Homework 7, Math 291 Fall 2017

Eric A. Carlen¹ Rutgers University

November 2, 2017

1: Let f(x, y) = xy + 2x - 2y. Find the minimum and maximum values of f on the region of \mathbb{R}^2 that lies below the parabola $y = 1 - x^2$ and above the x-axis, y = 0.

2: The intersection of the plane 2z = x + 9 and the cone $z^2 = x^2 + y^2$ is an ellipse. Find the points on the ellipse that are closest to and furthest from the origin.

3: Let f(x, y) = x + yz. Consider the curve given by the pair of equations $3x^2 + 4y^2 + z^2 = 1$ and $z = x^2 + y^2$.

(a) Write down the system of three equations in three unknowns that must be satisfied by any maximizers of f on the curve, according to Lagrange's Theorem.

(b) One of the equations may be used to eliminate z from this system of three equations, resulting in a system of two equations in the two variables x and y. Find this system. That is, eliminate z.

(c) Draw graphs, by any means, showing the solution sets of the two equations on the x, y plane, Count the points of intersection an determine the number of solutions. Then pick a starting point near each solution, and run one step of Newton's method to get an improved approximate solution.

4: Find an orthonormal basis of \mathbb{R}^2 consisting of eigenvectors for the matrix $A = \begin{bmatrix} 5 & 9 \\ 9 & -4 \end{bmatrix}$. 5: Find an orthonormal basis of \mathbb{R}^3 consisting of eigenvectors for the matrix $A = \begin{bmatrix} 4 & 0 & 2 \\ 0 & 2 & 2 \\ 2 & 2 & 3 \end{bmatrix}$.

6: Consider the function $f(x,y) = xy^2 - \frac{1}{4}x^4 - \frac{1}{2}y^4$.

(a) Find all critical points, and compute the Hessian matrix at each critical point.

(b) Determine whether each critical point is a local minimum, a local maximum, a saddle, or if the Hessian is degenerate at the critical point.

(c) Sketch a contour plot of f in the vicinity of each critical point.

 $^{^{1}}$ © 2017 by the author.