (0, 0)

0 (x, y) 6= (0, 0) .

Suppose that f is continuously differentiable. Is it then necessarily the case that g is continuous?

Justify your answer to receive credit.

SOLUTION If f is continuously differentiable, then with a := ∇f(0, 0),

f(x, y) ≈ a · (x, y) ,

and for all (x, y),

lim
t→0

f(tx, ty)

t
a · (x, y) .
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Then, for a 6= 0,

lim
t→0

g(ta⊥) = 0 and lim
t→0

g(ta) = 1 .

Hence, when a 6= 0, g need not be continuous. For a specific counterexample, take f(x, y) = x.

(However, it is true that under the additional assumption that ∇f(0, 0) = 0, g is continuous.)

4: Let x(t) be the curve given by x(t) = (t, t2/2, t3/3).

(a) Compute the curvature κ(t) as a function of t, and show that limt→∞ κ(t) = 0.

(b) Compute the angle θ(t) between T(t) and a(t) as a function of t, and show that limt→∞ θ(t) = 0.

Comment on the relation between this limit, and the limit in part (a).

(c) Find the equation of the osculating plane at t = 1.

(d) Compute the distance from the origin to the osculating plane at t = 1.

SOLUTION (a) We compute v(t) = (1, t, t2) and a(t) = (0, 1, 2t). Then v(t) =
√

1 + t2 + t4 and

T(t) :=
1√

1 + t2 + t4
(1, t, t2) .

It follows that

a⊥(t) =
1

1 + t2 + t4
(−2t3 − 1, 1− t4, t3 + 2t) and ‖a⊥(t)‖ =

√
1 + 4t2 + t4√
1 + t2 + t4

.

Then since v2(t)κ(t)‖a⊥(t)‖,

κ(t) =

√
1 + 4t2 + t4

(1 + t2 + t4)3/2
.

Since limt→∞ ‖a⊥(t)‖ = 1 and since limt→∞ v
2(t) =∞, it is evident that limt→∞ κ(t) = 0.

(b) We compute
a(t) · v(t)

‖a(t)‖‖v(t)‖
=

2t3 + t√
4t2 + 1

√
t4 + t2 + 1

.

Therefore,

lim
t→∞

a(t) · v(t)

‖a(t)‖‖v(t)‖
= 1 ,

and a(t)·v(t)
‖a(t)‖‖v(t)‖ = cos(θ(t)). Therefore, limt→∞ θ(t) = 0. For large t, the acceleration lines up with

the direction of motion, so the curvature goes to zero.

(c) We compute v(t)× a(t) = (t2,−2t, 1), and so v(1)× a(1) = (1,−2, 1) and x(1) = (1, 1/2, 1/3).

The equation is (x− 1, y − 1/2, z − 1/3) · (1,−2, 1) = 0, which simplifies to

x− 2y + z =
1

3
.

(d) The distance is
1√
6
|(1, 1/2, 1/3) · (1,−2, 1)| = 1

3
√

6
.

5: Let f(x, y) =
xy

(1 + x2 + y2)2
.
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(a) Find all of the critical points of f , and for each of them, determine whether it is a local

minimum, a local maximum, a saddle point, or if it cannot be classified through a computation of

the Hessian.

(b) There is one critical point of f in the interior of the upper right quadrant. Let x0 = (x0, y0)

denote this critical point. Let u = (u, v) be a unit vector, and consider the directional second

derivative
d2

dt2
f(x0 + tu, y0 + tv)

∣∣∣∣
t=0

.

Which choices of the unit vector (u, v) makes this as large as possible? What is the largest possible

value? Also, which choices of the unit vector (u, v) makes this as small as possible, and what is the

smallest possible value?

(c) Sketch a contour plot of f near (x0, y0).

(d) Does f have minimum and maximum values? If so, say what they are, and what the maximizers

and minimizes are.

SOLUTION (a) We compute

∇f(x, y) =
1

(1 + x2 + y2)3
(y(1− 3x2 + y2), x(1− 3y2 + x2)) .

The critical points (x, y) solve

y(1− 3x2 + y2) = 0

x(1− 3y2 + x2) = 0

If y = 0, the second equation reduces to x(1 + x2) = 0, so x = 0. Likewise, if x = 0, we conclude

y = 0. Hence z1 = (0, 0) is a critical point, and any other critical points satisfy

1− 3x2 + y2 = 0

1− 3y2 + x2 = 0

Adding 3 times the second equation to the first, 4− 8y2 = 0, or y2 = 1/2. Hence y = ±2−1/2. and

then we find from the first equation that 3x2 = 3/2, so x = ±2−1/2. This gives us four more critical

points

z2 = (2−1/2, 2−1/2) , z3 = (−2−1/2,−2−1/2) , z4 = (−2−1/2, 2−1/2) , z5 = (2−1/2,−2−1/2) .

We next compute the Hesisan:

Hessf (x, y)] =
1

(x2 + y2 + 1)4

[
12xy(x2 − y2 − 1) g(x, y)

g(x, y) 12xy(y2 − x2 − 1)

]
,

where

g(x, y) := −3(x4 + y4) + 18x2y2 − 2(x2 + y2) + 1 .

Then

Hessf (z1)] =

[
0 1

1 0

]
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and

Hessf (z2)] = Hessf (z3)] =
1

8

[
−3 1

1 −3

]
and Hessf (z4)] = Hessf (z5)] =

1

8

[
3 1

1 3

]
.

By Sylvester’s criterion, z1 is a saddle, z2 and z3 are local maxima, and z4 and z5 are local minima.

(d) Yes, since lim‖bx‖→∞ f(x) = 0, and the minima and maxima must be critical points. Hence z2
and z3 are maxima and z4 and z5 are minima. Hence

(b) The one critical point is z2, and so x0 = z2. Hessf (x0)] = 1
8

[
−3 1

1 −3

]
. This matrix is double

symmetric and so its eigenvalues are µ1 = −2 and µ2 = −4. The corresponding eigenvectors are

u1 =
1√
2

(1, 1) and u2 =
1√
2

(1,−1) .

The maximizers are ±u1 and the minimizers are ±u2.

(c) In the usual u, v coordinates, near x0 the contour curves are level curves are close to the level

curves of

−2u2 − 4v2 .

these are ellipses with the major axis along the u-axis, and the major axis should be
√

2 times as

long as the minor axis. The u-axis runs along the line through x0 and x0 +u1, which asses through

x0 and makes an angle of π/4 with respect to the x-axis. You sketch must clearly show the aspect

ratio.

6: Let f(x, y) = xy. Let D denote the region in the plane consisting of all of the points (x, y) such

that

x2 + 4y2 ≤ 6 .

Find the minimum and maximum values of f in D. Also, find all of the minimizers and maximizers

in D.

SOLUTION We compute ∇f(x, y) = (y, x), and so the only critical point is (0, 0). Next,

det

([
y x

2x 2y

])
= 2(y2 − x2)

so Lagrange’s equations yield

y2 = x2

x2 + 4y2 = 6 .

Hence 5x2 = 6, so that x±
√

6/5 and then y = ±
√

6/5. The maximizers are

(
√

6/5,
√

6/5) and − (
√

6/5,
√

6/5)

and the minimizers are

(
√

6/5,−
√

6/5) and (−
√

6/5,
√

6/5) .

The maximum and minimum values are 6/5 and −6/5 respectively.
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7: (a) Let D be the set in the positive quadrant of R2 that bounded by

y = x

y =
√

3x

y = x2 + y2

Let f(x, y) =
√

1 + x2 + y2. Compute
∫
D f(x, y)dA.

(b) Let D be the set in R2 that is given by

1 ≤ y

x2
≤ 2 and 1 ≤ x

y2
≤ 2 .

Let f(x, y) =
1

x2y2
. Compute

∫
D f(x, y)dA.

SOLUTION (a) In polar coordinates, y = y2 + x2 is r sin θ = r2, or r = sin θ, the circle of radius

1/2 centered at (1/2, 0). In polar coordinates, y = x is θ = π/4, and in polar coordinates, y =
√

3x

is θ = π/3. Hence the region is described by

0 ≤ r ≤ sin θ and π/4 ≤ θ ≤ π/3 .

Then ∫
D
f(x, y)dA =

∫ π/3

π/4

(∫ sin θ

0
r
√

1 + r2dr

)
dθ =

2

3

∫ π/3

π/4

(
(1 + sin2 θ)3/2 − 1

)
dθ

(b) Note that both x and y are positive, so the set lies in the upper-right quadrant. Define

u(x, y) = y/x2 and v(x, y) = x/y2 .

Then x = v1/3u−2/3 and y = u1/3v−2/3. Hence

|det([Dx(u)])| = 1

3
u−4/3v−4/3 .

Next

f(x, y) =
1

x2y2
= u−2/3v−2/3 .

Hence ∫
D
f(x, y)dA =

(∫ 2

1
u−2du

)(∫ 2

1
v−2dv

)
=

1

4
.

8: Let V be the region in R3 that is bounded by the surfaces√
x2 + y2 = z3√
x2 + y2 = 10− z

Compute the volume of V and the total surface area of its boundary. (There are two pieces to the

boundary.

(a) Compute the
∫
V(x2 + y2)dV .
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(b) Compute the total surface area of the boundary of V.

SOLUTION (a) In cylindrical coordinates, we have r = z3 and r = 10− z. Where these surfaces

meet, z3 + z = 10. One obvious solution is z = 2 and z3 + z − 10 = (z − 2)(z2 + 2z + 5) so there

are no other real roots. Hence the description of V in cylindrical coordinates is given by

r1/3 ≤ z ≤ 10− r , 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 8 .

(If you choose to integrate in r before z, you will need two regions, one for 0 ≤ z ≤ 2 and one for

2 ≤ z ≤ 8. This is obviously not the way to go.)

Therefore,∫
V

(x2 + y2)dV = 2π

∫ 8

0
r3
(∫ 10−r

r1/3
dz

)
dr = 2π

∫ 8

0
r3
(

10− r − r1/3
)

dr .

(b) When computing the surface area, we will use cylindrical coordinates, and must break the

integration up into the two surfaces anyhow. We may as well use r and θ as the parameters,

eliminating z.

The lower surface is parameterized by

X(r, θ) = (r cos θ, r sin θ, r1/3) , 0 ≤ r ≤ 8 , 0 ≤ θ ≤ 2π .

we compute

Xr(r, θ) = (cos θ, sin θ, 13r
−2/3) and Xθ(r, θ) = (−r sin θ, r cos θ, 0) .

Then

‖Xr ×Xθ(r, θ)‖ =
r1/3

3

√
1 + 9r2/3 .

The upper surface is parameterized by

X(r, θ) = (r cos θ, r sin θ, 10− r) , 0 ≤ r ≤ 8 , 0 ≤ θ ≤ 2π .

we compute

Xr(r, θ) = (cos θ, sin θ,−1) and Xθ(r, θ) = (−r sin θ, r cos θ, 0) .

Then

‖Xr ×Xθ(r, θ)‖ =
√

2r .

Hence the total surface area is

2π

∫ 8

0

(
r1/3

3

√
1 + 9r2/3 +

√
2r

)
dr .

9: Consider the two vector fields

F = (yz, xz, xy) and G = (z2 + 2xy, x2 − 2yz, 2xz − y2) .
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(a) Compute the divergence and curl of F and G.

(b) One of the vector fields F and G is equal to ∇ϕ for some potential function ϕ. Which one is

it? Find such a potential function.

(c) One of the vector fields F and G is equal to curlA for some vector potential A. Which one is

it? Find such a vector potential.

(d) Let S be the part of the ellipsoid x2 + y2 + 1
4z

2 = 5
4 that lies above the plane z = 1 with N

pointing upwards. Compute ∫
S
F ·NdS and

∫
S
G ·NdS .

(e) Let C be the curve that is the intersection of the graph of z = 1 − x2 with the cylinder

x2 + y2 = 1, oriented so that it runs clockwise when viewed from above. Compute∫
C
F ·Tds and

∫
C
G ·Tds .

SOLUTION (a) We compute

curlF = 0 and curlG = 0 ,

and

divF = 0 and divG = 2(x+ y − z) .

(b) Since both curlF = 0 and curlG = 0, both vector fields are gradients. We find

F = ∇ϕ where ϕ(x, y, z) := xyz and G = ∇ϕ where ϕ(x, y, z) := x2y − y2z + z2x .

(c) Since divF = 0, but divG 6= 0, it is F. We find F = curlA where

A =
1

2
(z2x, x2y, y2z) .

(d) Since divF = 0, we may replace S by S̃ where S̃ is the circle in the plane z = 1 with x2+y2 = 1.

Then since N = (0, 0, 1). F ·N = xy and by symmetry,∫
S
F ·NdS =

∫
S̃
F ·NdS = 0 .

Next, let V be the region that lies the ellipsoid x2 + y2 + 1
4z

2 = 5
4 and above the plane z = 1. By

symmetry in x and y, ∫
V

divGdV =

∫
V

(−z)dV .

The region V is specified in cylindrical coordinates by

0 ≤ r ≤ 1 , 0 ≤ θ ≤ 2π , 1 ≤ z ≤
√

5 .

Hence ∫
V

(−z)dV = −2π

(∫ √5
1

zdz

)(∫ 1

0
rdr

)
= −5π

2
.
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By the Divergence Theorem,∫
V

divGdV =

∫
S
G ·NdS −

∫
S̃
G ·NdS

with S̃ given as above. On S̃, G ·N = 2x− y2. Hence∫
S̃
G ·NdS = −

(∫ 1

0
r3dr

)(∫ 2π

0
sin2 θdθ

)
= −π

4
.

Finally, ∫
S
G ·NdS = −11π

4
.

10: Define the points

p1 = (0, 0, 0) , p2 = (1, 2,−3) , p3 = (4, 1,−5) , p4 = (5,−1,−4) , p5 = (2,−1,−1) .

Notice that all 5 points lie in the plane x+ y+ z = 0. Let C be the curve that runs in straight line

segments from p1 to p2, then from p2 to p3, then from p3 to p4 and finally from p4 to p5. Let F

be the vector field

F(x, y, z) = (z2 + 2xy + z, x2 − 2yz + x, 2xz − y2 + y) .

Compute

∫
C
F ·Tds by making use of Stokes’ Theorem.

SOLUTION (a) As we have seen in the previous problem,

(z2 + 2xy, x2 − 2yz, 2xz − y2) = ∇ϕ(x, y, z) where ϕ(x, y, z) = x2y − y2z + z2x .

Hence

curlF = curl(z, x, y) = (1, 1, 1) .

(You could also compute this directly without eliminating the gradient part.) Define G(x, y, z) =

(z, x, y). Then F = ∇ϕ+ G.

We can close the curve by adding in C̃ which runs on the straight line segment from p5 to p1.

This is parameterized by

x(t) = (1− t)(2,−1,−1) , t ∈ (0, 1) .

Then x′(t) = (−2, 1, 1), and∫
C̃
F ·Tds =

∫
C̃
∇ϕ ·Tds+

∫
C̃
G ·Tds

= ϕ(p1)− ϕ(p5)− 6

∫ 1

0
(1− t)dt

= −1− 3 = −4 .

Since all of the points p1, p2, p3, p4 and p5 lie in the plane x + y + z = 0, we define S to be the

polygon in this plane with vertices p1, p2, p3, p4 and p5. Then S is bounded by C̃ ∪ C, and since

the curve is traversed clockwise when viewed from above, the consistent unit normal is

N = − 1√
3

(1, 1, 1) .
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Hence F ·N = −
√

3 everywhere on S, and so by Stokes’ Theorem,∫
C̃∪C

F ·Tds = −
√

3area(S) .

With a simple sketch, one breaks S up into several triangles and rectangles, and computes that

area(S) = 19/2. Hence ∫
C
F ·Tds =

19
√

3

2
+ 4 .


