Homework 9, Math 291 Fall 2017

Eric A. Carlen¹ Rutgers University

November 17, 2017

1. Let D be the triangle bounded by the three lines y = x, y = 2x and y = 3x - 1. Let f(x, y) = xy. Compute

$$\int_D f(x,y) \mathrm{d}A$$

2. Let *D* be the region in the plane that is outside the unit circle, and to the left of the parabola $x = 5/4 - y^2$. Let $f(x, y) = x^2 + y^2$.

$$\int_D f(x,y) \mathrm{d}A \; .$$

3. Let *D* be the set in \mathbb{R}^2 that is given by

$$x^2 \le y \le 2x^2$$
 and $x^3 \le y \le 2x^3$.

Let $f(x,y) = \frac{x}{y}$. Compute $\int_D f(x,y) dA$.

4. Let *D* be the region in upper right quadrant of \mathbb{R}^2 that is inside the circle $x^2 + y^2 = 1$, and between the parabolas $y = 2x^2$ and $y = 3x^2$. Compute $\int_D xy dA$.

5: (a) Let D be the set in the positive quadrant of \mathbb{R}^2 that bounded by

$$y = x$$

$$y = \sqrt{3}x$$

$$y = x^2 + y^2$$

Let $f(x,y) = \sqrt{1 + x^2 + y^2}$. Compute $\int_D f(x,y) dA$.

6. Let D be the region in the upper right quadrant between the curves

$$x = \frac{1}{y^2}$$
 and $x = \frac{4}{y^2}$

and between the curves

 $y = x^2$ and $y = 4x^2$.

Compute $\int_D (x^2+y^2) \mathrm{d}A.$

 $^{^{1}}$ © 2017 by the author.

7. Let \mathcal{V} be the region in \mathbb{R}^3 that is inside the cylinder

$$x^2 + y^2 = y$$

and bounded above and below by

$$z = x^2 + y^2$$
 and $z = \sqrt{x^2 + y^2}$.

Compute the volume of this region.

8. (a) Let \mathcal{V} be the region in \mathbb{R}^3 that lies below the graph of $z = 1 - x^2$, and above the graph of $z = y^2$. Compute the volume of \mathcal{V} .

9. Let \mathcal{V} be the region in \mathbb{R}^3 that lies inside the sphere $x^2 + y^2 + z^2 = 4$, and above the graph of $z = 1/\sqrt{x^2 + y^2}$. Compute the volume of \mathcal{V} and the total surface area of its boundary. (There are two pieces to the boundary.)

10. (a) Let S be the surface the is the part of the graph of $z = 1 - \sqrt{x^2 + y^2}$ that lies inside the cylinder $(x - 1)^2 + y^2 = 1$, which is a cylider of radius 1 running parallel to the z-axis. Let f(x, y, z) = z Compute $\int_S f dS$. Hint: Write the equation $(x - 1)^2 + y^2 = 1$ in polar coordinates.

11. Let S be the part of the paraboloid $z = 1 - x^2 - y^2$ that lies above the plane x + z = 1. Compute $\int_{S} f(x, y, z) dS$ where $f(x, y, z) = y/\sqrt{x^2 + y^2}$. To get full credit, carry the computations through to the point that only an integral over a single variable remains to be evaluated.