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1: Let f(x, y) be given by

f(x, y) = −xy2 + 3y + x2y .

(a) Find all critical points of f .

(b) Find the equation of the tangent plane to the graph of z = f(x, y) at (x, y) = (2, 1).

(c) Suppose the positive y-axis runs due North, and the positive x-axis runs due East. If z = f(x, y)

represents the altitude at the point (x, y), and you pour out a glass of water at (2, 1), in what

compass direction does the water run?

(d) Find all points (x, y) such that the normal vector to the tangent plane at (x, y) is a multiple

of (1, 1, 1).

SOLUTION We compute

∇f(x, y) = (− y2 + 2xy , −2xy + 3 + x2) .

The critical points are the solutions of

−y2 + 2xy = 0

−2xy + 3 + x2 = 0

The first equation is satisfied if and only if either y = 0 or y = 2x. If y = 0, the second equation

becomes x2 + 3 = 0, which has no solutions. If y = 2x, the second equation becomes x2 = 1, and

so we get two critical points x1 = (1, 2) and x2 = (− 1,−2).

For (b), since ∇f(2, 1) = (3, 3), the normal vector is (3, 3,−1). Then with X = (x, y, z) and

x0 = (2, 1, f(2, 1)) = (2, 1, 5), the equation of the tangent plane is A · (X−X0) which simplifies to

3x+ 3y − z = 4 .

For (c) Since the gradient points Northeast, the water runs Southwest.

For (c) The normal to the tangent plane at (x, y) is is is (−y2 +2xy , −2xy+3+x2,−1). This

vector is a multiple of (1, 1, 1) exactly when the cross product of the two vectors is zero. Computing

the cross product we find

(− 2xy + 4 + x2 , y2 − 2xy − 1 , 4xy − y2 − x2 − 3 ) .
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Setting this equal to 0 gives us the system

−2xy + 4 + x2 = 0

y2 − 2xy − 1 = 0

4xy − y2 − x2 − 3 = 0

Subtracting the first equation from the second we get y2 = x2 + 5. Solving the second equation for

x we get

x =
y2 − 1

2y
so that x2 =

y4 − 2y2 + 1

4y2
.

Then y2 = x2 + 5 becomes

y2 =
y4 − 2y2 + 1

4y2
+ 5 so that 3y4 − 18y2 − 1 = 0 .

Introducing t = y2, we have quadratic equation in t. The two solutions are

3± 2

3

√
21 .

Only the larger one is positive, and hence an admissible value for y2. Hence

y2 = 3 +
2

3

√
21 and x2 = −2 +

2

3

√
21 .

Since y2 − 1 > 0, we see from the second equation, 2xy = y2 − 1, the x and y have the same sign.

Hence there are exactly two such points(√
−2 +

2

3

√
21 ,

√
3 +

2

3

√
21

)
and

(
−
√
−2 +

2

3

√
21 , −

√
3 +

2

3

√
21

)
.

2: Let f(x, y) be given by

f(x, y) = xy2 − x4 − y4 .

(a) Find all critical points of f .

(b) Find the maximum value of f over the whole plane, if there is one, and in that case, find all

maximizers of f . Justify your answer.

(c) Find the minimum value of f over the whole plane, if there is one, and in that case, find all

maximizers of f . Justify your answer.

(d) Consider the curve specified by

xy2 − x4 − y4 = 0 .

Find all points on this curve where the tangent vector is vertical.

SOLUTION We compute

∇f(x, y) = (y2 − 4x3 , 2xy − 4y3) .
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The critical points are the solutions of

y2 − 4x3 = 0

2xy − 4y3 = 0

The second equation is satisfied if and only if either y = 0 or x = 2y2. If y = 0, the first

equation requires x = 0, giving us the critical point x1 = (0, 0). If x = 2y2, the first equation

becomesy2 = 23y6. Hence y = ±2−5/4, and then x = 2−3/2. Hence we get two more critical points

x2 = (2−3/2, 2−5/4) and x3 = (2−3/2,−2−5/4)

For (b) and (c) Note that for large x2 + y2, the leading order approximation of f is f(x, y) ≈
−x4 − y4. Hence f is not bounded below, so there is no minimizer. Moreover, outside and on the

boundary of large closed disk, the values of f are strictly negative. We know f has a maximizer of

this closed disk since f is continuous. The maximum cannot be on the boundary since f(0, 0) = 0,

and on the boundary all values of f are strictly negative. Hence at any maximizer ∇f = 0,

Evaluating f at out three critical points we find

f(x1) = 0 and f(x2) = f(x3) = 1/64 .

Hence the maximum value is 1/64, and the maximizers are x2 and x3.

For (d) The tangent vector is vertical when the gradient is horizontal, and hence when the

second component of the gradient is zero. Hence we have the system of equations

xy2 − x4 − y4 = 0

2xy − 4y3 = 0

The second equation is satisfied if and only if either y = 0 or x = 2y2. If y = 0, the first equation

requires x = 0, giving us the solution z1 = (0, 0). If x = 2y2, the first equation becomes y4 = 24y8,

so that y = ±1/2 and then x = 1/2. Hence there are two more such points, z2 = (1/2, 1/2) and

z3 = (1/2,−1/2).

3: Let f(x, y) be given by

f(x, y) =
x2y

1 + x4 + y4
.

(a) Find all critical points of f .

(b) Find the maximum value of f over the whole plane, if there is one, and in that case, find all

maximizers of f . Justify your answer.

(c) Find the minimum value of f over the whole plane, if there is one, and in that case, find all

maximizers of f . Justify your answer.

(d) Consider the curve specified by

f(x, y) =
1

16
.

Find all points on this curve where the tangent vector is vertical.

SOLUTION We compute

∇f(x, y) =
x

(1 + x4 + y4)2
(2y(x4 − y4 − 1) , x(1 + x4 − 3y4)) .
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Notice that the pre-factor is zero exactly when x = 0. Hence every point on the y-axis is a

critical point. Critical points (x, y) that are not on the y-axis must satisfy

x4 − y4 − 1 = 0

1 + x4 − 3y4 = 0

Subtracting the first equation from the second we see that y2 = 1 and hence y = ±1. Next, x4 = 2

so that x = ±21/4. The signs are uncoupled this time and so we have four critical points

x1 = (21/4 , 1) , x2 = (− 21/4 , 1) , x3 = (21/4 , −1) , x4 = (− 21/4 , −1) .

For (b) and (c) Since it is clear that limx→∞ f(x) = 0, and since f(1, 1) = 1/3 and

f(1,−1) = −1/3, this function has both maximizers and minimizers, and they must be critical

point. Evaluating, we find f(x1) = f(x2) = 2−3/2 and f(bx3) = f(x4) = −2−3/2. Hence 2−3/2 is

the maximum value and x1 and x2 are the maximizers, while −2−3/2 is the minimum value and x3

and x3 are the minimizers.

(d) The tangent vector is vertical exactly where the gradient is horizontal, meaning that

∂f/∂y = 0. Since
∂

∂y
f(x, y) =

x2(1 + x4 − 3y4)

1 + x2 + y2
,

the equation
∂

∂y
f(x, y) = 0 is equivalent to

x2(1 + x4 − 3y4) = 0 .

Hence the points on the curve f(x, y) = 1/16 where the tangent is vertical satisfy the pair of

equations

16x2y − 1− x4 − y4 = 0

x2(1 + x4 − 3y4) = 0 .

Clearly, the second equation is satisfied if x = 0, but then the first equation becomes −1−y4 = 0,

which has no solution. Likewise, if we set y = 0 in the first equation, we obtain −1− x4 = 0 which

has no solutions. Hence x 6= 0 and y 6= 0. Since x 6= 0, we may divide the second equation by x2,

obtaining the system

16x2y − 1− x4 − y4 = 0

1 + x4 − 3y4 = 0 .

Summing both sides the two equations, we obtain 4x2y − y4 = 0. Since we found above that

y 6= 0, we may divide by y to obtain 4x2 = y3. Using this to eliminate x from the equation

16x2y − 1− x4 − y4 = 0, we obtain 3y4 − 1− 1

16
y6 = 0. This is equivalent to

y6 − 48y2 + 16 = 0 .

Introducing the variable t = y3, we seek the roots of the cubic

t3 − 48t2 + 16 = 0 .
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Before actually solving this equation, let us look at its solution set. Define p(t) = t3−48t2 +16.

Then p′(t) = 3t2 − 96t = 3t(t − 32) and p′′(t) = 6(t − 16). From this we see that p has a local

maximum at t = 0, and a local minimum at t = 32. Since p(0) = 16 and p(32) = −16368, the

graph of y = p(t) crosses the t axis 3 times; so there are there roots r1, r2 and r3, one of which

is negative and two of which are positive. We may as well suppose that r1 < r2 < r3 so that r2
and r3 are the positive roots. We are only concerned with the positive roots since we got the cubic

equation by setting t = y2m and y2 is never negative. Moreover, at the points we seek, we know

that 4x2 = y3. This means the y itself is positive, and x = 1
2y

3/2 Hence there are two points at

which the normal to the tangent plane is a multiple of (1, 1, 1): These are

(12r
3/3
2 , r

1/2
2 ) and (12r

3/3
3 , r

1/2
3 ) .

You get full credit for getting to here. The rest is not really multivariable calculus per se, but it

is very interesting for several reasons. The method for solving such equations tells us the we should

substitute

t = 16 + 2w +
128

w
(0.1)

into our equation. Let’s take this for granted. The interesting thing is what comes next. In the

new variable w, p(t) = 0 becomes

8

w3
(w6 − 1022w3 + 262144) = 0 ,

which is satisfied if and only if w6 − 1022w3 + 262144 = 0. This is a quadratic equation in w2.

(Note that 262144 = 218, a first hint something reasonable is coming out.) Solving the quadratic,

we find

w3 = 511± i
√

1023 .

This is complex, but our equation has three real roots. Hence the set of roots do not change under

complex conjugation, and the three real roots are what one gets plugging the three complex cube

roots of 511 + i
√

1023 into (0.1).

To find these, write w3 = 511 + i
√

1023 in polar form: Note that
√

(511)2 + 1023 = 512 = 29.

Define θ0 = arccos(511/512), we have w3 = 29eiθ0 . Then the three values of w are

w1 = 8eiθ0/3 , w2 = 8eiθ0/3+2π/3 , w2 = 8eiθ0/3+4π/3 .

Next note that when |w|2 = 64, as in our case.

16 + 2w +
128

w
= 16 + 2w +

128

|w|2
w∗ = 16 + 2(w + w∗) ,

which is real, as it must be. Using the three choices of w, we get the three real roots of the cubic:

r3 = 16 + 32 cos((arccos(511/512))/3) , r2 = 16 + 32 cos((arccos(511/512))/3 + 4π/3)

These have the approximate values r2 ≈ 0.58087572 and r2 ≈ 47.99305355.

4: Let f(x, y) be given by

f(x, y) =
x2y + y2

1 + x4 + y2
.
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(a) Compute equations for the tangent planes to the graph of z = f(x, y) at (1, 1) and at (−1,−1).

(b) These planes intersect in a line. Find a parameterization of the line.

SOLUTION We compute

∇f(x, y) =
1

(1 + x4 + y2)2
(2xy(x4 + 2x2y − y2 − 1) , x2 + x6 + 2y + 2yx4 − x2y2) .

Then we find ∇f(1, 1) = 1
9(− 2, 5) and ∇f(1, 1) = 1

3(2,−1), and f(1, 1) = 2
3 and f(−1,−1) = 0.

Therefore, the equation for the tangent plane at (1, 1) is

(− 2, 5,−9) · (x− 1, y − 1, z − 2/3) = 0 or equivalently − 2x+ 5y − 9z = −3

and the equation for the tangent plane at (1, 1) is

(2,−1,−3) · (x+ 1, y + 1, z) = 0 or equivalently 2x− y − 3z = −1 .

For (b) we need one point on the intersection of the planes, which means one solutions of

−2x+ 5y − 9z = −3

2x− y − 3z = −1 .

The point where the line crossed the x, y plane is given by these equations together with z = 0.

Adding the two equations and using z = 0, we get 4y = −4, so y = −1 and then −2x = 2 so that

x = −1. The direction vector of the line i given by taking the cross product of their normals so we

compute

(− 2, 5,−9)× (2,−1,−3) = (2,−1,−3) = −8(3, 3, 1) .

Hence the line is parameterized by

x(t) = (− 1,−1, 0) + t(3, 3, 1) = (3t− 1, 3t− 1, t) .


