Homework 2, Math 291 Fall 2017

Eric A. Carlen¹ Rutgers University

September 20, 2017

1. Find a right handed orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ such that \mathbf{u}_1 is a positive multiple of (4, 4, 7) and \mathbf{u}_2 is orthogonal to (1, 0, 2). How many such bases are there?

2. Let ℓ_1 be the line parameterized by $\mathbf{x}(t) = (1, 2, 2) + t(0, 3, 3)$. Let ℓ_2 be the line parameterized by $\mathbf{y}(s) = s(2, 1, 2)$. Compute the distance between these two lines, and the points \mathbf{x}_0 on ℓ_1 and \mathbf{y}_0 on ℓ_2 such that $\|\mathbf{x}_0 - \mathbf{y}_0\| \le \|\mathbf{x}(t) - \mathbf{y}(s)\|$ for all s, t.

3. Let ℓ_1 be the line passing through (1, 2, 2) and (1, 5, 5). Let ℓ_2 be the line passing through \mathbf{x}_0 and $\mathbf{x}_0 + (2, 1, 2)$. The set of all points \mathbf{x}_0 for which ℓ_2 meets ℓ_1 (i.e., such that $\ell_1 \cap \ell_2 \neq \emptyset$) is a plane. Find an equation for this plane written in the form ax + by + cz = d.

4. Let $h_{\mathbf{u}}$ be the Householder reflection determined by a unit vector \mathbf{u} :

$$h_{\mathbf{u}}(\mathbf{x}) = \mathbf{x} - 2(\mathbf{x} \cdot \mathbf{u})\mathbf{u}$$
.

a. Find a choice for **u** such that $h_{\mathbf{u}}(\mathbf{e}_1) = \frac{1}{9}(4, 4, 7)$

b. For this choice of **u**, also compute $h_{\mathbf{u}}(\mathbf{e}_2)$ and $h_{\mathbf{u}}(\mathbf{e}_3)$. Verify that $\{h_{\mathbf{u}}(\mathbf{e}_1), h_{\mathbf{u}}(\mathbf{e}_2), h_{\mathbf{u}}(\mathbf{e}_3)\}$ is a left handed orthonormal basis.

5. Let \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 be any three vectors in \mathbb{R}^3 such that

$$\mathbf{v}_1 \cdot (\mathbf{v}_2 imes \mathbf{v}_3) \neq 0$$
.

a. Show that

$$|\mathbf{v}_1 \cdot (\mathbf{v}_2 \times \mathbf{v}_3)| = |\mathbf{v}_2 \cdot (\mathbf{v}_3 \times \mathbf{v}_1)| = |\mathbf{v}_3 \cdot (\mathbf{v}_1 \times \mathbf{v}_2)|$$

b. Let D be the common value considered in part (a). Define vectors \mathbf{w}_1 , \mathbf{w}_2 and \mathbf{w}_3 by

$$\mathbf{w}_1 = \frac{1}{D} \mathbf{v}_2 \times \mathbf{v}_3 , \qquad \mathbf{w}_2 = \frac{1}{D} \mathbf{v}_3 \times \mathbf{v}_1 , \quad \text{and} \quad \mathbf{w}_3 = \frac{1}{D} \mathbf{v}_1 \times \mathbf{v}_2 .$$

Show that for all $1 \leq i, j \leq 3$,

$$\mathbf{v}_i \cdot \mathbf{w}_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

6. Let the vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ and $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ be as in Exercise 5.

 $^{^{1}}$ © 2017 by the author.

a. Show that $\text{Span}(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}) = \mathbb{R}^3$. **Hint:** We know that the span of any set of non-zero vectors in \mathbb{R}^3 is either a line through the origin, a plane through the origin, or is all of \mathbb{R}^3 . So to show $\text{Span}(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}) = \mathbb{R}^3$ it suffices to show that whenever $\mathbf{v}_1 \cdot (\mathbf{v}_2 \times \mathbf{v}_3) \neq 0$, \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 cannot possibly lie on any one plane through the origin.

b. Show that for every $\mathbf{x} \in \mathbb{R}^3$, there are unique values of t_1, t_2 and t_3 such that

$$\mathbf{x} = t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2 + t_3 \mathbf{v}_3 \; ,$$

and that for each j = 1, 2, 3,

$$t_j = \mathbf{w}_j \cdot \mathbf{x}$$
.

7. Let \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 be given by

$$\mathbf{v}_1 = (1,0,1)$$
, $\mathbf{v}_2 = (1,1,1)$, $\mathbf{v}_3 = (1,2,3)$.

a. Find vectors $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ such that for all $1 \le i, j \le 3$,

$$\mathbf{v}_i \cdot \mathbf{w}_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

b. Compute numbers t_1 , t_2 and t_3 such that

$$t_1(1,0,1) + t_2(1,1,1) + t_3(1,2,3) = (12,-7,19)$$
.

8 Show that for all \mathbf{a} , \mathbf{b} and \mathbf{c} in \mathbb{R}^3 ,

$$(\mathbf{b} \times \mathbf{c}) \cdot [(\mathbf{c} \times \mathbf{a}) \times (\mathbf{a} \times \mathbf{b})] = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|^2$$
.