Solutions for Homework 6, Math 291 Fall 2017

Eric A. Carlen ${ }^{1}$
Rutgers University

November 7, 2017

1: Let A be the matrix $A=\left[\begin{array}{ll}3 & 5 \\ 2 & 3\end{array}\right]$.
(a) Compute $A^{-1} \mathrm{~m}$ the inverse matrix of A.
(b) Find the solution of the equations

$$
A \mathrm{x}=(3,2), \quad A \mathrm{x}=(2,2), \quad A \mathrm{x}=(-1,7)
$$

SOLUTION: (a) We compute $\operatorname{det}(A)=-1$, and then $A^{-1}=\left[\begin{array}{rr}-3 & 5 \\ 2 & -3\end{array}\right]$. The solutions in (b) are given by

$$
\begin{aligned}
& {\left[\begin{array}{rr}
-3 & 5 \\
2 & -3
\end{array}\right](3,2)=(1,0)} \\
& {\left[\begin{array}{rr}
-3 & 5 \\
2 & -3
\end{array}\right](3,2)=(4,-2)} \\
& {\left[\begin{array}{rr}
-3 & 5 \\
2 & -3
\end{array}\right](3,2)=(38,-23)}
\end{aligned}
$$

Note: To solve $A \mathbf{x}=(3,2)$, we do not need to use the inverse if we notice that $(3,2)$ is the first column of A, and recall that applying any matrix to \mathbf{e}_{j} gives the j th column of that matrix. This is why the solution is $\mathbf{e}_{1}=(1,0)$.
2: Let A be the matrix $A=\left[\begin{array}{lll}3 & 5 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 2\end{array}\right]$.
(a) Compute $A^{-1} \mathrm{~m}$ the inverse matrix of A.
(b) Find the solution of the equations

$$
A \mathbf{x}=(3,2,1), \quad A \mathbf{x}=(2,2,1), \quad A \mathbf{x}=(-1,7,1)
$$

[^0]SOLUTION: Write $A=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right]$. We then compute

$$
\begin{aligned}
& \mathbf{v}_{1} \times \mathbf{v}_{2}=(-1,2,-1) \\
& \mathbf{v}_{1} \times \mathbf{v}_{3}=(3,-5,1) \\
& \mathbf{v}_{2} \times \mathbf{v}_{3}=(5,-9,2) .
\end{aligned}
$$

We then compute $\operatorname{det}(A)=\mathbf{v}_{1} \times \mathbf{v}_{2} \cdot \mathbf{v}_{3}=-1$, and then

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{l}
\mathbf{v}_{2} \times \mathbf{v}_{3} \\
\mathbf{v}_{1} \times \mathbf{v}_{3} \\
\mathbf{v}_{1} \times \mathbf{v}_{2}
\end{array}\right]=\left[\begin{array}{rrr}
-5 & 9 & -2 \\
-3 & 5 & -1 \\
1 & -2 & 1
\end{array}\right]
$$

For (b) since $(3,2,1)$ is the first column of A, the solution of $A \mathbf{x}=(3,2,1)$ is $(1,0,0)$. For the others, we multiply by the inverse to fond the solutions $(6,-3,-1)$ and $(66,-37,-14)$, respectively.
3: Let A be the 3×4 matrix $A=\left[\begin{array}{rrrr}6 & -6 & 4 & -7 \\ -2 & 2 & 1 & -7 \\ -3 & 3 & -9 & 7\end{array}\right]$.
(a) Apply the Gram-Schmidt Algorithm to the columns of A to produce an orthonormal basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ of \mathbb{R}^{3}. Let Q be the matrix $Q=\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right]$. Let R be the 3×4 matrix whose i, j entry is $\mathbf{u}_{i} \cdot \mathbf{v}_{j}$ where \mathbf{v}_{j} is the j th column of Q. Verify that $A=Q R$.
(b) Find all solutions of $R \mathbf{x}=\mathbf{0}$, and then all solutions of $A \mathbf{x}=\mathbf{0}$.
(c) For $\mathbf{b}=(7,7,7)$, find all solutions of $R \mathbf{x}=\mathbf{b}$, and then find all solutions of $A \mathbf{x}=\mathbf{b}$.

SOLUTION: (a) Write $A=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right]$. Note that $\mathbf{v}_{2}=-\mathbf{v}_{1}$, so these two vectors yield the same direction, and \mathbf{v}_{2} will not contribute anything in the Gram-Schmidt Algorithm. We can skip it without any computation since we noticed this. We then proceed to construct $\mathbf{u}_{1}, \mathbf{u}_{2}$ and \mathbf{u}_{3} by doing the usual computations. Writing the result in the form $Q=\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right]$ we find

$$
Q=\frac{1}{7}\left[\begin{array}{rrr}
6 & -2 & -3 \\
-2 & 3 & -6 \\
-3 & -6 & -2
\end{array}\right] .
$$

We then compute

$$
R=Q^{T} A=\left[\begin{array}{rrrr}
7 & -7 & 7 & -7 \\
0 & 0 & 7 & -7 \\
0 & 0 & 0 & 7
\end{array}\right]
$$

Now that we have Q and R we can multiply Q and R to verify that $A=Q R$. Even more simply, it suffices to verify that $Q^{T} Q=I$ since then Q^{T} is the inverse of Q, and so the definition of R becomes $R=Q^{-1} A$, which means that $A=Q R$. But $Q^{T} Q=I$ is equivalent to the columns of Q being orthonormal, so we don't need to do any computation at all.

For (b), Let $\mathbf{x}=(x, y, z, w)$, and suppose that $R \mathbf{x}=0$. The corresponding system of equations (after eliminating a common factor of 7) is

$$
\begin{array}{r}
x-y+z-w=0 \\
z-w=0 \\
w=0 .
\end{array}
$$

Thus $R \mathbf{x}=0$ if and only if $w=z=0$ and $y=x$. Thus the general solution has the form

$$
(x,-x, 0,0)=x(1,-1,0,0) .
$$

The space of solutions is one the one dimensional subspace of \mathbb{R}^{4} spanned by the vector $(1,-1,0,0)$.
For (c), again let $\mathbf{x}=(x, y, z, w)$, and suppose that $R \mathbf{x}=(7,7,7)$. The corresponding system of equations (after eliminating a common factor of 7) is

$$
\begin{aligned}
x-y+z-w & =1 \\
z-w & =1 \\
w & =1 .
\end{aligned}
$$

The last equation requires $w=1$. Then the second equation requires $z=2$. The first equation then requires $y=x$. Thus $R \mathbf{x}=(7,7,7)$ if and only if $w=1, z=2$ and $y=x$. Thus the general solution has the form

$$
(x,-x, 2,1)=x(1,-1,0,0)+(0,0,2,1) .
$$

To solve $A \mathbf{x}=(7,7,7)$, we do something similar: We multiply on the left by Q^{T} to obtain $Q^{T} A \mathbf{x}=Q^{T}(7,7,7)=(1,-5,-11)$. The corresponding system of equations (after eliminating a common factor of 7) is

$$
\begin{array}{rlr}
x-y+z-w & = & 1 / 7 \\
z-w & = & -5 / 7 \\
w & = & -11 / 7 .
\end{array}
$$

The last equation requires $w=-11 / 7$. Then the second equation requires $z=-16 / 7$. The last equation becomes $x-y=6 / 7$ We get a particular solution by choosing $y=0$, and then $x=6 / 7$. Hence

$$
\mathrm{x}_{0}=\frac{1}{7}(6,0,-16,-11) .
$$

To get the general solution, we add to this the general solution of $R \mathbf{x}=\mathbf{0}$, which is also the general solution of $A \mathbf{x}=\mathbf{0}$ that we have found above. Hence the general solution is given by

$$
\frac{1}{7}(6,0,-16,-11)+x(1,-1,0,0)
$$

as x ranges over the real line.
4: (a) Let $\mathbf{f}(x, y)=\left(\left(x^{3}-x^{2}\right) y, x y+x-y\right)$. Compute $D_{\mathbf{f}}(x, y)$, and evaluate this at $(x, y)=(-1,1)$ to obtain the matrix $A=D_{\mathbf{f}}(-1,1)$. Compute the inverse of this matrix.
(b) Let $\mathbf{g}(u, v)=\left(u^{2}-v^{2}+u v, u^{3} / 3-v^{2}\right)$. Compute $D_{\mathbf{g}}(u, v)$, and evaluate this at $(x, y)=$ ($-2,-3$) to obtain the matrix $B=D_{\mathbf{g}}(-2,-3)$. Compute the inverse of this matrix.
SOLUTION: (a) We compute $D_{\mathbf{f}}(x, y)=\left[\begin{array}{cc}\left(3 x^{2}-2 x\right) y & x^{3}-x^{2} \\ y+1 & x-1\end{array}\right]$. Evaluating we find $D_{\mathbf{f}}(-1,1)=\left[\begin{array}{ll}5 & -2 \\ 2 & -2\end{array}\right]$. The inverse of this matrix is

$$
\frac{1}{6}\left[\begin{array}{ll}
2 & -2 \\
2 & -5
\end{array}\right] .
$$

For (b) we compute $D_{\mathbf{g}}(u, v)=\left[\begin{array}{cc}2 u+v & u-2 v \\ u^{2} & -2 v\end{array}\right]$. Evaluating we find $D_{\mathbf{g}}(-2,-3)=$ $\left[\begin{array}{rr}-7 & 7 \\ 4 & 6\end{array}\right]$. The inverse of this matrix is

$$
\frac{1}{58}\left[\begin{array}{rr}
-6 & 4 \\
4 & 7
\end{array}\right]
$$

5: Let the functions \mathbf{f} and \mathbf{g} be defined as in Exercise 4. Since the range of \mathbf{f} is \mathbb{R}^{2}, which is the domain of \mathbf{g}, the composition $\mathbf{h}=\mathbf{g} \circ \mathbf{f}$ of these functions is well-defined: Define

$$
\mathbf{h}(\mathbf{x})=\mathbf{g}(\mathbf{f}(\mathbf{x})) .
$$

(a) Compute an explicit formula for $\mathbf{h}(x, y)$, and then compute the matrix $C=D_{\mathbf{h}}(-1,1)$.
(b) Use the calculation of part (a) and Exercise 4 to verify the Chain Rule:

$$
D_{\mathbf{g} \circ \mathbf{f}}\left(\mathbf{x}_{0}\right)=\left[D_{\mathbf{g}}\left(\mathbf{f}\left(\mathbf{x}_{0}\right)\right)\right]\left[D_{\mathbf{f}}\left(\mathbf{x}_{0}\right)\right]
$$

for these functions at $\mathbf{x}_{0}=(1,2)$.
SOLUTION: (a) Making the substitution and simplifying, we find $\mathbf{h}(x, y)=\left(h_{1}(x, y), h_{2}(x, y)\right)$ where

$$
\begin{aligned}
& h_{1}(x, y)=\left(x^{6}-2 x^{5}+2 x^{4}-2 x^{3}+2 x-1\right) y^{2}+\left(x^{4}-x^{3}-2 x^{2}+2 x\right) y-x^{2} \\
& h_{2}(x, y)=\frac{1}{3}\left(x^{9}-3 x^{8}+3 x^{7}-x^{6}\right) y^{3}-\left(x^{2}-2 x+1\right) y^{2}+2\left(x^{2}-x\right) y-x^{2} .
\end{aligned}
$$

Computing the Jacobian matrix and evaluating, we find

$$
C=D_{\mathbf{h}}(-1,1)=\left[\begin{array}{rc}
-27 & 6 \\
32 & -20
\end{array}\right] .
$$

Then since $\mathbf{f}(-1,1)=(-2,-3)$,

$$
\left[D_{\mathbf{g}}\left(\mathbf{f}\left(\mathbf{x}_{0}\right)\right)\right]\left[D_{\mathbf{f}}\left(\mathbf{x}_{0}\right)\right]=\left[D_{\mathbf{g}}(-2,-3)\right]\left[D_{\mathbf{f}}(-1,1)\right],
$$

which is the product of the matrices found in part (a). Using the results of part (a),

$$
\left[D_{\mathbf{g}}(-2,-3)\right]\left[D_{\mathbf{f}}(-1,1)\right]=\left[\begin{array}{rr}
-8 & 1 \\
9 & 4
\end{array}\right]\left[\begin{array}{ll}
5 & -2 \\
2 & -2
\end{array}\right]=\left[\begin{array}{rc}
-27 & 6 \\
32 & -20
\end{array}\right],
$$

in accordance with the Chain Rule.

[^0]: ${ }^{1}$ (c) 2017 by the author.

