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1. Find a right handed orthonormal basis {u1,u2,u3} such that u1 is a positive multiple of (4, 4, 7)

and u2 is orthogonal to (1, 0, 2). How many such bases are there?

SOLUTION: Since ‖(4, 4, 7)‖ = 9, we must take u1 = 1
9(4, 4, 7). We must choose u2 to be

ortgogonal to both (4, 4, 7) and (1, 0, 2), so it must be a multiple of the cross product

(4, 4, 7)× (1, 0, 2) = (8,−1,−4)

which has length 9. Hence we must take u2 = ±1
9(8,−1,−4). Finally we must take u3 = u1×u2 =

±1
9(− 1, 8,−4). Hence there are exactly two such bases. One is

{ 1
9(4, 4, 7) , 1

9(8,−1,−4) , 1
9(− 1, 8,−4) }

and the others has minus signs in from of the last two vectors.

2. Let `1 be the line parameterized by x(t) = (1, 2, 2)+ t(0, 3, 3). Let `2 be the line parameterized

by y(s) = s(2, 1, 2). Compute the distance between these two lines, and the points x0 on `1 and

y0 on `2 such that ‖x0 − y0‖ ≤ ‖x(t)− y(s)‖ for all s, t.

SOLUTION: Let v = (2, 1, 2) and w = (0, 3, 3). We compute an orthonormal basis {u1,u2,u3}
such that u1 is orthogonal to both v and w, and such that u2 is orthogonal to v. This can be done

by taking

u1 =
v ×w

‖v ×w‖
, u2 =

v × u1

‖v × u1‖
u3 = u1 × u2 .

Then

‖x(t)− y(s)‖2 =
3∑

j=1

[((1, 2, 2) + t(0, 3, 3)− s(2, 1, 2)) · uj ]
2

= [(1, 2, 2) · u1]
2 + [((1, 2, 2) + t(0, 3, 3)) · u2]

2

+ [((1, 2, 2) + t(0, 3, 3)− s(2, 1, 2)) · u3]
2 .

Computing we find and so

‖x(t)− y(s)‖2 =
1

9
+

(
4

3
+ 3t

)2

+

(
8

3
+ 3t− 3s

)2

.
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To make this as small as possible, we choose

t = t0 = −4

9
and then s = s0 =

4

9
.

Thus, the distance between the lines is 1/3, and the closest points x(t0) = (1,−1,−1) and y(s0) =
4
9(2, 1, 2).

3. Let `1 be the line passing through (1, 2, 2) and (1, 5, 5). Let `2 be the line passing through x0

and x0 + (2, 1, 2). The set of all points x0 for which `2 meets `1 (i.e., such that `1 ∩ `2 6= ∅) is a

plane. Find an equation for this plane written in the form ax + by + cz = d.

SOLUTION: Two lines that intersect lie in a plane. Suppose that `1 and `2 intersect in some

point z0. Then there is a non zero vector a so that the plane given by a · (x−z0) = 0 contains both

`1 and `2, and therefore x0. So x0 must satisfy the equation for this plane. We now determine this

equation.

Since we can use any point on a line as the base point in a parameterization of the line, our lines

are also parameterized by x(t) := z0 + tw and y(s) := z0 +sv where w = (0, 3, 3) and v = (2, 1, 2).

So x(t) and y(s) must satisfy the equation of the plane for all s and t, respectively. This means

that a · v = a ·w = 0, and so a must be a multiple of v ×w = (− 3,−6, 6). We may as well take

a = (− 1,−2, 2). Then since we may take any point in the plane as the base point, we may as well

take any point on either line, such as (1, 2, 2). The equation for the plane then is

−x− 2y + 2z = −1 .

Thus, the lines intersect if and only if x0 satsifies this equation.

4. Let hu be the Householder reflection determined by a unit vector u:

hu(x) = x− 2(x · u)u .

a. Find a choice for u such that hu(e1) = 1
9(4, 4, 7)

b. For this choice of u, also compute hu(e2) and hu(e3). Verify that {hu(e1), hu(e2), hu(e3)} is a

left handed orthonormal basis.

SOLUTION a: We take u = ‖e1− 1
9(4, 4, 7)‖

−1(e1− 1
9(4, 4, 7)) = 1

3
√
10
(5,−4,−7). It is now easy

to check that for this u, hu(e1) = 1
9(4, 4, 7).

b. We next compute that

hu(e2) =
1

45
(20, 29,−28) and hu(e3) =

1

45
(35,−28,−4) .

5. Let v1, v2 and v3 be any three vectors in R3 such that

v1 · (v2 × v3) 6= 0 .

We know that {hu(e1), hu(e2), hu(e3)} is orthonormal. To see whether it is right handed or left

handed, we compute hu(e1) × hu(e2), and the reuslt is that this is −hu(e3), so that the basis is

left handed. In fact, this always happens: Reflection tuns a right handed basis into a left handed

basis.
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a. Show that

|v1 · (v2 × v3)| = |v2 · (v3 × v1)| = |v3 · (v1 × v2)| .

b. Let D be the common value considered in part (a). Define vectors w1, w2 and w3 by

w1 =
1

D
v2 × v3 , w2 =

1

D
v3 × v1 , and w3 =

1

D
v1 × v2 .

Show that for all 1 ≤ i, j ≤ 3,

vi ·wj =

{
1 i = j

0 i 6= j
.

SOLUTION a: Let a, b and c be any three vectors in R3. By the tripple product identity, and

then the commutativity of the dot product, a · (b× c) = (a× b) · c = c · (a× b). That is,

a · (b× c) = c · (a× b) ,

which says that the triple product is unchanged under any cyclic permulation of the vectors. This

implies an even stronger result than you were asked to prove, namely,

v1 · (v2 × v3) = v2 · (v3 × v1) = v3 · (v1 × v2) .

Also for use in part b, note that by this invariance under cyclic permuations, the triple prodcut of

three vectors is zero if any two of them are equal since by such a permuationswe can bring the two

equal vectors into the cross product.

For b, we compute, using the remark made just above,

v1 ·w1 =
1

D
v1 · v2 × v3 = 1 , v2 ·w1 =

1

D
v2 · v2 × v3 = 0 and v3 ·w1 =

1

D
v3 · v2 × v3 = 0 .

This proves the result for all i and j = 1. The proof for other vlaues of j goes the same way.

6. Let the vectors {v1,v2,v3} and {w1,w2,w3} be as in Exercise 6.

a. Show that Span({v1,v2,v3}) = R3. Hint: We know that the span of any set of non-zero vectors

in R3 is either a line through the origin, a plane through the origin, or is all of R3. So to show

Span({v1,v2,v3}) = R3 it suffices to show that whenever v1 · (v2 × v3) 6= 0, v1, v2 and v3 cannot

possibly lie on any one plane through the origin.

b. Show that for every x ∈ R3, there are unique values of t1, t2 and t3 such that

x = t1v1 + t2v2 + t3v3 ,

and that for each j = 1, 2, 3,

tj = wj · x .

SOLUTION a: Span({v1,v2,v3}) is a non-zero subspace of R3 and hence if it is not all of R3,

it is either a line of a plane through the origin. In either case, if it is not all of R3, it lies in a

plane through the origin. To show this is impossible, it suffices to show that there is no plane

through the origin continaing {v1,v2,v3}. The plane through the origin containing {v1,v2} has
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the equation (v1 × v2) · x = 0, but v3 does not satisfy this equation since (v1 × v2) · v3 = D 6= 0.

Hence Span({v1,v2,v3}) is not contianed in any plane, and it must be all of R3.

For b, By definition, the span of {v1,v2,v3} consists of all vectors of the form t1v1+t2v2+t3v3

for arbitrary t1, t2 and t3. By part a, Span({v1,v2,v3}) = R3, and so for any x inR3, there exist

numbers t1, t2 and t3 such that

x = t1v1 + t2v2 + t3v3 .

Taking the dot product of both sides with w1, we find

w1 · x = t1(w1 · v1) + t2(w1 · v2) + t3(w1 · v3) = t1 .

Thus, we must have t1 = w1 · x. Likewise, we must have t2 = w2 · x and t3 = w3 · x.

7. Let v1, v2 and v3 be given by

v1 = (1, 0, 1) , v2 = (1, 1, 1) , v3 = (1, 2, 3) .

a. Find vectors {w1,w2,w3} such that for all 1 ≤ i, j ≤ 3,

vi ·wj =

{
1 i = j

0 i 6= j
.

b. Compute numbers t1, t2 and t3 such that

t1(1, 0, 1) + t2(1, 1, 1) + t3(1, 2, 3) = (12,−7, 19) .

SOLUTION a: We compute

v2 × v3 = (1,−2, 1) , v3 × v1 = (2, 2,−2) and v1 × v2 = (− 1, 0, 1) .

Therefore, using the formula frompart a the previous exercise, D = v1 · (v2 × v3) = 2, and then

w1 = 1
2(1,−2, 1) , w2 = (1, 1,−1) and w3 = 1

2(− 1, 0, 1) .

Fpr b, using the formula frompart b the previous exercise,

t1 = w1 · (12,−7, 19) = 45
2

t2 = w2 · (12,−7, 19) = −14

t3 = w3 · (12,−7, 19) = 7
2 .

8. Show that for all a, b and c in R3,

(b× c) · [(c× a)× (a× b)] = |a · (b× c)|2 .

SOLUTION: Several people asked for hints on this. The hint was to either use Lagrange’s identity

or to use the idea of the proof of Lagrange’s identity. We first solve it using Lagrange’s identity

x× (y × z) = (x · z)y − (x · z)y .
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Taking x = (c× a), y = a and z = b, we have

(c× a)× (a× b) = ((c× a) · b)a− ((c× a) · a)b = ((c× a) · b)a .

(We have used the fact proved above that if any two vectors in a triple product are equal, the triple

product is zero.) Now taking the dot product with b× c we obtain

(b× c) · [(c× a)× (a× b)] = (b× c) · [((c× a) · b)a] = ((c× a) · b)((b× c) · a) .

By the invariance of the triple product under cyclic invariance, this is the same as |a · (b× c)|2.

ALTERNATE SOLUTION: We define an orthonormal basis {u1,u2,u3} built out of the given

vectors, as in the proof of Lagrange’s identity. Define

u1 =
1

‖b× c‖
b× c

u2 =
1

‖b‖
b

u3 = u1 × u2 .

In this basis, it is clear that the right hand side equals ‖b× c‖2(a ·u1)
2. We now show that the

left hand side is equal to this also.

Note that b is by definition a multiple of u2 and c is orthogonal to u1, so we have

b · u1 = b · u3 = c · u1 = 0 .

Since we can compute cross products in the usual way using coordinates with respect to any

orthonormal basis, and since by defnition b× c = ‖b× c‖b× c, we compute

b× c = ‖b× c‖u1

c× a = [(c · u2)(a · u3)− (c · u3)(a · u2)]u1 − (c · u3)(a · u1)u2 + (c · u2)(a · u3)u3

a× b = ‖b‖(a · u1)u3 − ‖b‖(a · u3)u1 .

By the invariance of triple product identity under cyclic permutation,

(b× c) · [(c× a)× (a× b)] = (c× a) · [(a× b)× (b× c)]

and from the above

[(a× b)× (b× c)] = −(a · u1)‖b‖‖b× c‖u2

Then

(c× a) · [(a× b)× (b× c)] = ‖b‖‖b× c‖(c · u3)(a · u1)
2 .

Let c = c‖ + c⊥ be the decomposition of c into components parallel and perpendicular to b. Then

since c is orthogonal to u1, ‖c·u3‖ = ‖c⊥‖ and of course b×c = c×c⊥, so that ‖b‖(c·u3) = ‖b×c‖.
Thus the left had side is equal to ‖b× c‖2(a · u1)

2, as was to be shown.


