Homework 7, Math 291 Fall 2017

Eric A. Carlen ${ }^{1}$
Rutgers University

November 2, 2017

1: Let $f(x, y)=x y+2 x-2 y$. Find the minimum and maximum values of f on the region of \mathbb{R}^{2} that lies below the parabola $y=1-x^{2}$ and above the x-axis, $y=0$.
2: The intersection of the plane $2 z=x+9$ and the cone $z^{2}=x^{2}+y^{2}$ is an ellipse. Find the points on the ellipse that are closest to and furthest from the origin.
3: Let $f(x, y)=x+y z$. Consider the curve given by the pair of equations $3 x^{2}+4 y^{2}+z^{2}=1$ and $z=x^{2}+y^{2}$.
(a) Write down the system of three equations in three unknowns that must be satisfied by any maximizers of f on the curve, according to Lagrange's Theorem.
(b) One of the equations may be used to eliminate z from this system of three equations, resulting in a system of two equations in the two variables x and y. Find this system. That is, eliminate z.
(c) Draw graphs, by any means, showing the solution sets of the two equations on the x, y plane, Count the points of intersection an determine the number of solutions. Then pick a starting point near each solution, and run one step of Newton's method to get an improved approximate solution.
4: Find an orthonormal basis of \mathbb{R}^{2} consisting of eigenvectors for the matrix $A=\left[\begin{array}{rr}5 & 9 \\ 9 & -4\end{array}\right]$.
5: Find an orthonormal basis of \mathbb{R}^{3} consisting of eigenvectors for the matrix $A=\left[\begin{array}{lll}4 & 0 & 2 \\ 0 & 2 & 2 \\ 2 & 2 & 3\end{array}\right]$.
6: Consider the function $f(x, y)=x y^{2}-\frac{1}{4} x^{4}-\frac{1}{2} y^{4}$.
(a) Find all critical points, and compute the Hessian matrix at each critical point.
(b) Determine whether each critical point is a local minimum, a local maximum, a saddle, or if the Hessian is degenerate at the critical point.
(c) Sketch a contour plot of f in the vicinity of each critical point.

[^0]
[^0]: ${ }^{1}$ 2017 by the author.

