Homework 9, Math 291 Fall 2017

Eric A. Carlen ${ }^{1}$
Rutgers University

November 17, 2017

1. Let D be the triangle bounded by the three lines $y=x, y=2 x$ and $y=3 x-1$. Let $f(x, y)=x y$. Compute

$$
\int_{D} f(x, y) \mathrm{d} A
$$

2. Let D be the region in the plane that is outside the unit circle, and to the left of the parabola $x=5 / 4-y^{2}$. Let $f(x, y)=x^{2}+y^{2}$.

$$
\int_{D} f(x, y) \mathrm{d} A
$$

3. Let D be the set in \mathbb{R}^{2} that is given by

$$
x^{2} \leq y \leq 2 x^{2} \quad \text { and } \quad x^{3} \leq y \leq 2 x^{3}
$$

Let $f(x, y)=\frac{x}{y}$. Compute $\int_{D} f(x, y) \mathrm{d} A$.
4. Let D be the region in upper right quadrant of \mathbb{R}^{2} that is inside the circle $x^{2}+y^{2}=1$, and between the parabolas $y=2 x^{2}$ and $y=3 x^{2}$. Compute $\int_{D} x y \mathrm{~d} A$.
5: (a) Let D be the set in the positive quadrant of \mathbb{R}^{2} that bounded by

$$
\begin{aligned}
& y=x \\
& y=\sqrt{3} x \\
& y=x^{2}+y^{2}
\end{aligned}
$$

Let $f(x, y)=\sqrt{1+x^{2}+y^{2}}$. Compute $\int_{D} f(x, y) \mathrm{d} A$.
6. Let D be the region in the upper right quadrant between the curves

$$
x=\frac{1}{y^{2}} \quad \text { and } \quad x=\frac{4}{y^{2}}
$$

and between the curves

$$
y=x^{2} \quad \text { and } \quad y=4 x^{2} .
$$

Compute $\int_{D}\left(x^{2}+y^{2}\right) \mathrm{d} A$.

[^0]7. Let \mathcal{V} be the region in \mathbb{R}^{3} that is inside the cylinder
$$
x^{2}+y^{2}=y
$$
and bounded above and below by
$$
z=x^{2}+y^{2} \quad \text { and } \quad z=\sqrt{x^{2}+y^{2}} .
$$

Compute the volume of this region.
8. (a) Let \mathcal{V} be the region in \mathbb{R}^{3} that lies below the graph of $z=1-x^{2}$, and above the graph of $z=y^{2}$. Compute the volume of \mathcal{V}.
9. Let \mathcal{V} be the region in \mathbb{R}^{3} that lies inside the sphere $x^{2}+y^{2}+z^{2}=4$, and above the graph of $z=1 / \sqrt{x^{2}+y^{2}}$. Compute the volume of \mathcal{V} and the total surface area of its boundary. (There are two pieces to the boundary.)
10. (a) Let \mathcal{S} be the surface the is the part of the graph of $z=1-\sqrt{x^{2}+y^{2}}$ that lies inside the cylinder $(x-1)^{2}+y^{2}=1$, whihc is a cylider of radius 1 running parallel to the z-axis. Let $f(x, y, z)=z$ Compute $\int_{\mathcal{S}} f \mathrm{~d} S$. Hint: Write the equation $(x-1)^{2}+y^{2}=1$ in polar coordinates.
11. Let \mathcal{S} be the part of the paraboloid $z=1-x^{2}-y^{2}$ that lies above the plane $x+z=1$. Compute $\int_{\mathcal{S}} f(x, y, z) \mathrm{d} S$ where $f(x, y, z)=y / \sqrt{x^{2}+y^{2}}$. To get full credit, carry the computations through to the point that only an integral over a single variable remains to be evaluated.

[^0]: ${ }^{1}$ (C) 2017 by the author.

