Homework 6, Math 291 Fall 2017

Eric A. Carlen¹ Rutgers University

October 27, 2017

1: Let *A* be the matrix $A = \begin{bmatrix} 3 & 5 \\ 2 & 3 \end{bmatrix}$.

(a) Compute A^{-1} m the inverse matrix of A.

(b) Find the solution of the equations

$$A\mathbf{x} = (3,2)$$
, $A\mathbf{x} = (2,2)$, $A\mathbf{x} = (-1,7)$.

2: Let A be the matrix $A = \begin{bmatrix} 3 & 5 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 2 \end{bmatrix}$.

(a) Compute A^{-1} m the inverse matrix of A.

(b) Find the solution of the equations

$$A\mathbf{x} = (3, 2, 1) , \qquad A\mathbf{x} = (2, 2, 1) , \qquad A\mathbf{x} = (-1, 7, 1) .$$

3: Let A be the 3 × 4 matrix $A = \begin{bmatrix} 6 & -6 & 4 & -7 \\ -2 & 2 & 1 & -7 \\ -3 & 3 & -9 & 7 \end{bmatrix}.$

(a) Apply the Gram-Schmidt Algorithm to the columns of A to produce an orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ of \mathbb{R}^3 . Let Q be the matrix $Q = [\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3]$. Let R be the 3×4 matrix whose i, j entry is $\mathbf{u}_i \cdot \mathbf{v}_j$ where \mathbf{v}_j is the *j*th column of A. Verify that A = QR.

(b) Find all solutions of $R\mathbf{x} = \mathbf{0}$, and then all solutions of $A\mathbf{x} = \mathbf{0}$.

(c) For $\mathbf{b} = (7, 7, 7)$, find all solutions of $R\mathbf{x} = \mathbf{b}$, and then find all solutions of $A\mathbf{x} = \mathbf{b}$.

4: (a) Let $\mathbf{f}(x, y) = ((x^3 - x^2)y, xy + x - y)$. Compute $D_{\mathbf{f}}(x, y)$, and evaluate this at (x, y) = (-1, 1) to obtain the matrix $A = D_{\mathbf{f}}(-1, 1)$. Compute the inverse of this matrix.

(b) Let $\mathbf{g}(u,v) = (u^2 - v^2 + uv, u^3/3 - v^2)$. Compute $D_{\mathbf{g}}(u,v)$, and evaluate this at (x,y) = (-2, -3) to obtain the matrix $B = D_{\mathbf{g}}(-2, -3)$. Compute the inverse of this matrix.

5: Let the functions **f** and **g** be defined as in Exercise 4. Since the range of **f** is \mathbb{R}^2 , which is the domain of **g**, the composition $\mathbf{h} = \mathbf{g} \circ \mathbf{f}$ of these functions is well-defined: Define

$$\mathbf{h}(\mathbf{x}) = \mathbf{g}(\mathbf{f}(\mathbf{x}))$$
.

 $^{^{1}}$ © 2017 by the author.

- (a) Compute an explicit formula for h(x, y), and then compute the matrix $C = D_h(-1, 1)$.
- (b) Use the calculation of part (a) and Exercise 4 to verify the chain rule:

$$D_{\mathbf{g} \circ \mathbf{f}}(\mathbf{x}_0) = [D_{\mathbf{g}}(\mathbf{f}(\mathbf{x}_0))][D_{\mathbf{f}}(\mathbf{x}_0)]$$

for these functions at $\mathbf{x}_0 = (1, 2)$.

5: Let $\mathbf{f}(x, y) = (-yx + 1 + x^2, x^2 + (y/4)^2 - 1).$

(a) How many solutions of the system $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ are the in the upper-right quadrant? (The upper right quadrant is the set $\{(x, y : x, y \ge 0\}$.

(b) Take $\mathbf{x}_0 = (2, 1)$, and compute $\mathbf{f}(\mathbf{x}_0)$ and $[D_{\mathbf{f}}(\mathbf{x}_0)]$ Then solve the equation

$$\mathbf{f}(\mathbf{x}_0) + [D_{\mathbf{f}}(\mathbf{x}_0)](\mathbf{x} - \mathbf{x}_0) = \mathbf{0}$$

for **x**. Call the solution \mathbf{x}_1 . Compute $\mathbf{f}(\mathbf{x}_1)$, and compare $\|\mathbf{f}(\mathbf{x}_1)\|$ and $\|\mathbf{f}(\mathbf{x}_0)\|$.

This is essentially the Newton's method problem from the previous homework done using matrix methods.