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1. Let D be the triangle bounded by the three lines y = x, y = 2x and y = 3x−1. Let f(x, y) = xy.

Compute ∫
D
f(x, y)dA .

SOLUTION The domain D is bounded by the three lines plotted below:

The vertices of the triangle are (0, 0), (1/2, 1/2) and (1, 2), If we integrate in Cartesian coordi-

nates, we will need to break D into two parts whether we integrate first in x or in y. We give the

solution for integrating first in y. For 0 ≤ x ≤ 1/2, the lower boundary is the line y = x, and the

upper boundary is the line y = 2x For 1/2 ≤ x ≤ 1, the lower boundary is the line y = 3x− 1, and

the upper boundary is the line y = 2x. That is, D = D1 ∪D2 where

D1 = {(x, y) 0 ≤ x ≤ 1/2 and x ≤ y ≤ 2x }

and

D2 = {(x, y) 1/2 ≤ x ≤ 1 and 3x− 1 ≤ y ≤ 2x }

We have ∫
D
f(x, y)dA =

∫ 1/2

0

(∫ 2x

x
xydy

)
dx +

∫ 1

1/2

(∫ 2x

3x−1
xydy

)
dx

=

∫ 1/2

0

3

2
x3dx +

∫ 1

1/2

1

2
(6x2 − 5x3 − x)dx =

13

128
+

3

128
=

1

8
.
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Alternatively, we can change variables to avoid decomposing the domain D. Define u = y − x
and v = 3x− y. That is

(u, v) =

[
1 −1

3 −1

]
(x, y) and hence (x, y) =

1

2

[
−1 1

−3 1

]
(u, v) .

It follows that the Jacobian determinant is given by
∂(x, y)

∂(u, v)
=

1

2
. Now note that f(x, y) = xy =

1
4(v− u)(v− 3u) = 1

4(v2 + 3u2− 4uv). y = x translate into u = 0, y = 3x− 1 translates into v = 1,

and y = 2x translate into u+ v = 0. This is much nicer triangle with vertices at (1, 1), (0, 0), and

(0, 1).

Integrating in v first we have −u ≤ v ≤ 1 for −1 ≤ u ≤ 0 and so∫
D
f(x, y)dA =

∫ 0

−1

(∫ 1

−u

v2 + 3u2 − 4uv

4

1

2
dv

)
du

=
1

8

∫ 0

−1

(
16

3
u3 + 3u2 − 2u+

1

3

)
du =

1

8
.

2. Let D be the region in the plane that is to the right of the unit circle, and to the left of the

parabola x = 5/4− y2. Let f(x, y) = x2 + y2.∫
D
f(x, y)dA .

SOLUTION The domain D is bounded by the circle and parabola plotted below:
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To find the points where the parabola and circle meet, we note that at these points, y2 = 1−x2

and y2 = 5/4 − x. Therefore, x2 − x = −1/4 so that x = 1/2 and then y = ±
√

3/2. Hence the

ponts of intersection are (1/2,
√

3/2) and (1/2,−
√

3/2).

For this problem, it is simplest to ingtegrate first in x since the region D can be described as

D = {(x, y)
√

1− y2 ≤ x ≤ 5/4− y2 and −
√

3/2 ≤ y ≤
√

3/2 } .

Hence∫
D
f(x, y)dA =

∫ √3/2
−
√
3/2

(∫ 5/4−y2

√
1−y2

(x2 + y2)dx

)
dy

=

∫ √3/2
−
√
3/2

(
1

3

(
5

4
− y2

)3

− 1

3
(1− y2)3/2 + y2

(
5

4
− y2 −

√
1− y2

))
dy

=
267

560

√
3− 1

6
π .

3. Let D be the set in R2 that is given by

x2 ≤ y ≤ 2x2 and x3 ≤ y ≤ 2x3 .

Let f(x, y) =
x

y
. Compute

∫
D f(x, y)dA.

SOLUTION We introduce the variables u = y/x2 and v = y/x3 This defines the transformation

u(x, y) = (u(x, y), v(x, y)) = (y/x2, y/x3) .

To find the inverse transformation x(u, v), we solve for x and y in terms of u and v: x = u/v, and

then y = x2u = u3/v2. Thus,

x(u, v) = (u/v, u3/v2) .

For the function f(x, y) = xy, f(x(u, v)) = u4/v2. The Jacobain matrix of the transformation

x(u, v) is

Dx(u, v) =

[
1/v −u/v2

3u2/v2 −2u3/v3

]
.

Taking the absolute value of the determinant, we find the Jacobian determinant is

∂(x, y)

∂(u, v)
=
u3

v4
.

We apply the change of variables formula to conclude that∫
D
f(x, y)dA =

∫ 2

1

(∫ 2

1
u4/v2

u3

v4
dv

)
du

=

(∫ 2

1
u7du

)(∫ 2

1
v−2dv

)
=

255

16
.

4. Let D be the region in upper right quadrant of R2 that is inside the circle x2 + y2 = 1, and

between the parabolas y = 2x2 and y = 3x2. Compute
∫
D xydA.
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SOLUTION The domain D is bounded by the parabolas and the circle plotted below, and lies in

the upper right quadrant:

Parabolas of the form y = ax2 actualy have a decent description in polar coordinates; they

can be described by giving θ are a functions of r. To see this, we translate y = ax2 into r sin θ =

ar2 cos2 θ = ar2 = ar2 sin2 θ. Hence,

sin2 θ +
1

ar
sin θ = 1 .

Solving for sin θ, the relvant root is the one that goes to zero as r goes to zero, so

sin θ =

√
(2ar)2 + 1− 1

2ar
.

Taking the inverse sine function, we obtain θ = arcsin

(√
(2ar)2 + 1− 1

2ar

)
. Therefore, if for a > 0

we defined the function θa(r) = arcsin

(√
(2ar)2 + 1− 1

2ar

)
, our region D is the set of points whose

polar coordinates satisfy

θ2(r) ≤ θ ≤ θ3(r) and 0 ≤ r ≤ 1 .

Since f(r cos θ, r sin θ) = r2 cos θ sin θ and dA = rdrdθ,∫
D
f(x, y)dA =

∫ 1

0
r3

(∫ θ3(r)

θ2(r)
cos θ sin θdθ

)
dr

=
1

2

∫ 1

0
r3(sin2(θ3(r))− sin2(θ3(r)))dr

=
1

72

∫ 1

0
r
(

9
√

16r2 + 1− 4
√

36r2 + 1− 5
)

dr

=
(17)3/2

768
− (37)3/2

3888
− 1145

62208
≈ 0.01497429640 .

Another approach is to let D3 be the region above y = 3x2 and inside the circle, and let D2 be

the region above y = 3x2 and inside the circle. Then D3 ⊂ D2, and D is the part of D2 that is not

contined in D3, up to boundary points that do not affect the integral. Hence∫
D
f(x, y)dA =

∫
D2

f(x, y)dA−
∫
D3

f(x, y)dA .
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We can calculate both integrals on the right efficiently by denfining Da to be the region above

y = ax2 and inside the circle for a > 0. The intersection of the parabola and circle is given by

x2 + a2x4 = 1. This is a quadratic equation in x2. The unique positive root is x2 =

√
1 + 4a2 − 1

2a2
.

Therefore, the value of x at the intrection of the circle and right branch of the parabola is xa, where

we define

xa =

(√
1 + 4a2 − 1

2a2

)1/2

.

Then

Da =
{
(x, y) : ax2 ≤ y ≤

√
1− x2 and 0 ≤ x ≤ xa

}
.

Therefore, ∫
Da

f(x, y)dA =

∫ xa

0
x

(∫ √1−y2

ax2
ydy

)
dx

=
1

2

∫ xa

0

(
x− x3 − a2x5

)
dx

=
x2a
4
− x4a

8
− a2x

6
a

12
.

Evaluating this for a = 2 and a = 3 we find∫
D2

f(x, y)dA =
(17)3/2 − 25

768
and

∫
D3

f(x, y)dA =
(37)3/2 − 55

3888
.

Subtracting, we find the same result we found before usng polar coordinates – as was necessarily

the case.

5: (a) Let D be the set in the positive quadrant of R2 that bounded by

y = x

y =
√

3x

y = x2 + y2

Let f(x, y) =
√

1 + x2 + y2. Compute
∫
D f(x, y)dA.

The domain D is bounded by the line and the circle plotted below:
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This is readily described in polar coodinate as the set with

π

4
≤ θ ≤ π

3
and 0 ≤ r ≤ 1 .

Since f(r cos θ, r sin θ) =
√

1 + r2,∫
D
f(x, y)dA =

(∫ π/3

π/4
dθ

)(∫ 1

0

√
1 + r2rdr

)
=

π

12

√
8− 1

3
.

6. Let D be the region in the upper right quadrant between the curves

x =
1

y2
and x =

4

y2

and between the curves

y = x2 and y = 4x2 .

Compute
∫
D(x2 + y2)dA.

7. Let V be the region in R3 that is inside the cylinder

x2 + y2 = y

and bounded above and below by

z = x2 + y2 and z =
√
x2 + y2 .

Compute the volume of this region.

8. (a) Let V be the region in R3 that lies below the graph of z = 1− x2 , and above the graph of

z = y2. Compute the volume of V.

SOLUTION The domain V is bounded by the “parabolic cyllinders”, parts of which are shown

in the first figure below. The second figure shows V itself:

We first find the intersection of the two bounding surfaces, at which we have 1− x2 = z = y2,

so x2 + y2 = 1: The projection of the curve of intersection along the boundart onto the x, y plane

is the unit circle. At any point x, y inside the unit circle the portion of the line through (x, y, 0)

parallel to the z-axis has

y2 ≤ z ≤ 1− x2 ,
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We can describe V conveniently lin cylindrical coorinates (x, y, z) = (r cos θ, r sin θ, z).

V =
{
(r cos θ, r sin θ, z) : 0 ≤ r ≤ 1 , 0 ≤ θ < 2π and r2 sin2 θ ≤ x ≤ 1− r2 cos2 θ

}
We must integrate in z first since the limits on z depend on both r and θ. After that we can do

the other two integrations in any order since the limits are constant. It will be convenient to do θ

secon and r third. Since the volume element for cylindrical coordinates is rdrdθdz, the volume of

V is ∫
V

1dV =

∫ 1

0

(∫ 2π

0

(∫ 1−r2 cos2 θ

r2 sin2 θ
1dz

)
dθ

)
rdr

=

∫ 1

0

(∫ 2π

0
(1− r2)dθ

)
rdr

= 2π

∫ 1

0
(1− r2)rdr =

π

2
.

9. Let V be the region in R3 that is the intersection of the three cylinders of unit radius along the

three coordinate axes. That is, V is the set of points (x, y, z) satisfying

y2 + z2 ≤ 1 x2 + z2 ≤ 1 and x2 + y2 ≤ 1 .

Compute the volume of V.

SOLUTION Done in class.

10. Let V be the region in R3 that lies inside the sphere x2 + y2 + z2 = 4, and above the graph of

z = 1/
√
x2 + y2. Compute the volume of V and the total surface area of its boundary. (There are

two pieces to the boundary.)

SOLUTION See the next to last example in Chapter 7, where this is solved in detail. (It pays to

read...)

11. Let S be the surface that is the part of the graph of z = 1 −
√
x2 + y2 that lies inside the

cylinder (x − 1)2 + y2 = 1, which is a cylider of radius 1 running parallel to the z-axis. Let

f(x, y, z) = z Compute
∫
S fdS. Hint: Write the equation (x− 1)2 + y2 = 1 in polar coordinates.

SOLUTION It is natrual to parameterize S using cylindrical coorinates (x, y, z) =

(r cos θ, r sin θ, z). Then we have z = 1 − r on S, while the equation for the bounding cylinder

is r2 = 2r cos θ, or r = 2 cos θ. This is positive (and defines a radius) if and only if π/2 ≤ θ ≤ π/2.

Hence the surface is parameterized by

X(r, θ) = (r cos θ, r sin θ, 1− r)

for

0 ≤ r ≤ 2 cos(t) and π/2 ≤ θ ≤ π/2 .

Here is a plot from two points of view:
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We now compute

Xr(r, θ) = ( cos θ, sin θ,−1) and Xθ(r, θ) = (− r sin θ, r cos θ, 0) .

Then

Xr ×Xθ(r, θ) = (r cos θ, r sin θ, r) .

Hence the surface area element is

dS = ‖Xr ×Xθ(r, θ)dr‖dθ =
√

2rdr‖dθ .

Then for f(x, y, z) = x, f(X(r, θ)) = 1− r, and so∫
S
fdS =

√
2

∫ π/2

−π/2

(∫ 2 cos(θ)

0
(1− r)rdr

)
dθ

=
√

2

∫ π/2

−π/2

(
2 cos2(θ)− 8

3
cos3(θ)

)
dθ =

√
2

(
π − 32

9

)
.

12. Let S be the part of the paraboloid z = 1 − x2 − y2 that lies above the plane x + z = 1.

Compute
∫
S f(x, y, z)dS where f(x, y, z) = y/

√
x2 + y2. To get full credit, carry the computations

through to the point that only an integral over a single variable remains to be evaluated.

SOLUTION The intersection of the two surfaces is given by

1− x2 − y2 = z = 1− x

so that on the intersection, x2 + y2 = x. Note that the equations specifying the surface S are even

in y. That is (x, y, z) ∈ S ⇐⇒ (x,−y, z) ∈ S. On the other hand, the integrand is odd in y:

f(x,−y, z) = −f(x, y, z). Hence without any computation at all, we see that∫
S
f(x, y, z)dS = 0 .

This is all that needs to be said for full credit. However, it is instructive to set up the integral,

and to see how thiss result comes out of the computations.

It is natrual to parameterize S using cylindrical coorinates (x, y, z) = (r cos θ, r sin θ, z). Then

we have z = 1−r2 on S, while the equation x2+y2 = x describing the prjoection of the intersection
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of the surfaces ontl the x, y plane is r = cos θ. This is positive (and defines a radius) if and only if

π/2 ≤ θ ≤ π/2. Hence the surface is parameterized by

X(r, θ) = (r cos θ, r sin θ, 1− r2)

for

0 ≤ r ≤ cos(t) and π/2 ≤ θ ≤ π/2 .

Here is a plot from two points of view:

We now compute

Xr(r, θ) = ( cos θ, sin θ,−2r) and Xθ(r, θ) = (− r sin θ, r cos θ, 0) .

Then

Xr ×Xθ(r, θ) = (2r2 cos θ, 2r2 sin θ, r) .

Hence the surface area element is

dS = ‖Xr ×Xθ(r, θ)‖drdθ =
√

1 + 4r2rdrdθ .

Then for f(x, y, z) = y/
√
x2 + y2, f(X(r, θ)) = sin θ, and so∫

S
fdS =

∫ π/2

−π/2

(∫ cos(θ)

0
sin θ

√
1 + 4r2rdr

)
dθ

=
1

12

∫ π/2

−π/2

(
(1 + 4 cos2 t)3/2 − 1

)
sin θdθ = 0 .


