Homework 6, Math 291 Fall 2017

Eric A. Carlen ${ }^{1}$
Rutgers University

October 27, 2017

1: Let A be the matrix $A=\left[\begin{array}{ll}3 & 5 \\ 2 & 3\end{array}\right]$.
(a) Compute $A^{-1} \mathrm{~m}$ the inverse matrix of A.
(b) Find the solution of the equations

$$
A \mathrm{x}=(3,2), \quad A \mathrm{x}=(2,2), \quad A \mathrm{x}=(-1,7)
$$

2: Let A be the matrix $A=\left[\begin{array}{lll}3 & 5 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 2\end{array}\right]$.
(a) Compute $A^{-1} \mathrm{~m}$ the inverse matrix of A.
(b) Find the solution of the equations

$$
A \mathrm{x}=(3,2,1), \quad A \mathrm{x}=(2,2,1), \quad A \mathrm{x}=(-1,7,1) .
$$

3: Let A be the 3×4 matrix $A=\left[\begin{array}{rrrr}6 & -6 & 4 & -7 \\ -2 & 2 & 1 & -7 \\ -3 & 3 & -9 & 7\end{array}\right]$.
(a) Apply the Gram-Schmidt Algorithm to the columns of A to produce an orthonormal basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ of \mathbb{R}^{3}. Let Q be the matrix $Q=\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right]$. Let R be the 3×4 matrix whose i, j entry is $\mathbf{u}_{i} \cdot \mathbf{v}_{j}$ where \mathbf{v}_{j} is the j th column of A. Verify that $A=Q R$.
(b) Find all solutions of $R \mathbf{x}=\mathbf{0}$, and then all solutions of $A \mathbf{x}=\mathbf{0}$.
(c) For $\mathbf{b}=(7,7,7)$, find all solutions of $R \mathbf{x}=\mathbf{b}$, and then find all solutions of $A \mathbf{x}=\mathbf{b}$.

4: (a) Let $\mathbf{f}(x, y)=\left(\left(x^{3}-x^{2}\right) y, x y+x-y\right)$. Compute $D_{\mathbf{f}}(x, y)$, and evaluate this at $(x, y)=(-1,1)$ to obtain the matrix $A=D_{\mathbf{f}}(-1,1)$. Compute the inverse of this matrix.
(b) Let $\mathbf{g}(u, v)=\left(u^{2}-v^{2}+u v, u^{3} / 3-v^{2}\right)$. Compute $D_{\mathbf{g}}(u, v)$, and evaluate this at $(x, y)=$ ($-2,-3$) to obtain the matrix $B=D_{\mathbf{g}}(-2,-3)$. Compute the inverse of this matrix.
5: Let the functions \mathbf{f} and \mathbf{g} be defined as in Exercise 4. Since the range of \mathbf{f} is \mathbb{R}^{2}, which is the domain of \mathbf{g}, the composition $\mathbf{h}=\mathbf{g} \circ \mathbf{f}$ of these functions is well-defined: Define

$$
\mathbf{h}(\mathbf{x})=\mathbf{g}(\mathbf{f}(\mathbf{x})) .
$$

[^0](a) Compute an explicit formula for $\mathbf{h}(x, y)$, and then compute the matrix $C=D_{\mathbf{h}}(-1,1)$.
(b) Use the calculation of part (a) and Exercise 4 to verify the chain rule:
$$
D_{\mathbf{g} \circ \mathbf{f}}\left(\mathbf{x}_{0}\right)=\left[D_{\mathbf{g}}\left(\mathbf{f}\left(\mathbf{x}_{0}\right)\right)\right]\left[D_{\mathbf{f}}\left(\mathbf{x}_{0}\right)\right]
$$
for these functions at $\mathbf{x}_{0}=(1,2)$.
5: Let $\mathbf{f}(x, y)=\left(-y x+1+x^{2}, x^{2}+(y / 4)^{2}-1\right)$.
(a) How many solutions of the system $\mathbf{f}(\mathbf{x})=\mathbf{0}$ are the in the upper-right quadrant? (The upper right quadrant is the set $\{(x, y: x, y \geq 0\}$.
(b) Take $\mathbf{x}_{0}=(2,1)$, and compute $\mathbf{f}\left(\mathbf{x}_{0}\right)$ and $\left[D_{\mathbf{f}}\left(\mathbf{x}_{0}\right)\right]$ Then solve the equation
$$
\mathbf{f}\left(\mathbf{x}_{0}\right)+\left[D_{\mathbf{f}}\left(\mathbf{x}_{0}\right)\right]\left(\mathbf{x}-\mathbf{x}_{0}\right)=\mathbf{0}
$$
for \mathbf{x}. Call the solution \mathbf{x}_{1}. Compute $\mathbf{f}\left(\mathbf{x}_{1}\right)$, and compare $\left\|\mathbf{f}\left(\mathbf{x}_{1}\right)\right\|$ and $\left\|\mathbf{f}\left(\mathbf{x}_{0}\right)\right\|$.
This is essentially the Newton's method problem from the previous homework done using matrix methods.

[^0]: ${ }^{1}$ © 2017 by the author.

