Homework 5, Math 291 Fall 2015

Eric A. Carlen ${ }^{1}$
Rutgers University

October 12, 2017

1: Let $f(x, y)$ be given by

$$
f(x, y)=-x y^{2}+3 y+x^{2} y .
$$

(a) Find all critical points of f.
(b) Find the equation of the tangent plane to the graph of $z=f(x, y)$ at $(x, y)=(2,1)$.
(c) Suppose the positive y-axis runs due North, and the positive x-axis runs due East. If $z=f(x, y)$ represents the altitude at the point (x, y), and you pour out a glass of water at $(2,1)$, in what compass direction does the water run?
(d) Find all points (x, y) such that the normal vector to the tangent plane at (x, y) is a multiple of $(1,1,1)$.

2: Let $f(x, y)$ be given by

$$
f(x, y)=x y^{2}-x^{4}-y^{4} .
$$

(a) Find all critical points of f.
(b) Find the maximum value of f over the whole plane, if there is one, and in that case, find all maximizers of f. Justify your answer.
(c) Find the minimum value of f over the whole plane, if there is one, and in that case, find all maximizers of f. Justify your answer.

3: Let $f(x, y)$ be given by

$$
f(x, y)=\frac{x^{2} y}{1+x^{4}+y^{4}} .
$$

(a) Find all critical points of f.
(b) Find the maximum value of f over the whole plane, if there is one, and in that case, find all maximizers of f. Justify your answer.
(c) Find the minimum value of f over the whole plane, if there is one, and in that case, find all maximizers of f. Justify your answer.

4: Let $f(x, y)$ be given by

$$
f(x, y)=\frac{x^{2} y+y^{2}}{1+x^{4}+y^{2}} .
$$

[^0](a) Compute equations for the tangent planes to the graph of $z=f(x, y)$ at $(1,1)$ and at $(-1,-1)$.
(b) These planes intersect in a line. Find a parameterization of the line.

5: Let $f(x, y)$ and $g(x, y)$ be given by

$$
f(x, y)=-y x+1+x^{2} \quad \text { and } \quad g(x, y)=x^{2}+(y / 4)^{2}-1 .
$$

(a) How many solutions of the system

$$
\begin{aligned}
f(x, y) & =0 \\
g(x, y) & =0
\end{aligned}
$$

are the in the upper-right quadrant? (The upper right quadrant is the set $\{(x, y: x, y \geq 0\}$.
(b) Take $b x_{0}=(2,1)$, and run one iteration of Newton's method to find a better approximate solution \mathbf{x}_{1}. Compute $f\left(\mathbf{x}_{1}\right)$ and $g\left(\mathbf{x}_{1}\right)$, and compare $\sqrt{f\left(\mathbf{x}_{1}\right)^{2}+g\left(\mathbf{x}_{1}\right)^{2}}$ with $\sqrt{f\left(\mathbf{x}_{0}\right)^{2}+g\left(\mathbf{x}_{0}\right)^{2}}$.

[^0]: ${ }^{1}$ (c) 2017 by the author.

