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1: Consider the function f(x, y) = −xy2 + 3y + x2y.

(a) Find all critical points, and compute the Hessian matrix at each critical point.

(b) Determine whether each critical point is a local minimum, a local maximum, a saddle, or if the

Hessian is degenerate at the critical point.

(c) Sketch a contour plot of f in the vicinity of each critical point.

SOLUTION We first compute

∇f(x, y) = (y(2x− y), x2 − 2xy + 3).

The critical points are the solutions of

y(2x− y) = 0

x2 − 2xy + 3 = 0 .

To satisfy the first equation we must have either y = 0 or y = 2x. If y = 0, the second equation

says x2 + 3 = 0, and this is impossible. If y = 2x, the second equation says that x2 − 4x2 + 3 = 0,

or x2 = 1. Hence we have two critical points x1 = (1, 2) and x2 = (− 1,−2).

We next compute the Hessian:

[Hessf (x, y)] =

[
2y 2x− 2y

2x− 2y −2x

]
.

Evaluating, [Hessf (x1)] =

[
4 −2

−2 −2

]
, and [Hessf (x2)] =

[
−4 2

2 2

]
.

For (b), In both cases, the determinant is −12 so by Sylvester’s Criterion, the critical points

are both saddle points,

For (c), we draw the sketches. First consider x1. The characteristic polynomial of A =

[Hessf (x1)] is t2 − 2t− 12. Hence the eigenvalues are λ1 = 1 +
√

13 and λ2 = 1−
√

13. From

A− λ1I =

[
3−
√

13 −2

−2 −3−
√

13

]
,
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we read off that v = (2, 3−
√

13) is an eigenvector with eigenvalue λ1. Normalizing we find that

u1 =
1

2(13−
√

13)
(2, 3−

√
13)

is a normalized eigenvector with eigenvalue λ1. Since we know the eigenvectors with the other

eigenvalue are orthogonal to u1, we can immediately write down

u2 =
1

2(13−
√

13)
(3−

√
13,−2) .

Since λ1 ≈ 4.60 and λ2 ≈ −2.60, the contour curves near x1 will be hyperbolas, in shape more or

less like those described by

(4.60)u2 − (2.60)v2 = 1,

where the u axis runs along u1 and the v axis runs along u2. The asymptotes are the lines

(4.60)u2 = (2.60)v2, and the hyperbolas are now easy to plot:

Next, since [Hessf (x2)] = −[Hessf (x1)], the eigenvalues of [Hessf (x2)] are obtained by changing

the signs of the eigenvalues of [Hessf (x1)], and the eigenvectors are exactly the same. Hence the

contour plot will have exactly the same contours, except that the curves will represent different

values. But these are not indicated our plot anyhow, so the plots for x2 is the same as the one

given above for x1.

Finally, the following is a contour plot showing all three critical points:

Notice that the symmetry you see in this plots corresponds to the fact that f(−x,−y) = f(x, y)

for all (x, y). This was the reason we did not have to compute eigenvalues and eigenvectors twice.

2: Consider the function f(x, y) =
x2y

1 + 2x4 + y4
.
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(a) Find all critical points in the open upper right quadrant; i.e., the set of (x, y) with x, y > 0.

Compute the Hessian matrix at each such critical point.

(b) Determine whether each such critical point is a local minimum, a local maximum, a saddle, or

if the Hessian is degenerate at the critical point.

(c) Sketch a contour plot of f in the vicinity of each such critical point.

SOLUTION We first compute

∇f(x, y) = (1 + 2x4 + y4)−2(2xy(2x4 − y4 − 1), x2(1 + 2x4 − 3y4)).

The critical points in the quadrant with x, y > 0 are the solutions of

2x4 − y4 = 1

2x4 − 3y4 = −1 .

Subtracting the second equation from the first, we obtain 2y4 = 2, so that y4 = 1, and then the

first equation gives us x4 = 1. Since x, y > 0, this means x1 = (1, 1) is the only critical point in

the quadrant.

We next compute the Hessian and evaluate it at x1 = (1, 1), finding

[Hessf (x1)] =
1

4

[
−4 2

2 −3

]
.

For (b), note that the determinant is positive, and both diagonal entries are negative. Hence,

by Sylvester’s Criterion, both eigenvalues are negative, and x1 is a local maximum.

For (c), we need to compute the eigenvalues and eigenvectors. The characteristic polynomial of

A is t2 + 7t/4 + 1/2, and its roots are the eigenvalues λ1 = (−7 +
√

17)/8 and λ2 = (−7−
√

17)/8.

To find the eigenvectors, we compute

A− λ1I =
1

8

[
−1−

√
17 4

4 1−
√

17

]
.

From this we read off that v = (4, 1 +
√

17) is an eigenvector with eigenvalue λ1. Normalizing we

find that

u1 =
1

2(17 +
√

17)
(4, 1 +

√
17)

is a normalized eigenvector with eigenvalue λ1. Since we know the eigenvectors with the other

eigenvalue are orthogonal to u1, we can immediately write down

u2 =
1

2(17 +
√

17)
(1 +

√
17,−4) .

Since λ1 ≈ −0.36 and λ2 ≈ −1.39, the contour curves near x1 will be ellipses, in shape more or less

like those described by

(0.36)u2 + (1.39)v2 = 1,

where the u axis runs along u1 and the v axis runs along u2. Note the the u-axis is the major axis.

It is now east to do the plot:
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3: For any real number a, let A(a) be the matrix

A(a) :=

 3 1 a

1 2 a

a a 1

 .

For which values of a are all of the eigenvalues of A(a) strictly positive? Justify your answer to

receive credit.

SOLUTION By Sylvester’s Theorem, A(a) is positive definite if and only if

3 > 0 , det

([
3 1

1 2

])
= 5 > 0 and det(A(a)) = 5− 3a2 > 0 .

Hence A(a) is strictly positive if and only if a ∈ (−
√

5/3,
√

5/3).

4: Let a > b > 0 be given. Consider the circle in the x, y plane in R3 parameterized by

a( cosu, sinu, 0), 0 ≤ u < 2π. The set S of all points in R3 whose distance from this circle is

exactly b is torus. It is parameterized by

X(u, v) = a( cosu, sinu, 0)+b( cosu sin v, sinu sin v, cos v) = ( cosu(a+b sin v) , sinu(a+b sin v) , b cos v) ,

where 0 ≤ u, v < 2π.

(a) Check that Xu(u, v) and Xv(u, v) are linearly independent for all u, v.

(b) Compute the equation for the tangent plane to the torus at X(π/4, π/3).

(c) Compute the principle curvatures at X(π/4, π/3), and find an orthonormal basis of eigenvectors

of the tangent plane at X(π/4, π/3) given by eigenfunctions of the shape operator.

(d) Compute the Gaussian curvature of the torus at each point X(u, v).

SOLUTION Here is a plot of the torus for a = 2 and b = 1:
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For (a), we compute

Xu(u, v) = (− a sin(u)− b sin(u) sin(v) , a cos(u) + b cos(u) sin(v) , 0)

and

Xu(u, v) = (b cos(u) cos(v) , b sin(u) cos(v) , −b sin(v)) .

We then compute

Xu ×Xv = −b(a+ b sin(v))( cos(u) sin(v) , sin(u) sin(v), cos(v)) .

Notice that ( cos(u) sin(v) , sin(u) sin(v), cos(v)) is a unit vector: It is noting but the usual “latitude

and longitude” parameterization of the sphere, except here v ranges over (0, 2π) and not only over

(0, π). Hence

‖Xu ×Xv‖ = b|a+ b sin(v)| .

Here is where the condition 0 < b < a cones in: This guarantees that a + b sin(v) 6= 0 for any v.

Hence ‖Xu×Xv‖ > 0 for all u, v, and this means that {Xu(u, v),Xv(u, v)} is linearly independent

for all u, v.

For (b), by the calculations made above, the unit normal to the surface is given by

N(u, v) = −( cos(u) sin(v) , sin(u) sin(v), cos(v)) .

The equation for the tangent plane to the surface at X(u0, v0) is

((x, y, z)−X(u0, v0)) ·N(u0, v0) = 0 .

Evaluating, we find X(π/4, π/3) = (a/
√

2 + b
√

6/4 , a/
√

2 + b
√

6/4 , 1/2) and N(π/4, π/3) =

(−
√

6/4 , −
√

6/4 , −1/2). The equation is

√
6

4
x+

√
6

4
y +

1

2
z =

√
3a

2
+ b .

Here are two plots of the torus and its tangent plane at X(π/4, π/3) for two different perspec-

tives:
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Notice also that the entire torus lies to one side of the tangent plane (apart from the point of

contact). Moreover, this is the positive side of the tangent plane with the orientation we are using

since N(π/4, π/3) points toward the side of the tangent plane containing the origin.

For (c), we compute the First and Second Fundamental Matrices: First, E = Xu · Xu =

(a+ b sin(v))2, F = Xu ·Xv = 0 and G = Xv ·Xv = b2. Hence the First Fundamental Matrix is[
E F

F G

]
=

[
(a+ b sin(v))2 0

0 b2

]
.

Next we compute L = N ·Xuu = sin(v)(a+ b cos(v)), M = N ·Xuv = 0 and N = N ·Xvv = b.

Hence the Second Fundamental Matrix is[
L M

M N

]
=

[
sin(v)(a+ b sin(v)) 0

0 b

]
.

The principle curvatures are the eigenvalues of the matrix[
E F

F G

]−1 [
L M

M N

]
=

[
sin(v)/(a+ b sin(v)) 0

0 1/b

]
.

Since the matrix is diagonal, the eigenvalues are the diagonal entries. Therefore, these are

sin(v)/(a + b sin(v)) and 1/b. These are independent of u, and evaluating at v = π/3 we find

these are (
√

3/2)(a + b
√

3/2) and 1/b respectively. Notice that these are both positive, which

corresponds to the fact that the torus lies entirely on the positive side of the tangent plane at

X(π/4, π/3).

Since the shape operator matrix

[
E F

F G

]−1 [
L M

M N

]
is diagonal, (1, 0) and (0, 1) are a basis

of eigenvectors of the shape operator. The corresponding tangent vectors, [DX(π/4, π/3)](1, 0) =

Xu(1, 0) and [DX(π/4, π/3)](0, 1) = Xv(1, 0) are the corresponding orthogonal pairs of tangent

vectors. (In fact, we have already seen that they are orthogonal.) Normalizing them we obtain our

orthonormal basis {u1,u2}:

u1 =
1√

4a2 + 4ab
√

3 + 2b2
(−
√

2a−
√

6b/2 , −
√

2a−
√

6b/2 , 0)

and

u2 =
1

4
(
√

2 ,
√

2 , 2
√

3) .
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For (d), we have done all of the work already since we have computed the principle curvatures

at each u and v. The Gaussian curvature is the product of these, which is

sin(v)

b(a+ b cos(v))
.

Thus the Gaussian curvature is positive when 0 < v < π, and negative when π < v < 2π. These

are the “outside” and “inside” of the tours respectively. The “outside” is the part parameterized

by 0 ≤ v ≤ pi, and here is a plot of only this part of the torus:

It is clear from the plot that at every point on this part of the torus, the entire torus will lie to

one side (the side containing the origin) of the tangent plan at that point.

The “inside” is the part parameterized by π ≤ v ≤ 2π, and here is a plot of only this part of

the torus, again for a = 2 and b = 1.

It is clear from the plot that at every point on this part of the torus, the parts of the torus will

on both sides of the tangent plan at that point. Here is a plot showing the inside of the torus, and

the tangent plane again for a = 2 and b = 1, at the point X(0, 3π/2) = (1, 0, 0):
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If we view this from a point of the form (x, 0, 0), with x large, so that we are looking “straight

in” at the tangent plane, we see:

The part of the torus we still see is the part on the negative side of the tangent plane.


