# Solutions for Homework 10, Math 291 Fall 2017 

Eric A. Carlen ${ }^{1}$<br>Rutgers University

December 16, 2017

1. Let $\mathcal{D} \subset \mathbb{R}^{2}$ be the region that is to the left of the parabola $x=y(2-y)$ and below the line $x-2 y+4=0$. Let $\mathcal{C}$ be its boundary given the outward normal orientation. Let $\mathbf{F}(x, y)=$ $(-2 x y, 4 y+x y)$ Calculate the flux integral $\int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{N} \mathrm{d} s$ both directly, and by making use of the Divergence Theorem.
SOLUTION Where the line and parabola intersect,

$$
2 y-y^{2}=x=2 y-4
$$

so $y= \pm 2$, and then the points of intersection are $(-2,-8)$ and $(0,2)$. We parameterize $\mathcal{C}$ in two pieces. Let $\mathcal{C}_{1}$ be parameterized by

$$
\mathbf{x}_{1}(t)=(t(2, t), t) \quad t \in(-2,2),
$$

and let $\mathcal{C}_{2}$ be parameterized by

$$
\mathbf{x}_{1}(t)=(2 t-4, t) \quad t \in(-2,2) .
$$

Then $\mathcal{C}=\mathcal{C}_{1}-\mathcal{C}_{2}$, taking into account that the parameterization of $\mathcal{C}_{2}$ is inconsistent with that of $\mathcal{C}$.

We now calculate

$$
\begin{aligned}
\int_{\mathcal{C}_{1}} \mathbf{F} \cdot \mathbf{N} \mathrm{~d} s & =\int_{-2}^{2} \mathbf{F}\left(\mathbf{X}_{1}\right) \cdot\left(-\mathbf{X}_{1}^{\prime}(t)\right)^{\perp} \mathrm{d} t \\
& =\int_{-2}^{2}\left(-2 t^{4}+8 t^{3}-8 t\right) \mathrm{d} t=-\frac{128}{5} \\
\int_{\mathcal{C}_{2}} \mathbf{F} \cdot \mathbf{N} \mathrm{~d} s & =\int_{-2}^{2} \mathbf{F}\left(\mathbf{X}_{2}\right) \cdot\left(-\mathbf{X}_{2}^{\prime}(t)\right)^{\perp} \mathrm{d} t \\
& =\int_{-2}^{2}\left(8 t-8 t^{2}\right) \mathrm{d} t=-\frac{128}{3}
\end{aligned}
$$

Then we have

$$
\int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{N} \mathrm{d} s=\int_{\mathcal{C}_{1}} \mathbf{F} \cdot \mathbf{N} \mathrm{~d} s-\int_{\mathcal{C}_{2}} \mathbf{F} \cdot \mathbf{N} \mathrm{~d} s=\frac{256}{15}
$$

[^0]Next we compute $\operatorname{div} \mathbf{F}(x, y)=x-2 y+4$. Hence

$$
\begin{aligned}
\int_{\mathcal{D}} \operatorname{div} \mathbf{F} \mathrm{d} A & =\int_{-2}^{2}\left(\int_{2 y-4}^{y(2-y)}(x-2 y+4) \mathrm{d} x\right) \mathrm{d} y \\
& =\int_{-2}^{2}\left(\frac{1}{2} y^{4}-4 y^{2}+8\right) \mathrm{d} y=\frac{256}{15}
\end{aligned}
$$

We get the same answer as before, as we must on account of the Divergence Theorem.
2. Let $\mathcal{C}$ be the oriented curve in the plane that starts at $(0,0)$, and moves along straight line segments form this point to $(1,2)$, then from this point to $(-1,4)$, then from this point to $(-3,2)$, and finally then from this point to $(-2,0)$. Let $\mathbf{F}(x, y)=\left(x^{3} y+y^{2} x^{2}, x+y+x^{2} y+y^{2} x\right)$. Compute the flux integral $\int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{N} \mathrm{d} s$.

It is not a lot more work to parameterize the four legs of $\mathcal{C}$ and compute the flux directly, but it is a good idea to use the Divergence Theorem for practice with setting up the multiple integrals.
SOLUTION We compute

$$
\operatorname{div} \mathbf{F}(x, y)=3 x^{2} y+2 y^{2} x+1+x^{2}+2 x y
$$

Let $\mathcal{C}_{2}$ be the straight line segment running from $(-2,0)$ to $(0,0)$, which we parameterize by

$$
\mathbf{x}_{2}(t)=(t-2,0), \quad t \in(0,2)
$$

Along $\mathcal{C}_{2}, \mathbf{N}=-\mathbf{e}_{2}$, and so

$$
\mathbf{F} \cdot \mathbf{N}=x
$$

all along $\mathcal{C}_{2}$. Thus

$$
\int_{\mathcal{C}_{2}} \mathbf{F} \cdot \mathbf{N} \mathrm{~d} s=\int_{0}^{2}(2-t) \mathrm{d} t=2 .
$$

Now let $\mathcal{D}$ be the polygonal region enclosed by $\mathcal{C}+\mathcal{C}_{2}$. We write this as a union of to pieces:

$$
\mathcal{D}_{1}=\{-2-y / 2 \leq x \leq y / 2, y \in(0,2)\}
$$

and

$$
\mathcal{D}_{2}=\{y-5 \leq x \leq 3-y, y \in(2,4)\}
$$

We compute

$$
\begin{aligned}
\int_{\mathcal{D}_{1}} \operatorname{divd} A & =\int_{0}^{2}\left(\int_{-2-y / 2}^{y / 2}\left(3 x^{2} y+2 y^{2} x+2 x y+x^{2}+1\right) \mathrm{d} x\right) \mathrm{d} y \\
& =\int_{0}^{2}\left(\frac{1}{4} y^{4}-\frac{5}{12} y^{3}+\frac{1}{2} y^{2}+7 y+\frac{14}{3}\right) \mathrm{d} y=\frac{123}{5}
\end{aligned}
$$

We then compute

$$
\begin{aligned}
\int_{\mathcal{D}_{2}} \operatorname{divd} A & =\int_{2}^{4}\left(\int_{y-5}^{3-y}\left(3 x^{2} y+2 y^{2} x+2 x y+x^{2}+1\right) \mathrm{d} x\right) \mathrm{d} y \\
& =\int_{2}^{4}\left(2 y^{4}-\frac{82}{3} y^{3}+106 y^{2}+100 y+\frac{176}{3}\right) \mathrm{d} y=-\frac{272}{15}
\end{aligned}
$$

Hence

$$
\int_{\mathcal{D}} \operatorname{div} \mathbf{F} d=\frac{97}{15}
$$

and then

$$
\int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{N} \mathrm{d} s=\frac{97}{15}-2=\frac{67}{15} .
$$

3: Let $\mathcal{S}$ be the part of the surface in $\mathbb{R}^{3}$ given by $\sqrt{x^{2}+y^{2}}=8-z$ that lies inside the cylinder $x^{2}+y^{2}=4$. With $\mathbf{F}=\left(2 y z-y^{2}, x^{2} z-2 x, x^{2} y\right)$, compute the flux

$$
\int_{\mathcal{S}} \mathbf{F} \cdot \mathbf{N} \mathrm{d} S
$$

where $\mathbf{N}$ is taken to point outward from the $z$-axis.
SOLUTION We first solve this by direct calculation of the given flux integral. For this, we parameterize the surface in cylindrical coordinates using

$$
\mathbf{X}(r, \theta)=(r \cos \theta, r \sin \theta, 8-r)
$$

We compute

$$
\mathbf{X}_{r} \times \mathbf{X}_{\theta}(r, \theta)=r(\cos \theta, \sin \theta, 1)
$$

This points outward from the $z$-axis, so it is the orientation we want. We now compute

$$
\mathbf{F}(\mathbf{X}(r, \theta)) \cdot \mathbf{X}_{r} \times \mathbf{X}_{\theta}(r, \theta)=r^{2} \cos \theta \sin \theta(14-2 r-r \sin \theta+8 r \cos \theta) .
$$

Integrating over $\theta \in(0,2 \pi)$ gives zero by symmetry, and so

$$
\int_{\mathcal{S}} \mathbf{F} \cdot \mathbf{N} \mathrm{d} S=0 .
$$

It is easier to use Stokes' Theorem to replace $\mathcal{S}$ by $\mathcal{S}_{2}$, the disk of radius 2 at height $z=6$ that has the same boundary as $\mathcal{S}$, and the same orientation if we give it the upward normal.

On $\mathcal{S}_{2}, \mathbf{N}=\mathbf{e}_{3}$ everywhere, and so $\mathbf{F} \cdot \mathbf{N}=x^{2} y$. It is cleat that when we integrate this over the disk $\left\{(x, y): x^{2}+y^{2} \leq 4\right\}$ we get zero, by symmetry.
4: Let $\mathcal{V}$ be the region in $\mathbb{R}^{3}$ that lies inside the sphere $x^{2}+y^{2}+z^{2}=4$, and above the graph of $z=1 / \sqrt{x^{2}+y^{2}}$. Let $\mathbf{F}=\left(y+z^{2}, x+z^{2}, 2 z(x+y)\right)$ and let $\mathbf{N}$ be the outward normal to $\mathcal{S}$, the boundary of $\mathcal{V}$. Compute the total flux

$$
\int_{\mathcal{S}} \mathbf{F} \cdot \mathbf{N} \mathrm{d} S
$$

SOLUTION It will be much easier if we use the Divergence Theorem rather than direct calculation. We compute $\operatorname{div} \mathbf{F}(x, y, z)=2(x+y)$. Since the region $\mathcal{V}$ is symmetric in $x$ and $y$,

$$
\int_{\mathcal{S}} \mathbf{F} \cdot \mathbf{N} \mathrm{d} S=\int_{\mathcal{V}} \operatorname{div} \mathbf{F} \mathrm{d} V=0 .
$$

5: Consider the two vector fields

$$
\mathbf{F}=\left(y z^{2}-2 x y, x z^{2}-x^{2}, 2 x y z\right) \quad \text { and } \quad \mathbf{G}=\left(z^{2}, y, x\right)
$$

(a) Compute the divergence of $\mathbf{F}$ and $\mathbf{G}$.
(b) Let $\mathcal{S}$ be the unit sphere, and $\mathbf{N}$ its outward normal. Compute

$$
\int_{\mathcal{S}} \mathbf{F} \cdot \mathbf{N} \mathrm{d} S \quad \text { and } \quad \int_{\mathcal{S}} \mathbf{G} \cdot \mathbf{N} \mathrm{d} S .
$$

Justify your answers to receive credit.
SOLUTION a We compute $\operatorname{div} \mathbf{F}=2 y(x-1)$ and $\operatorname{div} \mathbf{G}=1$.
For $\mathbf{b}$ we use the Divergence Theorem to compute, first for $\mathbf{G}$.

$$
\int_{\mathcal{S}} \mathbf{G} \cdot \mathbf{N} \mathrm{d} S=\int_{\mathcal{V}} \operatorname{div} \mathbf{G} \mathrm{d} V=\operatorname{vol}(\mathcal{V})=\frac{4 \pi}{3} .
$$

6: Consider the two vector fields

$$
\mathbf{F}=\left(y+z^{2}, x+z^{2}, 2 z x+2 z y\right) \quad \text { and } \quad \mathbf{G}=\left(y+z^{2}, x+z^{2}, 2 x+2 y\right) .
$$

(a) Compute the divergence $\mathbf{F}$ and $\mathbf{G}$.
(b) Let $\mathcal{V}$ be the intersection of the ball of radius 1 centered at the origin, and the ball of radius 1 centered at $(1,0,0)$. Let $\mathcal{S}$ be the boundary of $\mathcal{V}$ oriented with the outward unit normal N . Compute

$$
\int_{\mathcal{S}} \mathbf{F} \cdot \mathbf{N} \mathrm{d} S \quad \text { and } \quad \int_{\mathcal{S}} \mathbf{G} \cdot \mathbf{N} \mathrm{d} S
$$

SOLUTION a We compute $\operatorname{div} \mathbf{F}=2(x+y)$ and $\operatorname{div} \mathbf{G}=0$.
For $\mathbf{b}$ we use the Divergence Theorem to compute

$$
\int_{\mathcal{S}} \mathbf{G} \cdot \mathbf{N} \mathrm{d} S=\int_{\mathcal{V}} \operatorname{div} \mathbf{G} \mathrm{d} V=\operatorname{vol}(\mathcal{V})=0 .
$$

We have to work a little harder for F. Again by the Divergence Theorem,

$$
\int_{\mathcal{S}} \mathbf{F} \cdot \mathbf{N} \mathrm{d} S=2 \int_{\mathcal{V}}(x+y) \mathrm{d} V .
$$

The region is symmetric in $y$ and so the integral over $y$ is zero. We are left with computing $x$ over the region

$$
\mathcal{V}=\left\{(x, y, z): 1-\sqrt{1-y^{2}+z^{2}} \leq x \leq \sqrt{1-y^{2}+z^{2}}, 0 \leq y^{2}+z^{2} \leq 3 / 4\right\}
$$

Using cylindrical coordinates about the $x$-axis, We find

$$
\begin{aligned}
\int_{\mathcal{V}} x \mathrm{~d} V & =2 \pi \int_{0}^{\sqrt{3 / 4}}\left(\int_{1-\sqrt{1-r^{2}}}^{\sqrt{1-r^{2}}} x \mathrm{~d} x\right) r \mathrm{~d} r \\
& =2 \pi \int_{0}^{\sqrt{3 / 4}}\left(\sqrt{1-r^{2}}-\frac{1}{2}\right) r \mathrm{~d} r \\
& =\frac{5}{48}
\end{aligned}
$$

Finally, we multiply by 2 to find

$$
\int_{\mathcal{S}} \mathbf{F} \cdot \mathbf{N} \mathrm{d} S=\frac{5}{24} .
$$

7: As in Exercise 3, let $\mathcal{S}$ be the part of the surface in $\mathbb{R}^{3}$ given by $\sqrt{x^{2}+y^{2}}=8-z$ that lies inside the cylinder $x^{2}+y^{2}=4$. With $\mathbf{F}=\left(2 y z-y^{2}, x^{2} z-2 x, x^{2} y\right)$, Use Stokes' Theorem evaluate the flux

$$
\int_{\mathcal{S}} \operatorname{curl} \mathbf{F} \cdot \mathbf{N} \mathrm{d} S
$$

where $\mathbf{N}$ is taken to point outward from the $z$-axis, by computing a line integral.
SOLUTION The boundary $\mathcal{C}$ of $\mathcal{S}$ is consistently parameterized by

$$
\mathbf{x}(t)=(2 \cos t, 2 \sin t, 6) \quad t \in(0,2 \pi) .
$$

We compute

$$
\mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t)=8 \sin t-8 \cos ^{2} t \sin t+48 \cos ^{3} t+40 \cos ^{2} t-48 .
$$

We now integrate from $t=0$ to $t=2 \pi$ and by symmetry the first three terms make no contribution. We find

$$
\int_{\mathcal{S}} \mathbf{F} \cdot \mathbf{N} \mathrm{d} S=\int_{0}^{2 \pi}\left(40 \cos ^{2} t-48\right) \mathrm{d} t=20 \pi-96 \pi=-76 \pi .
$$

8: Consider the two vector fields

$$
\mathbf{F}=\left(y z^{2}-2 x y, x z^{2}-x^{2}, 2 x y z\right) \quad \text { and } \quad \mathbf{G}=\left(z^{2}, y, x\right) .
$$

(a) Compute the curls of $\mathbf{F}$ and $\mathbf{G}$.
(b) Let $\mathcal{S}$ be the part of the centered sphere of radius 2 that lies above the plane $x+y+z=1$, oriented with its unit normal $\mathbf{N}$ pointing upwards. Let $\mathcal{C}$ be the bounding curve with the consistent orientation. Compute

$$
\int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{T} \mathrm{d} s \quad \text { and } \quad \int_{\mathcal{C}} \mathbf{G} \cdot \mathbf{T} \mathrm{d} s
$$

Justify your answers to receive credit.
(c) One of these vector fields is conservative. Identify the conservative vector field, and a potential function for it.

SOLUTION a. We compute curlF $=\mathbf{0}$ and $\operatorname{curl} \mathbf{G}=(0,2 z-1,0)$.
b. Since $\mathcal{C}$ is a closed curve and $\mathbf{F}$ is conservative, $\int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{T} \mathrm{d} s=0$. It is best to use an adapted system of coordinates, Let $\mathbf{u}_{3}=3^{-1 / 2}(1,1,1)$ be the unit normal to the plane. It is easy to see that $\mathbf{u}_{1}=2^{-1 / 2}(1,-1,0)$ is a unit vector that is orthogonal to $\mathbf{u}_{3}$. Define $\mathbf{u}_{2}=\mathbf{u}_{3} \times \mathbf{u}_{1}=6^{-1 / 2}(1,1,-2)$. We can now parameterize the circle easily. The center is the point $(1 / 3,1 / 3,1 / 3)$. Then

$$
(x-1 / 3)^{2}+(y-1 / 3)^{2}+(z-1 / 3)^{2}=x^{2}+y^{2}+z^{2}-\frac{2}{3}(x+y+z)+\frac{1}{3}=4-\frac{2}{3}+\frac{1}{3}=\frac{11}{3} .
$$

Therefore, the radius of the circle is $\sqrt{11 / 3}$. It can now be parameterized as

$$
\begin{aligned}
\mathbf{x}(t) & =\frac{1}{3}(1,1,1)+\sqrt{11 / 3} \cos t \mathbf{u}_{1}+\sqrt{11 / 3} \sin t \mathbf{u}_{2} \\
& =\frac{1}{6}(2+\sqrt{77} \cos t+\sqrt{22} \sin t) \mathbf{e}_{1}-\frac{1}{6}(2+\sqrt{77} \cos t+\sqrt{22} \sin t) \mathbf{e}_{2}+\frac{1}{3}(1-\sqrt{22} \sin t) \mathbf{e}_{3} .
\end{aligned}
$$

From here one works out that

$$
\mathbf{G}(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t)=-\frac{88}{9 \sqrt{3}}\left(\cos ^{2} t+\frac{\cos t \sin t}{\sqrt{3}}-\frac{7}{16}\right)-\frac{11}{4}(\sqrt{66} \sin t-\sqrt{22} \cos t)\left(\cos ^{2} t-\frac{10}{11}\right) .
$$

Most terms drop out upon integration in $t$, leaving only

$$
\int_{\mathcal{C}} \mathbf{G} \cdot \mathbf{T} \mathrm{d} s=\int_{0}^{2 \pi}-\frac{88}{9 \sqrt{3}}\left(\cos ^{2} t-\frac{7}{16}\right) \mathrm{d} t=-\pi \frac{11}{9 \sqrt{3}}
$$

We can also use Stokes' Theorem to do this. This will lead to simple calculustions because the curl of $\mathbf{G}$ is quite simple, and because $\mathcal{C}$ not only bounds $\mathcal{S}$, but it also bounds $\widetilde{\mathcal{S}}$, a disk in the plane $x+y+z=1$. The normal to this plane, with the consistent orientationm is $\mathbf{N}=3^{-1 / 2}(1,1,1)$ everywhere on $\widetilde{\mathcal{S}}$. Hence by Stokes'Theorem,

$$
\int_{\mathcal{C}} \mathbf{G} \cdot \mathbf{T} \mathrm{d} s=\int_{\tilde{\mathcal{S}}}(0,2 z-1,0) \cdot \mathbf{N} \mathrm{d} S=\frac{1}{\sqrt{3}} \int_{\tilde{\mathcal{S}}}(2 z-1) \mathrm{d} S .
$$

Let $\langle z\rangle$ denote the aveage of $z$ over $\widetilde{\mathcal{S}}$, and let $A$ denote the area of $\widetilde{\mathcal{S}}$. Then

$$
\frac{1}{\sqrt{3}} \int_{\tilde{\mathcal{S}}}(2 z-1) \mathrm{d} S=\frac{1}{\sqrt{3}}(2\langle z\rangle-1) A
$$

Evidently $\langle z\rangle$ is the $z$-coordinate of the center of $\widetilde{\mathcal{S}}$; that is, $\langle z\rangle=1 / 3$, and $A=\pi \frac{11}{3}$. Altogether,

$$
\int_{\mathcal{C}} \mathbf{G} \cdot \mathbf{T} \mathrm{d} s=-\pi \frac{11}{9 \sqrt{3}}
$$

which agrees with what we found before by direct calculuation. The calculuation uisng Stokes' Theorem is considerably shorter.

For $\mathbf{c}$, we know that since curl $\mathbf{F}=\mathbf{0}, \mathbf{F}$ is a gradient. Integrating we find that

$$
\varphi(x, y, z)=x y z^{2}-x^{2} y
$$

is a potential function for $\mathbf{F}$.
9: Consider the two vector fields

$$
\mathbf{F}=\left(y+z^{2}, x+z^{2}, 2 z x+2 z y\right) \quad \text { and } \quad \mathbf{G}=\left(y+z^{2}, x+z^{2}, 2 x+2 y\right) .
$$

(a) Compute the curl of $\mathbf{F}$ and $\mathbf{G}$.
(b) Let $\mathcal{S}$ be the part of the ellipsoidal surface

$$
x^{2}+\frac{1}{2} y^{2}+\frac{1}{4} z^{2}=1
$$

above the plane $z=1$, oriented so the unit normal $\mathbf{N}$ points upwards. Let $\mathcal{C}$ be the bounding curve with the consistent orientation. Compute

$$
\int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{T} \mathrm{d} s \quad \text { and } \quad \int_{\mathcal{C}} \mathbf{G} \cdot \mathbf{T} \mathrm{d} s
$$

(c) One of these vector fields is conservative. Identify the conservative vector field, and a potential function for it.

SOLUTION We compute curlF $=\mathbf{0}$ and $\operatorname{curl} \mathbf{G}=2(1-z, z-1,0)$.
For $\mathbf{b}$, since $\mathbf{F}$ is conservative and $\mathcal{C}$ is closed, $\int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{T} \mathrm{d} s=0$. Note that $\mathcal{C}$ is also the boundary of the ellipse in the plane $z=1$ with $x^{2}+y^{2} / 2 \leq 3 / 4$; call this $\widetilde{\mathcal{S}}$, and the consistent unit normal is $\mathbf{N}=(0,0,1)$ everywhere on $\widetilde{\mathcal{S}}$. Thus curlG $\cdot \mathbf{N}=0$ everywhere on $\widetilde{\mathcal{S}}$, and the by Stokes' Theorem,

$$
\int_{\mathcal{C}} \mathbf{G} \cdot \mathbf{T} \mathrm{d} s=0
$$

For $\mathbf{c}$, we know that since $\operatorname{curl} \mathbf{F}=\mathbf{0}, \mathbf{F}$ is a gradient. Integrating we find that

$$
\varphi(x, y, z)=z^{2}(x+y)+x y
$$

is a potential function for $\mathbf{F}$.


[^0]:    ${ }^{1}$ © 2017 by the author.

