Practice Final Exam, Math 291 Fall 2017

December 20, 2017

1: (a) Let a=(—1,1,2) and b = (2,—1,1). Find all vectors x, if any exist, such that
axx=(-2,4,-3) and b-x=2.

If none exist, explain why this is the case.

(b) Among all vectors x such that (—1,1,2) x x = (—2,4,—3), find the one that is closest to
(1,1,1).

SOLUTION (a) Since a = (—1,1,2) is orthogonal to (—2,4,—3), there is a solution, and one
solution is given by

1 1
xg = ———ax (-2,4,-3) = =(11,7,2) .
all? 6

Then the set of all solutions of a x x = (—2,4,—3) is

X + ta

17
for all ¢ € R. Taking the dot product with b, we find (x¢ + ta)-b = e t. Setting this equalt to

1, we find t = %, and so the unique solution is
5
Xg + g2 = (1,2,2) .

As you can check this does satsify both equations.
For (b) we choose ¢ to minimize ||(1,1,1) — (xg +ta)||? and setting the derivative in ¢ to be zero

1
0=((1,1,1) =x0 —ta)-a= o(~5,~1,4) - (-1,1,2) ~ 16 =2 16 .

Hence ¢ = 1/3. The closest point is
1 1 1 1
—a=—(11,7,2 —(—2,2,4) = =(3,3,2) .
X0+3a 6( 77)+6( )7) 2(77)
- . . 1 1 . .
This is the closest point. Notice that 5(3, 3,2) —(1,1,1) = 5(1, 1,0) is orthogonal to a, as it must
be.
2: Let f(z,y) = zy? — zy.
(a) Find all of points at which the tangent plane to the graph of f is horizontal.
(b) Find the equation of the tangent plane to the graph of f at (3/2,1/3).



(c) Find the equation of the tangent line to the contour curve of f through the point (3/2,1/3).

(d) Could the following be a contour plot for f? Explain your answer to receive credit.

=3

SOLUTION (a) We compute Vf(z,y) = (y> — y,2(2y — 1)). The tangent plane is horizontal at
critical points. We get these by solving

Y =y

z2y—1) = 0

From he first equation, we must have y = 0 or y = 1. If y = 0, the second gives x = 0. If y = 1,
the second asl gives x = 0. So the two critical points are x; = (0,0) and x2 = (0, 1).
(b) V£(3/2,1/3) = —(2/9,1/2) and f(3/2,1/3) = —1/3. Therefore the equation for the tangent

plane is

1 2 1 1
== —(2/9,1/2)- (x —3/2,y—1/3) = -2z — —y + — .
2= =3 = (2/9,1/2) (0 -3/2y — 1/3) = —so - sy + 5

(¢) The line is normal to Vf(3/2,1/3) = —(2/9,1/2), so that equation is (z — 3/2,y — 1/3) -

(2/9,1/2) = 0 which simplifies to
2 11
0" T2 T

(d) No. It shows a critical point (a saddle) above the z-axis, and not critical points on the z-axis.

3: Let f(z,y) be a differentiable function on R? such that £(0,0) = 0. Define a function g(z,y) by

Sy 00
g(z,y) = V2t + 42 (z,y) # (0,0)
0 (z,y) # (0,0) .

Suppose that f is continuously differentiable. Is it then necessarily the case that g is continuous?
Justify your answer to receive credit.

SOLUTION If f is continuously differentiable, then with a := V f(0,0),

f(xvy) ~a- (l’,y) )

and for all (z,y),

t—0



Then, for a # 0,
%gl(l)g(taj_) =0 and %Lrg(l)g(ta) =1.

Hence, when a # 0, g need not be continuous. For a specific counterexample, take f(x,y) = x.
(However, it is true that under the additional assumption that V f(0,0) = 0, g is continuous.)

4: Let x(t) be the curve given by x(t) = (¢,t?/2,13/3).

(a) Compute the curvature £(t) as a function of ¢, and show that lim;_,~ x(t) = 0.

(b) Compute the angle §(t) between T (¢) and a(t) as a function of ¢, and show that lim;_,~ 6(t) = 0.
Comment on the relation between this limit, and the limit in part (a).

(c) Find the equation of the osculating plane at t = 1.
(d) Compute the distance from the origin to the osculating plane at ¢ = 1.

SOLUTION (a) We compute v(t) = (1,¢,t%) and a(t) = (0,1,2t). Then v(t) = v/1 + 2 + ¢4 and

1
T(t) = ——(1,¢,£%) .
) \/1+t2+t4( )
It follows that
1 V1442 + ¢4
a (t)= ——— (=23 = 1,1 =4, 3+ 2t) and |a ()| = ——— .
J_() 1+t2+t4( ) ” J_()H /71—|—t2+t4
Then since v?(t)s(t)|laL (t)],
V14482 + 4
Kt) = ——————r .
(1+t2+t4)3/2
Since limy o0 |21 (¢)|| = 1 and since lim; ;o v2() = 00, it is evident that lim;_,. #(t) = 0.
(b) We compute
a(t)-v(t) 263+t
la@®llvOl VA2 +IVEE+ 2+ 1
Therefore,
i 20 V(@) ’

t—00 W

and m = cos(6(t)). Therefore, lim; ,~ 0(t) = 0. For large ¢, the acceleration lines up with

the direction of motion, so the curvature goes to zero.
(c) We compute v(t) x a(t) = (t2,—-2t,1), and so v(1) x a(1) = (1,-2,1) and x(1) = (1,1/2,1/3).
The equation is (x — 1,y —1/2,2 —1/3) - (1,—2,1) = 0, which simplifies to

1
T Y+ z 5

(d) The distance is
1

\/6|(17 1/27 1/3) ) (17 -2, 1)‘ =

1
3V6

Ty

5: Let f(:L‘,y) = m



(a) Find all of the critical points of f, and for each of them, determine whether it is a local
minimum, a local maximum, a saddle point, or if it cannot be classified through a computation of
the Hessian.

(b) There is one critical point of f in the interior of the upper right quadrant. Let xo = (0, yo)

denote this critical point. Let u = (u,v) be a unit vector, and consider the directional second

derivative )

d
@f(:co + tu, yo + tv)
t=0

Which choices of the unit vector (u,v) makes this as large as possible? What is the largest possible
value? Also, which choices of the unit vector (u,v) makes this as small as possible, and what is the
smallest possible value?

(c) Sketch a contour plot of f near (zg,yo).

(d) Does f have minimum and maximum values? If so, say what they are, and what the maximizers

and minimizes are.
SOLUTION (a) We compute

1

m(y(l — 32>+ ¢*), x(1 - 3y° + 27)) .

Vi(z,y) =
The critical points (z,y) solve

y(1—322 +¢%) =
(1 —3y* +2%) =
If y = 0, the second equation reduces to z(1 + 22) = 0, so x = 0. Likewise, if 2 = 0, we conclude
y = 0. Hence z; = (0,0) is a critical point, and any other critical points satisfy
1-3224+4% = 0
1-32+2> = 0
Adding 3 times the second equation to the first, 4 — 8y% = 0, or y? = 1/2. Hence y = +2-1/2 and

then we find from the first equation that 322 = 3/2, so x = +2-1/2. This gives us four more critical
points

Zo = (2—1/272—1/2) , Z3 = (_2—1/2’ _2—1/2) , Z4 = <_2—1/272—1/2) , Z5 = (2—1/27 _2—1/2) .

We next compute the Hesisan:

eSS\ =
N e RS L 9(z,y) R2zy(y* —2* —1) |
where
g(z,y) == =3(z" +y*) + 182%y* — 2(2” + y*) + 1.
Then

Hess¢(z1)] = [ (1) (1) ]



and

1

Hess (22)] = Hess;(23)] = [ !

-3 1 ] and  Hessf(z4)] = Hessf(z5)] = 2 [ s ]

8 1 -3 811 3

By Sylvester’s criterion, z; is a saddle, zs and zg are local maxima, and z4 and z5 are local minima.

(d) Yes, since lim |00 f(X) = 0, and the minima and maxima must be critical points. Hence z
and z3 are maxima and z4 and z5 are minima. Hence

-3
(b) The one critical point is z, and so x = zo. Hessy(xq)] = % L 3 | This matrix is double
symmetric and so its eigenvalues are 1 = —2 and ps = —4. The corresponding eigenvectors are
1 1
u =—(1,1) and uwy=-—=(1,-1).

V2 V2

The maximizers are +u; and the minimizers are £us.

(c) In the usual u,v coordinates, near X the contour curves are level curves are close to the level
curves of
—2u* — 4? .

these are ellipses with the major axis along the u-axis, and the major axis should be v/2 times as
long as the minor axis. The u-axis runs along the line through xg and xg + uy, which asses through
x( and makes an angle of 7/4 with respect to the z-axis. You sketch must clearly show the aspect
ratio.

6: Let f(x,y) = zy. Let D denote the region in the plane consisting of all of the points (z,y) such
that
2?4+ 442 <6 .

Find the minimum and maximum values of f in D. Also, find all of the minimizers and maximizers
in D.

SOLUTION We compute V f(z,y) = (y,z), and so the only critical point is (0,0). Next,

det([ 2yx ;y]) =2(y? — 2?)

TR

2?2 +42 = 6.

so Lagrange’s equations yield

Hence 522 = 6, so that = & 1/6/5 and then y = 4-1/6/5. The maximizers are

(\/%7 \/%) and — (\/6/757 \/6/75>

and the minimizers are
(V6/5,—v/6/5) and  (=/6/5,1/6/5) .

The maximum and minimum values are 6/5 and —6/5 respectively.



7: (a) Let D be the set in the positive quadrant of R? that bounded by

=
V3z
g
Let f(x,y) = /14 22+ y2. Compute [, f(z,y)dA.
(b) Let D be the set in R? that is given by

1<ZL <2 and 1

2

IN

@w‘ S
IN
[\

1
Let f(z,y) = s Compute [, f(z,y)dA.

SOLUTION (a) In polar coordinates, y = 3> + 22 is rsin@ = 72, or r = sin @, the circle of radius
1/2 centered at (1/2,0). In polar coordinates, y = x is = 7/4, and in polar coordinates, y = v/3x
is # = 7/3. Hence the region is described by

0<r<sinf and 7/4<60<mw/3.

Then

/3 w/3

3 ((1 +sin? 9)3/2 — 1) dé

sin 6
/ f(z,y)dA = ( rv 1+ r2dr> df = 2/
D 0 ™

/4 /4

(b) Note that both x and y are positive, so the set lies in the upper-right quadrant. Define

u(z,y) = y/a:2 and v(x,y) = x/y2 )

Then 2 = v1/3u=2/3 and y = w!/3v=2/3. Hence

[det([De(w))| = gu*40/3

Next 1
_ _ ,,—2/3,-2/3
f(may)_nyg_u /U / :

foreswa= ([ o) () -1

8: Let V be the region in R? that is bounded by the surfaces

Va2 +y2 = 28
Y
vVez+y? = 10—z

Compute the volume of V and the total surface area of its boundary. (There are two pieces to the

Hence

boundary.
(a) Compute the [},(z* 4 y*)dV.



(b) Compute the total surface area of the boundary of V.

SOLUTION (a) In cylindrical coordinates, we have r = 23 and 7 = 10 — 2. Where these surfaces
meet, 23 + 2z = 10. One obvious solution is z = 2 and 23 + 2 — 10 = (2 — 2)(2? + 22 + 5) so there
are no other real roots. Hence the description of V in cylindrical coordinates is given by

r1/3§z§10—r, 0<6<2r and 0<r<8.

(If you choose to integrate in r before z, you will need two regions, one for 0 < z < 2 and one for
2 < z < 8. This is obviously not the way to go.)
Therefore,

8 10—r 8
/($2+y2)dV227T/ r3(/ dz>dr:27r/ r3(10—r—rl/3)dr.
v 0 r1/3 0

(b) When computing the surface area, we will use cylindrical coordinates, and must break the
integration up into the two surfaces anyhow. We may as well use » and 6 as the parameters,
eliminating z.

The lower surface is parameterized by

X(r,ﬁ):(rCOSH,rsine,rl/?’), 0<r<8, 0<0<2m.
we compute
X, (r,0) = (cos@,sin 6, %’F—2/3) and Xo(r,0) = (—rsinf,rcosf,0) .

Then
1/3

/
I1X, x Xq(r,0)| = %\/1 +9r2/3 .

The upper surface is parameterized by
X(r,0) = (rcosf,rsinf,10 —r) , 0<r<8, 0<60<2r.
we compute
X, (r,0) = (cosf,sinf,—1) and Xg(r,0) = (—rsinf,rcosb,0) .

Then
1X, x Xo(r,0)|| = V2r .

Hence the total surface area is

8 /,1/3
27r/ (%\/1—%97“2/3—1—\/57") dr .
0

9: Consider the two vector fields

F = (yz,xz,xy) and G = (22 + 2zy, 2% — 2yz, 222 — y?) .



(a) Compute the divergence and curl of F and G.

(b) One of the vector fields F and G is equal to V¢ for some potential function ¢. Which one is
it? Find such a potential function.

(c) One of the vector fields F and G is equal to curlA for some vector potential A. Which one is
it? Find such a vector potential.

(d) Let S be the part of the ellipsoid 22 + 32 + %22 = % that lies above the plane z = 1 with N
pointing upwards. Compute

/F-NdS and /G-NdS.
S S

(e) Let C be the curve that is the intersection of the graph of z = 1 — 22 with the cylinder
22 + y? = 1, oriented so that it runs clockwise when viewed from above. Compute

/F-Tds and /G-Tds.
C C

SOLUTION (a) We compute
curlF =0 and curlG =0,

and
divF =0 and divG =2(z+y—2) .

(b) Since both curlF = 0 and curlG = 0, both vector fields are gradients. We find
F=Vy¢ where p(z,y,z) :=xyz and G =Vy where o(z,y,2) = 2%y — v’z + 2’z .

(c) Since divF = 0, but divG # 0, it is F. We find F = curlA where

1
A= §(z2x,:v2y,y2,z) .

(d) Since divF = 0, we may replace S by S where S is the circle in the plane z = 1 with 2 +y? = 1.
Then since N = (0,0,1). F-N = zy and by symmetry,

/F-NdS:/F-NdS:O.
S S

Next, let V be the region that lies the ellipsoid 22 + 32 + i 2 = g and above the plane z = 1. By

symmetry in x and y,
/ divGdV = /(—z)dV .
v %

The region V is specified in cylindrical coordinates by

0<r<1, 0<6<2r, 1<z2<V5.

[-9av = 2n ( /ﬂdz) ([rar)=-7

Hence



By the Divergence Theorem,

/diVGdV:/G-NdS—/~G-NdS
1% S S

with S given as above. On §, G - N = 2z — y%. Hence

1 27 T
ﬁG-NdSz—(/ r3d7“> </ sinQGdQ):—.
S 0 0 4

/G-NdS:—m.
S 4

Finally,

10: Define the points
P1 = (0’0’0) y P2 = (L 2a _3) , P3= (47 17 _5) y P4 = (55 _1, _4) , Ps= (27 _la _1) .

Notice that all 5 points lie in the plane x 4+ y + z = 0. Let C be the curve that runs in straight line
segments from p; to pg2, then from po to ps, then from ps3 to ps and finally from py to ps. Let F
be the vector field

F(z,y,2) = (22 + 2zy + z,2% — 2yz + =, 202 — y* + 7)) .
Compute /C F - Tds by making use of Stokes’ Theorem.
SOLUTION (a) As we have seen in the previous problem,
(22 + 2xy, 2% — 2yz, 222 — y*) = Vo(z,y,2) where o(z,y,2) = 2%y — y*z + 2%z .
Hence
curlF = curl(z, z,y) = (1,1,1) .

(You could also compute this directly without eliminating the gradient part.) Define G(z,y, z) =
(z,z,y). Then F = Vp + G.
We can close the curve by adding in C which runs on the straight line segment from ps to p1.
This is parameterized by
x(t)=(1-¢%)(2,—-1,-1), te(0,1).

Then x/(t) = (—2,1,1), and

/F-Tds = /Vgo-Tds—l—/G-Tds
c c c
1

= o(p1) — o(ps) — 6 / (1— 1)dt
0
= —1-3=-4.

Since all of the points p1, p2, P3, P4 and ps lie in the plane « + y + z = 0, we define S to be the
polygon in this plane with vertices p1, p2, P3, P4 and ps. Then § is bounded by C U C, and since
the curve is traversed clockwise when viewed from above, the consistent unit normal is
1
N=——(1,1,1).

V3



10

Hence F - N = —/3 everywhere on S, and so by Stokes’ Theorem,

/~ F - Tds = —V/3area(S) .

cuc

With a simple sketch, one breaks S up into several triangles and rectangles, and computes that

area(S) = 19/2. Hence
1
/F-Tds:gﬁ—l-él.
o 2



