Homework 2, Math 291 Fall 2017

Eric A. Carlen ${ }^{1}$
Rutgers University

September 20, 2017

1. Find a right handed orthonormal basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ such that \mathbf{u}_{1} is a positive multiple of $(4,4,7)$ and \mathbf{u}_{2} is orthogonal to $(1,0,2)$. How many such bases are there?
2. Let ℓ_{1} be the line parameterized by $\mathbf{x}(t)=(1,2,2)+t(0,3,3)$. Let ℓ_{2} be the line parameterized by $\mathbf{y}(s)=s(2,1,2)$. Compute the distance between these two lines, and the points \mathbf{x}_{0} on ℓ_{1} and \mathbf{y}_{0} on ℓ_{2} such that $\left\|\mathbf{x}_{0}-\mathbf{y}_{0}\right\| \leq\|\mathbf{x}(t)-\mathbf{y}(s)\|$ for all s, t.
3. Let ℓ_{1} be the line passing through $(1,2,2)$ and $(1,5,5)$. Let ℓ_{2} be the line passing through \mathbf{x}_{0} and $\mathbf{x}_{0}+(2,1,2)$. The set of all points \mathbf{x}_{0} for which ℓ_{2} meets ℓ_{1} (i.e., such that $\ell_{1} \cap \ell_{2} \neq \emptyset$) is a plane. Find an equation for this plane written in the form $a x+b y+c z=d$.
4. Let $h_{\mathbf{u}}$ be the Householder reflection determined by a unit vector \mathbf{u} :

$$
h_{\mathbf{u}}(\mathbf{x})=\mathbf{x}-2(\mathbf{x} \cdot \mathbf{u}) \mathbf{u} .
$$

a. Find a choice for \mathbf{u} such that $h_{\mathbf{u}}\left(\mathbf{e}_{1}\right)=\frac{1}{9}(4,4,7)$
b. For this choice of \mathbf{u}, also compute $h_{\mathbf{u}}\left(\mathbf{e}_{2}\right)$ and $h_{\mathbf{u}}\left(\mathbf{e}_{3}\right)$. Verify that $\left\{h_{\mathbf{u}}\left(\mathbf{e}_{1}\right), h_{\mathbf{u}}\left(\mathbf{e}_{2}\right), h_{\mathbf{u}}\left(\mathbf{e}_{3}\right)\right\}$ is a left handed orthonormal basis.
5. Let $\mathbf{v}_{1}, \mathbf{v}_{2}$ and \mathbf{v}_{3} be any three vectors in \mathbb{R}^{3} such that

$$
\mathbf{v}_{1} \cdot\left(\mathbf{v}_{2} \times \mathbf{v}_{3}\right) \neq 0 .
$$

a. Show that

$$
\left|\mathbf{v}_{1} \cdot\left(\mathbf{v}_{2} \times \mathbf{v}_{3}\right)\right|=\left|\mathbf{v}_{2} \cdot\left(\mathbf{v}_{3} \times \mathbf{v}_{1}\right)\right|=\left|\mathbf{v}_{3} \cdot\left(\mathbf{v}_{1} \times \mathbf{v}_{2}\right)\right| .
$$

b. Let D be the common value considered in part (a). Define vectors $\mathbf{w}_{1}, \mathbf{w}_{2}$ and \mathbf{w}_{3} by

$$
\mathbf{w}_{1}=\frac{1}{D} \mathbf{v}_{2} \times \mathbf{v}_{3}, \quad \mathbf{w}_{2}=\frac{1}{D} \mathbf{v}_{3} \times \mathbf{v}_{1}, \quad \text { and } \quad \mathbf{w}_{3}=\frac{1}{D} \mathbf{v}_{1} \times \mathbf{v}_{2} .
$$

Show that for all $1 \leq i, j \leq 3$,

$$
\mathbf{v}_{i} \cdot \mathbf{w}_{j}=\left\{\begin{array}{ll}
1 & i=j \\
0 & i \neq j
\end{array} .\right.
$$

6. Let the vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ and $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$ be as in Exercise 5.

[^0]a. Show that $\operatorname{Span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}\right)=\mathbb{R}^{3}$. Hint: We know that the span of any set of non-zero vectors in \mathbb{R}^{3} is either a line through the origin, a plane through the origin, or is all of \mathbb{R}^{3}. So to show $\operatorname{Span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}\right)=\mathbb{R}^{3}$ it suffices to show that whenever $\mathbf{v}_{1} \cdot\left(\mathbf{v}_{2} \times \mathbf{v}_{3}\right) \neq 0, \mathbf{v}_{1}, \mathbf{v}_{2}$ and \mathbf{v}_{3} cannot possibly lie on any one plane through the origin.
b. Show that for every $\mathbf{x} \in \mathbb{R}^{3}$, there are unique values of t_{1}, t_{2} and t_{3} such that
$$
\mathbf{x}=t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+t_{3} \mathbf{v}_{3},
$$
and that for each $j=1,2,3$,
$$
t_{j}=\mathbf{w}_{j} \cdot \mathbf{x}
$$
7. Let $\mathbf{v}_{1}, \mathbf{v}_{2}$ and \mathbf{v}_{3} be given by
$$
\mathbf{v}_{1}=(1,0,1), \quad \mathbf{v}_{2}=(1,1,1), \quad \mathbf{v}_{3}=(1,2,3) .
$$
a. Find vectors $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$ such that for all $1 \leq i, j \leq 3$,
\[

\mathbf{v}_{i} \cdot \mathbf{w}_{j}=\left\{$$
\begin{array}{ll}
1 & i=j \\
0 & i \neq j
\end{array}
$$.\right.
\]

b. Compute numbers t_{1}, t_{2} and t_{3} such that

$$
t_{1}(1,0,1)+t_{2}(1,1,1)+t_{3}(1,2,3)=(12,-7,19)
$$

8 Show that for all \mathbf{a}, \mathbf{b} and \mathbf{c} in \mathbb{R}^{3},

$$
(\mathbf{b} \times \mathbf{c}) \cdot[(\mathbf{c} \times \mathbf{a}) \times(\mathbf{a} \times \mathbf{b})]=|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})|^{2} .
$$

[^0]: ${ }^{1}$ © 2017 by the author.

