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1: Let f(x, y) be given by

f(x, y) =


y sin(xy)

x2 + y4
(x, y) 6= (0, 0)

0 (x, y) = (0, 0) .

At which points (x0, y0) ∈ R2 is the function f continuous? Justify your answer.

SOLUTION: Since limt→0
sint
t = 1, when x2 + y2 is small, sin(xy) ≈ xy. Hence we expect that if

we replace sin(x) by xy we do not change the outcome. Therefore, consider

g(x, y) =


xy2

x2 + y4
(x, y) 6= (0, 0)

0 (x, y) = (0, 0) .

The identity (a − b)2 = a2 + b2 − 2ab is relevant. Take a = x and b = y4, so that (x − y2)2 =

x2 + y4 − 2xy2, Along the parabola x = y2, we have x2 + y4 − 2xy2 and hence g(x, y) = 1/2. On

the other hand, along the x and y axes, g(x, y) = 0. Hence g(x, y) is not continuous, since

lim
n→∞

g(1/n, 0) = 0 and lim
n→∞

g(1/n2, 1/n) = 1/2 .

Going back to f , we obviously have that limn→∞ f(1/n, 0) = 0 and

lim
n→∞

f(1/n2, 1/n) = lim
n→∞

1

2

sin(1/n3)

1/n3
=

1

2
lim
t→0

sin(t)

t
=

1

2
.

Hence, f is not continuous at (0, 0).

2: Let f(x, y) and g(x, y) be given by

f(x, y) =


x2y3

x4 + y6
(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

and g(x, y) =


x5

x4 + y6
(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

.

(a) Is the function f continuous at (0, 0)? Justify your answer.
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(b) Is the function g continuous at (0, 0)? Justify your answer.

SOLUTION: (a) The identity (a − b)2 = a2 + b2 − 2ab is relevant as in the last problem. This

time we take a = x2 and b = y3. We see that when x2 = y6. f(x, y) = 1/2. Hence we consider the

sequence {xn} with xn = (1/n3, 1/n2). We find

lim
n→∞

f(1/n3, 1/n2) = 1/2 ,

and since f = 0 everywhere along the x and y axes, f is discontinuous.

For (b) Since there is no non-zero power of y in the numerator, the identity (a−b)2 = a2+b2−2ab

is not relevant. Instead, we introduce polar coordinates x = r cos θ and y = r sin θ and then we

have that for (x, y) 6= (0, 0),

0 ≤ |g(x, y)| = |x|5

x4 + y6
= r

| cos5 θ|
cos4 θ + r2 sin6 θ

= r
| cos θ|

1 + r2 sin2 θ tan4 θ
≤ r = ‖x‖ .

Hence, by the squeeze principle, since limx→0 ‖x‖ = 0, limx→0 g(x) = 0, and hence g is continuous

at 0, and then everywhere else as well, since only at x = (0, 0) does the issue of dividing by zero

arise.

3: Let f(x, y) and g(x, y) be given by

f(x, y) =


x2y

x4 + y2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

and g(x, y) =


x2y2

x4 + y2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

.

(a) Is the function f continuous at (0, 0)? Is is bounded on the closed unit disc {(x, y) : x2 +y2 ≤
1}? Justify your answers.

(b) Is the function g continuous at (0, 0)? Is is bounded on the closed unit disc {(x, y) : x2 +y2 ≤
1}? Justify your answer.

SOLUTION: (a) The identity (a − b)2 = a2 + b2 − 2ab is relevant as in the last problem. This

time we take a = x2 and b = |y|. We see that when x2 = |y|. |f(x, y)| = 1/2. Hence we consider

the sequence {xn} with xn = (1/n2, 1/n). We find

lim
n→∞

f(1/n3, 1/n2) = 1/2 ,

and since f = 0 everywhere along the x and y axes, f is discontinuous. However, since for

(x, y) 6= (0, 0),

|f(x, y)| = x2|y|
x4 + y2

≤ 1

2
,

the function f is bounded, not only on the unit circle, but on the whole x, y plane.

For (b), we can again try to apply the identity (a− b)2 = a2 + b2− 2ab with a = x2 and b = |y|.
Since (a− b)2 > 0 for all a and b, a2 + b2 ≥ 2ab, and so with a = x2 and b = |y|,

x4 + y2 ≥ 2x2|y| .

Hence, for (x, y) 6= (0, 0),

|g(x, y)| = x2y2

x4 + y2
= |y| x

2|y|
x4 + y2

≤ |y|
2
≤ ‖x‖

2
.
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Since the right hand side converges to 0 as x converges to 0, the squeeze principle says that g is

continuous at (0, 0). Since g(x, y) is a rational function, it is continuous wherever the denominator

is not zero. Hence g is continuous everywhere.

Since g is continuous, and since the closed unit disc is a closed and bounded set, f is bounded

on this set by the theorem asserting that continuous functions have maximizers and minimizers

in any closed, bounded set. However, we can be more explicit. Just above, we have derived the

inequality

|g(x, y)| ≤ ‖x‖
2

.

This says that in fact |g(x, y)| ≤ 1/2 everywhere on the unit disc. We now have an explicit value

for the upper bound, namely 1/2. The general theorem only says that there is some finite bound.

Still, even this is useful, as we have seen!

4: Let f(x, y) be a differentiable function on R2 such that f(0, 0) = 0. Define a function g(x, y) by

g(x, y) =


f(x, y)√
x2 + y2

(x, y) 6= (0, 0)

0 (x, y) = (0, 0) .

Suppose that f is continuously differentiable. Is it then necessarily the case that g is continuous?

Justify your answer to receive credit.

SOLUTION: If f(x, y) is differentiable at (0, 0), then all directional derivatives exist at the origin,

and so for all unit vectors u = ( cos θ, sin θ), we have that

lim
h→0

1

h
[f(0 + hu)− f(0)] = lim

h→0

1

h
f(hu) = ∇f(0) · u .

To relate this to the problem at hand, for any (x, y) 6= (0, 0), define h =
√
x2 + y2, and then

u = h−1x, which is a unit vector. Then

g(hu) = g(x, y) =
f(x, y)√
x2 + y2

=
f(hu

h
,

and so

lim
h→0

g(hu) = ∇f(0) · u = ‖∇f(0)‖ cos θ

where θ is the angle between u and ∇f(0). We have shown that if (0) 6= 0, the limit depends on

θ, the angle of approach. Hence it is not generally that case that g is continuous. However, it may

be seen that under the additional condition that ∇f(0) = 0, the function g is continuous.


