Homework 4, Math 291 Fall 2015

Eric A. Carlen ${ }^{1}$
Rutgers University

October 7, 2017

1: Let $f(x, y)$ be given by

$$
f(x, y)= \begin{cases}\frac{y \sin (x y)}{x^{2}+y^{4}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0) .\end{cases}
$$

At which points $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ is the function f continuous? Justify your answer.
2: Let $f(x, y)$ and $g(x, y)$ be given by

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x^{2} y^{3}}{x^{4}+y^{6}} & (x, y) \neq(0,0) \\
0 & (x, y)=(0,0)
\end{array} \quad \text { and } \quad g(x, y)=\left\{\begin{array}{cl}
\frac{x^{5}}{x^{4}+y^{6}} & (x, y) \neq(0,0) \\
0 & (x, y)=(0,0)
\end{array} .\right.\right.
$$

(a) Is the function f continuous at $(0,0)$? Justify your answer.
(b) Is the function g continuous at $(0,0)$? Justify your answer.

3: Let $f(x, y)$ and $g(x, y)$ be given by

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x^{2} y}{x^{4}+y^{2}} & (x, y) \neq(0,0) \\
0 & (x, y)=(0,0)
\end{array} \quad \text { and } \quad g(x, y)=\left\{\begin{array}{cl}
\frac{x^{2} y^{2}}{x^{4}+y^{2}} & (x, y) \neq(0,0) \\
0 & (x, y)=(0,0)
\end{array}\right.\right.
$$

(a) Is the function f continuous at $(0,0)$? Is is bounded on the closed unit disc $\left\{(x, y): x^{2}+y^{2} \leq\right.$ 1\}? Justify your answers.
(b) Is the function g continuous at $(0,0)$? Is is bounded on the closed unit disc $\left\{(x, y): x^{2}+y^{2} \leq\right.$ 1\}? Justify your answer.
4: Let $f(x, y)$ be a differentiable function on \mathbb{R}^{2} such that $f(0,0)=0$. Define a function $g(x, y)$ by

$$
g(x, y)= \begin{cases}\frac{f(x, y)}{\sqrt{x^{2}+y^{2}}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Suppose that f is continuously differentiable. Is it then necessarily the case that g is continuous? Justify your answer to receive credit.

[^0]
[^0]: ${ }^{1}$ 2017 by the author.

