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1. Let D ⊂ R2 be the region that is to the left of the parabola x = y(2 − y) and below the

line x − 2y + 4 = 0. Let C be its boundary given the outward normal orientation. Let F(x, y) =

( − 2xy, 4y + xy) Calculate the flux integral

∫
C
F ·Nds both directly, and by making use of the

Divergence Theorem.

SOLUTION Where the line and parabola intersect,

2y − y2 = x = 2y − 4

so y = ±2, and then the points of intersection are (− 2,−8) and (0, 2). We parameterize C in two

pieces. Let C1 be parameterized by

x1(t) = (t(2, t), t) t ∈ (−2, 2) ,

and let C2 be parameterized by

x1(t) = (2t− 4, t) t ∈ (−2, 2) .

Then C = C1 − C2, taking into account that the parameterization of C2 is inconsistent with that of

C.
We now calculate ∫

C1
F ·Nds =

∫ 2

−2
F(X1) · (−X′1(t))⊥dt

=

∫ 2

−2
(−2t4 + 8t3 − 8t)dt = −128

5
.

∫
C2

F ·Nds =

∫ 2

−2
F(X2) · (−X′2(t))⊥dt

=

∫ 2

−2
(8t− 8t2)dt = −128

3
.

Then we have ∫
C
F ·Nds =

∫
C1

F ·Nds−
∫
C2

F ·Nds =
256

15
.

1 c© 2017 by the author.

1



2

Next we compute divF(x, y) = x− 2y + 4. Hence∫
D

divFdA =

∫ 2

−2

(∫ y(2−y)

2y−4
(x− 2y + 4)dx

)
dy

=

∫ 2

−2

(
1

2
y4 − 4y2 + 8

)
dy =

256

15
.

We get the same answer as before, as we must on account of the Divergence Theorem.

2. Let C be the oriented curve in the plane that starts at (0, 0), and moves along straight line

segments form this point to (1, 2), then from this point to (−1, 4), then from this point to (−3, 2),

and finally then from this point to (−2, 0). Let F(x, y) = (x3y+y2x2, x+y+x2y+y2x). Compute

the flux integral

∫
C
F ·Nds.

It is not a lot more work to parameterize the four legs of C and compute the flux directly, but

it is a good idea to use the Divergence Theorem for practice with setting up the multiple integrals.

SOLUTION We compute

divF(x, y) = 3x2y + 2y2x+ 1 + x2 + 2xy .

Let C2 be the straight line segment running from (− 2, 0) to (0, 0), which we parameterize by

x2(t) = (t− 2, 0) , t ∈ (0, 2) .

Along C2, N = −e2, and so

F ·N = x

all along C2. Thus ∫
C2

F ·Nds =

∫ 2

0
(2− t)dt = 2 .

Now let D be the polygonal region enclosed by C + C2. We write this as a union of to pieces:

D1 = {−2− y/2 ≤ x ≤ y/2 , y ∈ (0, 2) }

and

D2 = {y − 5 ≤ x ≤ 3− y , y ∈ (2, 4) }

We compute ∫
D1

divdA =

∫ 2

0

(∫ y/2

−2−y/2
(3x2y + 2y2x+ 2xy + x2 + 1)dx

)
dy

=

∫ 2

0

(
1

4
y4 − 5

12
y3 +

1

2
y2 + 7y +

14

3

)
dy =

123

5
.

We then compute

∫
D2

divdA =

∫ 4

2

(∫ 3−y

y−5
(3x2y + 2y2x+ 2xy + x2 + 1)dx

)
dy

=

∫ 4

2

(
2y4 − 82

3
y3 + 106y2 + 100y +

176

3

)
dy = −272

15
.
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Hence ∫
D

divFdA =
97

15

and then ∫
C
F ·Nds =

97

15
− 2 =

67

15
.

3: Let S be the part of the surface in R3 given by
√
x2 + y2 = 8 − z that lies inside the cylinder

x2 + y2 = 4. With F = (2yz − y2, x2z − 2x, x2y), compute the flux∫
S
F ·NdS ,

where N is taken to point outward from the z-axis.

SOLUTION We first solve this by direct calculation of the given flux integral. For this, we

parameterize the surface in cylindrical coordinates using

X(r, θ) = (r cos θ, r sin θ, 8− r)

We compute

Xr ×Xθ(r, θ) = r( cos θ, sin θ, 1) .

This points outward from the z-axis, so it is the orientation we want. We now compute

F(X(r, θ)) ·Xr ×Xθ(r, θ) = r2 cos θ sin θ(14− 2r − r sin θ + 8r cos θ) .

Integrating over θ ∈ (0, 2π) gives zero by symmetry, and so∫
S
F ·NdS = 0 .

It is easier to use Stokes’ Theorem to replace S by S2, the disk of radius 2 at height z = 6 that

has the same boundary as S, and the same orientation if we give it the upward normal.

On S2, N = e3 everywhere, and so F ·N = x2y. It is cleat that when we integrate this over the

disk {(x, y) : x2 + y2 ≤ 4} we get zero, by symmetry.

4: Let V be the region in R3 that lies inside the sphere x2 + y2 + z2 = 4, and above the graph of

z = 1/
√
x2 + y2. Let F = (y + z2, x + z2, 2z(x + y)) and let N be the outward normal to S , the

boundary of V. Compute the total flux ∫
S
F ·NdS .

SOLUTION It will be much easier if we use the Divergence Theorem rather than direct calculation.

We compute divF(x, y, z) = 2(x+ y). Since the region V is symmetric in x and y,∫
S
F ·NdS =

∫
V

divFdV = 0 .

5: Consider the two vector fields

F = (yz2 − 2xy, xz2 − x2, 2xyz) and G = (z2, y, x) .
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(a) Compute the divergence of F and G.

(b) Let S be the unit sphere, and N its outward normal. Compute∫
S
F ·NdS and

∫
S
G ·NdS .

Justify your answers to receive credit.

SOLUTION a We compute divF = 2y(x− 1) and divG = 1.

For b we use the Divergence Theorem to compute, first for G.∫
S
G ·NdS =

∫
V

divGdV = vol(V) =
4π

3
.

6: Consider the two vector fields

F = (y + z2, x+ z2, 2zx+ 2zy) and G = (y + z2, x+ z2, 2x+ 2y) .

(a) Compute the divergence F and G.

(b) Let V be the intersection of the ball of radius 1 centered at the origin, and the ball of radius

1 centered at (1, 0, 0). Let S be the boundary of V oriented with the outward unit normal N.

Compute ∫
S
F ·NdS and

∫
S
G ·NdS .

SOLUTION a We compute divF = 2(x+ y) and divG = 0.

For b we use the Divergence Theorem to compute∫
S
G ·NdS =

∫
V

divGdV = vol(V) = 0 .

We have to work a little harder for F. Again by the Divergence Theorem,∫
S
F ·NdS = 2

∫
V

(x+ y)dV .

The region is symmetric in y and so the integral over y is zero. We are left with computing x over

the region

V = {(x, y, z) : 1−
√

1− y2 + z2 ≤ x ≤
√

1− y2 + z2 , 0 ≤ y2 + z2 ≤ 3/4} .

Using cylindrical coordinates about the x-axis, We find∫
V
xdV = 2π

∫ √3/4

0

(∫ √1−r2
1−
√
1−r2

xdx

)
rdr

= 2π

∫ √3/4

0

(√
1− r2 − 1

2

)
rdr

=
5

48
.

Finally, we multiply by 2 to find ∫
S
F ·NdS =

5

24
.
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7: As in Exercise 3, let S be the part of the surface in R3 given by
√
x2 + y2 = 8 − z that lies

inside the cylinder x2 + y2 = 4. With F = (2yz − y2, x2z − 2x, x2y), Use Stokes’ Theorem evaluate

the flux ∫
S

curlF ·NdS ,

where N is taken to point outward from the z-axis, by computing a line integral.

SOLUTION The boundary C of S is consistently parameterized by

x(t) = (2 cos t, 2 sin t, 6) t ∈ (0, 2π) .

We compute

F(x(t)) · x′(t) = 8 sin t− 8 cos2 t sin t+ 48 cos3 t+ 40 cos2 t− 48 .

We now integrate from t = 0 to t = 2π and by symmetry the first three terms make no contribution.

We find ∫
S
F ·NdS =

∫ 2π

0
(40 cos2 t− 48)dt = 20π − 96π = −76π .

8: Consider the two vector fields

F = (yz2 − 2xy, xz2 − x2, 2xyz) and G = (z2, y, x) .

(a) Compute the curls of F and G.

(b) Let S be the part of the centered sphere of radius 2 that lies above the plane x + y + z = 1,

oriented with its unit normal N pointing upwards. Let C be the bounding curve with the consistent

orientation. Compute ∫
C
F ·Tds and

∫
C
G ·Tds .

Justify your answers to receive credit.

(c) One of these vector fields is conservative. Identify the conservative vector field, and a potential

function for it.

SOLUTION a. We compute curlF = 0 and curlG = (0, 2z − 1, 0).

b. Since C is a closed curve and F is conservative,
∫
C F · Tds = 0. It is best to use an adapted

system of coordinates, Let u3 = 3−1/2(1, 1, 1) be the unit normal to the plane. It is easy to see that

u1 = 2−1/2(1,−1, 0) is a unit vector that is orthogonal to u3. Define u2 = u3×u1 = 6−1/2(1, 1,−2).

We can now parameterize the circle easily. The center is the point (1/3, 1/3, 1/3). Then

(x− 1/3)2 + (y − 1/3)2 + (z − 1/3)2 = x2 + y2 + z2 − 2

3
(x+ y + z) +

1

3
= 4− 2

3
+

1

3
=

11

3
.

Therefore, the radius of the circle is
√

11/3. It can now be parameterized as

x(t) =
1

3
(1, 1, 1) +

√
11/3 cos tu1 +

√
11/3 sin tu2

=
1

6
(2 +

√
77 cos t+

√
22 sin t)e1 −

1

6
(2 +

√
77 cos t+

√
22 sin t)e2 +

1

3
(1−

√
22 sin t)e3 .
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From here one works out that

G(x(t)) · x′(t) = − 88

9
√

3

(
cos2 t+

cos t sin t√
3

− 7

16

)
− 11

4
(
√

66 sin t−
√

22 cos t)

(
cos2 t− 10

11

)
.

Most terms drop out upon integration in t, leaving only∫
C
G ·Tds =

∫ 2π

0
− 88

9
√

3

(
cos2 t− 7

16

)
dt = −π 11

9
√

3

We can also use Stokes’ Theorem to do this. This will lead to simple calculustions because the

curl of G is quite simple, and because C not only bounds S, but it also bounds S̃, a disk in the plane

x + y + z = 1. The normal to this plane, with the consistent orientationm is N = 3−1/2(1, 1, 1)

everywhere on S̃. Hence by Stokes’Theorem,∫
C
G ·Tds =

∫
S̃
(0, 2z − 1, 0) ·NdS =

1√
3

∫
S̃

(2z − 1)dS .

Let 〈z〉 denote the aveage of z over S̃, and let A denote the area of S̃ . Then

1√
3

∫
S̃

(2z − 1)dS =
1√
3

(2〈z〉 − 1)A .

Evidently 〈z〉 is the z-coordinate of the center of S̃; that is, 〈z〉 = 1/3, and A = π 11
3 . Altogether,∫

C
G ·Tds = −π 11

9
√

3
.

which agrees with what we found before by direct calculuation. The calculuation uisng Stokes’

Theorem is considerably shorter.

For c, we know that since curlF = 0, F is a gradient. Integrating we find that

ϕ(x, y, z) = xyz2 − x2y

is a potential function for F.

9: Consider the two vector fields

F = (y + z2, x+ z2, 2zx+ 2zy) and G = (y + z2, x+ z2, 2x+ 2y) .

(a) Compute the curl of F and G.

(b) Let S be the part of the ellipsoidal surface

x2 +
1

2
y2 +

1

4
z2 = 1

above the plane z = 1, oriented so the unit normal N points upwards. Let C be the bounding curve

with the consistent orientation. Compute∫
C
F ·Tds and

∫
C
G ·Tds .

(c) One of these vector fields is conservative. Identify the conservative vector field, and a potential

function for it.
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SOLUTION We compute curlF = 0 and curlG = 2(1− z, z − 1, 0).

For b, since F is conservative and C is closed,
∫
C F ·Tds = 0. Note that C is also the boundary

of the ellipse in the plane z = 1 with x2 + y2/2 ≤ 3/4; call this S̃, and the consistent unit normal is

N = (0, 0, 1) everywhere on S̃. Thus curlG ·N = 0 everywhere on S̃, and the by Stokes’ Theorem,∫
C
G ·Tds = 0 .

For c, we know that since curlF = 0, F is a gradient. Integrating we find that

ϕ(x, y, z) = z2(x+ y) + xy

is a potential function for F.


